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1. I n t r o d u c t i o n  
Sometimes a shift in parameter of a process can be related to an apparent 

causal event at a time which can be precisely specified. However, in many 
cases pgtential causal events cannot be identified with reasonable confidence, 
and timin.g of the changepoint is uncertain. We present diagnostics and tests 
for tile retrospective identification of abrupt change in the mean level of a 
process where the mean and  variance of the underlying random variables 
cannot be functionally separated. For example, in the case of binary data  
X1, . . .  ,X,, with Pr(Xi = 1) = 1 - Pr(Xi = O) = p, we have E(Xi) = p and 
var(Xi) = p(1 -p ) .  A simple tlme-sequence plot of such observations is usually 
uninformative regarding possible changes in the parameter. Consequently we 
propose to smooth the da ta  by taking a moving average and then applying 
a variance stabilizing transformation. This will ensure that the observations 
have constant variance (at least asymptotically). Various test statistics can 
be constructed from the transformed process. The two proposed diagnostics 
involve cumulative sums and principal components, respectively. 

2. D e v e l o p m e n t  of  diagnostics 
Suppose X1 , . . . ,  Xn is a sequence of independent random variables having 

means ~ti and variances a2(gi), i = 1 , . . . ,  n. Consider the null hypothesis of 
constancy of the mean 

Ho: # i = p ;  i = l , . . . , n  

versus the changepoint alternative 

H,  : tti = ~ + & I n d ( r  < i <_ n),  

where the initial level, #, the extent of the change, /k and the changepoint r 
is unknown. Ind( . )  denotes the indicator function. 
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Define the / -dependent  sequence of moving averages 

ln- I  

Yr,t, = I~ -1 ~ X,+i ; r = 1 , 2 , . . . , m ,  (2.1) 
j=0  

where m = n - 1, + 1. To simplify the notation we choose to write l for 
I,. Let f( . )  denote a variance stabilizing transformation, chosen to satisfy 
the differential equation f ' (p)a(#)  = 1. Assume that l --~ oo, m --+ oo in 
such a way that  l /m  ---* O, la/m ~ --~ 0 and 12/m --* oo. It follows from 
these assumptions that  l = n 1-6, where } < (~ < }. Also, assume that/z6 = 
E(Xi - /L )  s < oo and that  ]f"(x)] is a convex function of x. 

m Ei=l  f(Yid), and define Let f ( ) i ) =  -1 m 

k 

= S( r , ) } ,  k =  1 , . . . , , , , .  

Constancy of the mean can then be checked via a test statistic of the form 

• :. Sin,, = ~ a,,,(k)BL, (k),  (2.2) 
k=l  

where 
= 

am(k) J(2k-~)12= 
with ~(u),  0 < u < 1, a non-negative weight function such that  f~ u(1 - 
u)~(u)du < oo. It follows from Theorem 2 of MacNeill (1974) that  the limit 
distribution of this statistic is that  of 

fo' ~(t)B~(t)dt '  

with (B(t)  ; 0 < t < 1) denoting 0. s tandard Brownian bridge process. Per- 
centage points for a wide range of weight functions are known. Below we only 
consider the weight function ~o(u) = 1, 0 _< u _< 1, which gives am(k) = m -~. 

The cusum diagnostic consists of plotting Bm,t (k) against k. A sustained 
change of direction in the plot is indicative of a changepoint. When the change . 
is judged significant after formal testing, an estimate of the point of change is 
given by the maximizer over k of ]B,,,,, (k)]. 

The second diagnostic will only be described briefly since formal test statis- 
tics are still under investigation. Let l>r,t = Y,,t - ~ ,  and let ~ denote the ran- 
dora vector (}"~,t,..., ~/m,t) r. Under the null hypothesis the elements of the co- ~ 
variance matrix of Yt are given by a2(p)K*(r, s). Let ~z > As > " "  > A,_~ > 0 
denote the non-zero eigenvalues of K*, with corresponding normalized eigen- 
vectors v~ , . . . , v ,_ l .  (There also exists a non-zero eigenvector vn-t+~, corre- 
sponding to the eigenvalue ~,~-~+l = 0.) The principal components of ~ are 
given by 

¢3(~) _= ¢ , .=  v ~ ,  j = 1 , . . . , n  - 1. 
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Since the eigenvectors are orthonormalit follows that  cov(¢j, ek) = a2(~t)Aj Ind(j = 
k), i.e. the standardized principal components, ¢ j /Ay  2, are uncorrelated with 
common variance a2(l~). 

Now, consider the case where X1, . . . ,  X ,  are independent, but with non- 
constant mean. Put v, = E(Y,,t), ~, = E(Y,,t), v = (v l , . . . , vm)  r and ~, = 
( ~ 1 , "  " " ,  ~m) T" Then 

E(~, (~,)) = ~ (~7~) =,f~ = ~, (~). 

It follows easily that 

vl . . . . .  v,~ if and only if 

¢~ (~) = ~Ib 0 for j = 1 , . . . , n -  Z. 
(2.3) 

Hence, the sgationarity or non-stationarity of E(Y,:) can be determined by 
analyzing the principal components of Yr. 

For th~ variance-stabilized process, define ](l/i) . . . .  (f(Ya,,), ,f(Ym.,))~ T, 
where ](Y~,l) = f(Y~,t) - ](Yt). The covariance matrix of ](Yt) is then approx- 
imately K*. Letting 

~, - ¢,(/(v,))= ~77~) = ( - f f , )  :'(.) = ¢,:'(.), (2.4) 

we see that 
coy (¢iA7'/2; j = 1 , . . . , m )  ~ I, 

the identity matrix. 
From (2.4) and (2.3) we can check for stationarity of the mean by plotting 

v~f(Y~)  against j .  
The procedures above are applied to the Dow Jones Industrial average for 

the period July 1, 1971 through August 2, 1974, a data set also considered by 
Hsu (1979). Our results agree with those obtained by Hsu who analyzed the 
data by different methods. 

3. T w o - s t a t e  M a r k o v  chains  
Consider a first order Markov chain X0,X1, . . . ,  X,  with state space {0, 1}. 
Denote the transition probability matrix at time t by P(t) ,  where 

pq(t) = Pr (X, = j I X~-a = i ) ,  i , j  = O, 1. 

Consider the null hypothesis of stationarity, 

H0 : P( t )  = P, t = 1 , . . . , n  
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where pij > 0, and the alternative hypothesis 

P t = l , . . . , T  
H, P(t) 

P* t = T + l , . . . , n  

where 
[ ~o -60  ] (3.1) 

P * = P +  -~1 '~1 ' 

with P, ~0, ~1 and T E { 1 , . . . , n - -  1} unknown. 
Assume the null hypothesis of stationary transition probabilities, in other 
words, 

PI0 P l l  ' 

independent of t. The waiting times between transitions are 

To - 0 

: '  T1 - m i n ( t > T o  : X t # X T o )  

Let, for i = 1 ,2 , . . .  

and 

T~ = m i n ( t > 7 ' l  : Xt~t  XT,) ,  etc. 

T2i-1 - T2~-2 if XTo = 0 
Wi = T~i - T21-~ if XTo = 1 

{ T2~ - T2~-I if )(To = 0 
V~ = T2i-1 - T~-2 if XTo = 1 

Then, conditional on the value of XTo, (W1, W~,. . . )  and (V~, V2,. . .)  are two 
independent sequences. W1, W2,. . .  are independent copies of a geometric 
random variable W with mass function 

P r ( W - = w ) =  ~o-, P0o P01 ; w >  1 

while I/1, V2,. • • are independent copies of a geometric random variable V with 
mass function 

P r ( Y  v) ~-~ = =PI1 Pl0; v > l .  

Note that each of the times W1, W2,.. • is computed from the same initial state 
XTo, and thus the Markov property guarantees that  W1, W2,. . .  are indepen- 
dent and identically distributed. 
To test for abrupt  change in the transition probabili ty from state 0 to state 1 
we have 

E ( W )  = p~-i 1 _= 
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and 
var(W) PooPo• = P ( #  - 1) ~ ~r2(#). 

Note that  E(W) increases when pol decreases, with a subsequent clustering of 
zeros. From this it follows that  for small off-diagonal elements of the transition 
probabili ty matrix, n must be quite large in order to obtain a reasonable 
number of W's and V's. 
The transformation f must  therefore be chosen so that  

f '  0 , )  = - 1 ) ) - ' " .  

The solution to this equation is given by f(/~) = 2cosh -! (v/-fi).1 Lett ing 

1-1 

j=0 

we can then: test for constancy of the transition probability from 0 to 1 via 
the statistic (2.2) which, in this special case, we denote by T~. In the same 
way the V - process can be used to test for abrupt change in the transition 
probability from state 1 to state 0. Denote this statistic by T~. The W and 
V processes are independent. One way of combining them to give a test for 
constancy of the 0 --~ 1 and 1 ~ 0 transition probabilities is to take 

T 2 = T~ + T~, (3.2) 

with asymptotic distribution given by that of 

fo 
Here B1 and B2 are independent Brownian bridge processes. Critical values 
for this distribution are also known. 

4. S i m u l a t i o n  
The results in the previous section on Markov chains were compared using 
simulated data. Two methods were considered to generate the Markov chain. 
Consider a fixed transition probability matrix P and condition on the initial 
state, X0 = i. Under tim null hypothesis of stationarity, for t = 1; 2 ; . . .  ;n,  if 
Xt-1 = 0, generate one observation from a Bernoulli distribution with success 
probability p01, that  is, Pr (Xt = 1 J X t - i  = O) = Pol, and if X t - i  = 1, generate 
one observation from a Bernoulli distribution with success probability pll. 
Repeat the procedure under the alternative for t = 1 ; . . .  ; T. For t = r + 1 ; . . .  ; n 
we use P" in (3.1). 

1Some computer software products do not contain cosh -1 (z) as an implicit function. 
An easy computational formula is cosh- l (x )  = In (x + z 2 v ~ -  1) ; z > 1. 
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The second method of simulating the Markov chain was based on the algorithm 
described by Wang & Scott (1989). 
We used N = 1000 repetitions, a sample size of 120 and a lag of I = 11 
to simulate the percentage points. These points were then used to compare 
powers for different values of v, d~0, ~1. For such a small sample size we focused 
mainly on tile case P0o = Pll = 0, 5; the initial state was fixed at )to = 1. 
There did not appear to be any real change in the results produced by the 
two different methods of simulation - as measured by the percentage points 
obtained and the relative merits of one test vis-a-vis another. We opted to 
persist with the first method for simulating the Markov chain. 
This study confirmed our intuition regarding the power of our procedures. 
Based on waiting times, a fairly large amount of data would in general be 
required to achieve respectable power. As expected, our procedure is most 
powerful for late changes in the data sequence, and correspondingly less pow- 
erful for early changes. This could be partially resolved by employing a weight 
function which gives more weight to early changes. 
If we fix ~he changepoint and vary the extent of change, our procedure has most 
power for 'relatively small diagonals and much less power for larger diagonals. 
In other words, it is particularly sensitive to frequently varying processes, 
rather than to processes with greater persistence. The situation improves 
markedly for larger sample sizes. 
Also, our simulation confirmed the known speedy rate of convergence to the 
asymptotic distribution of the E-type test criteria. Some simulated percentage 
points for the T 2- test is given below (the asymptotic percentage points are 
given in brackets). 

t Pr(T 2 < t) 
0.604(0.607) 0.90 
0.757(0.748) 0.95 
1.116(1.074) 0.99 
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