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ABSTRACT 

This paper presents a parsimonious twelve parameter model that explains the pattern 

of mortality for the combined mortality rates of the 1965-70 Select and Ultimate Basic 

Tables. The parameters in this model provide insightful demographic and statistical 

information about the effects of selection. This parametric model is useful because it can 

predict the select mortality rates beyond the fifteen year select period and it can predict 

the effects of selection beyond seventy years old. 

141 



I. INTRODUCTION 

The purpose of this paper is to present a parsimonious parametric model that 

explains the pattern of mortality for select and ultimate mortality tables. Specifically, we 

will model the combined rates found in the 1965-70 Age Last Birthday Basic Tables 

produced by the Committee on Ordinary Insurance and Annuities [2]. Before proceeding, 

it is instructive to plot the rates and examine the pattern of mortality in the Basic 

Tables. All the graphs in this paper were produced with the statistical computing 

language GAUSS. 

Examining Figure 1, the reader will find plots of the logarithm of the select and 

ultimate combined rates from the Basic Tables. Let q[=] + k denote a graduated select 

mortality rate for an issue age z > 0, at the last birthday, and for policy year k + 1 > 1. 

We will denote the attained age as y = z + k. Note that the select period for these tables 

is fifteen years and so q[z]+k is given only for k = 0 . . . . .  14. Next, let qy denote a 

graduated ultimate rate for a person aged y. Now, consider the graph in Figure 1. This 

graph plots loge(qu ) for y = 15 . . . . .  90 and it plots fifteen curves for each of the policy 

years. That is, for each k, the graph plots loge(q[ v _/=] + k) for the attained ages y = k, ..., 

k + 67. Many of the values for q[v- k] + k are not given in the Basic Tables because of 

grouping, therefore the function loge(q[u_k]+k), with respect to y, was approximated 

linearly. Examining the graph, we find that the pattern exhibited by loge(q[v_~l+k ), 

shows a decrease in the childhood years, a hump at about age 20 and a linear pattern at 

the adult ages. A necessary condition for select tables is the monotonicity condition 

q[v-kI+k < q [ v - k -  z ]+k+l .  (1.1) 

Examining Figure 1 we find that the rates exhibit considerable monotonicity, although 

the monotonicity condition does not hold strictly for all y =  1,...,67 and 
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k = 0 ..... min(~/-  1, 14), because of the linear appro~mation. 

The Basic Tables present select rates in five-year age groupings, which may be 

inconvenient to practitioners because the rates must be interpolated, which is a strength 

of mathematical formulas. Another strength of our mathematical model is the ability to 

predict or estimate the select rates at issue ages above seventy, which is impossible with 

the current tabulated rates. Still another strength of our parametric mode] is the ability 

to extend the select period beyond 15 years. Finally, the parameters in our model will 

provide insightful demographic and statistical information about the effects of selection. 

Therefore, in our opinion, a mathematical model is the most convenient way for 

practitioners to calculate select rates. 
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F IGURE 1 

Plots of loge(qv ) and Ioge(q[ v _/=] + k) from the Combined 1965-70 Basic Tables 
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A review of the literature reveals that very little research has been done on the fitting 

of parametric formulas to select rates. Using Canadian data, Panjer and Giuseppe [3] did 

a graduation of select and ultimate rates that they refer to as "parametric." In fact, a 

true parametric formula was only developed at the higher ages. This is also true of the 

laws of select and ultimate mortality developed by Tenenbein and Vanderhoof [4]. In 

both cases the formulas are based on Gompertz's law or generalizations thereof and in 

neither case were they able to develop formulas that fit the pattern of mortality from 

childhood to early adulthood. In contrast, this paper will present a parametric formula 

that will reflect the fall in mortality at the childhood years, the hump at about age 20 

and the exponential pattern at the adult ages. 

2. A PARAMETRIC MODEL 

In this section, we present our mathematical law of select and ultimate mortality and 

discuss some of its features. A general mathematical law of select and ultimate mortality 

can be defined as follows. Let z>_ 0 be the issue age at the nearest birthday, let k-I- 1 ~ 1 

be the policy year and let y = z + ] ~  be the attained age. Also, let s(y[@k) denote a 

parametric survival function with a parameter vector 0 k that converges to 000 as k---,oo. 

Then, the select mortality rates can be defined as 

¢ [ V - k ] + k  = 1 -- 8 ( y + ] l a k ) ,  (2 .1)  
s (~ lOk)  

while the ultimate rates can be defined as 

qv = 1 - s(y + I I 0o~). 
s(yl  0oo) 

(2.2) 
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Note that the monotonicity condition in (1.1) is a necessary condition to ensure that the 

rates calculated according to (2.1) are actually select rates. 

Now, let us specify the formula for s(y 1 0). Note that the pattern of mortality 

exhibited in Figure 1 is very similar to that of the total population of the United States. 

One of the models developed by Carriere[1] proved successful in modeling the pattern of 

mortali ty of the United States population. Therefore, we propose to use Carriere's model 

as the basic formula s(y] 0) in (2.1) and (2.2). The model given by Carriere [1] is a 

mixture of a Weibull survival function, an Inverse-Weibull survival function and a 

Gompertz survival function. In this eight-parameter model, the probability of surviving 

to age y>0 i s  

s(ylO) = ¢lS1(y) + ¢2s2(#) + ¢3s3(y) (2.3a) 

where 

s (y) = }, (2.3d) 

~ = 1 - ,¢,~ - ' / ' 2 ,  ( 2 . 3 e )  

O = (¢1, ¢~, ¢3, ~1, m2, r~,  o-1, o'2, o'3)'. (2.3f) 

The parameters in this model are ¢i E [0, 1], m i > 0 and a i > 0 for i = i,  2, 3 and 

they are summarized with the vector 0. These parameters provide demographic and 

statistical information. For instance, ¢1 is the probability that a new life will die from 

childhood causes, ¢2 is the probability of dying from teenage causes and ¢3 is the 

probability of dying from adult  causes. The values ml, m 2 and m 3 can be interpreted as 

location parameters, while or1, ~r 2 and ~r 3 can be interpreted as scale parameters. For 

instance, m 3 is the mode of the probability density function of the Gompertz survival 

function s3(f ), while cr 3 is a scale parameter because all the mass concentrates around m 3 
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when a 3 is small. See Carriere [1] for more details. 

Now, let us model O k =(¢lk ,  ¢2k, ¢3k, talk, m2k, m31¢, crlk, a2k, ant)' for k > 0. 

With this notation, 0 o denotes the parameter values at issue while 0oo denotes the 

ultimate parameter values. Using 0 o and 0oo we could define O k as a weighted average 

O k = 0 o + ( 0 o o - 0 0 ) ( l - e x p { -  akb}), (2.4) 

where a > 0 and b > 0. If we use (2.4), then the resulting model will have eighteen 

parameters. Obviously, other ways of modeling 01¢ ate possible but we found that using 

(2.4) leads to a good fit of the data. An idea similar to (2.4) was used by Panjer and 

Giuseppe [3], where a weighted average was taken of q~ and q[y]. 

3. PARAMETER ESTIMATION 

In this section, we will estimate the parameters a, b, 80 and 0oo that yield a good fit 

to the combined select rates given in the 1965-70 Basic Tables. All parameter estimates 

were calculated by the NONLIN module of the statistical computer software called 

SYSTAT. This system estimated the parameters by minimizing 

14 
E ~ ( 1  q~z] b 2 - + ~,/q[~] + . , , ) ,  (3 .x)  

z E X  k=O 

where q~] + k is based on the parametric model and q~] + k is equal to a graduated select 

rate from the Basic Tables and X =  {0, 1, 3, 7, 12, 17, 22 . . . . .  67}. Note that this 

minimization is subject to the monotonicity constraint given in (1.1). Also note that 

minimizing (3.1) is actually a difficult and time-copsuming exercise, that requires good 

starting values, good algorithms, a fast computer and some luck. 
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FIGURE 2 

Plots of loge(q[ ~ - k] + k) from the Basic Tables and from the Formula 

(The Values from the Basic Table are given as Solid Squares) 
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Let us comment  on the loss function or fit measure given in (3.1). Note that  this 

measure is based on the relative error 1 - q~x] b + k/q[=] + k, which means that  both small 

and large mortal i ty rates are given equal consideration. It can be shown that  

i - q[=l + k / q [ - ]  + k ~ + q[=q + 

which means that  the fit measure used by Tenenbein and Vanderhoof [4] is essentially the 

same as ours. In fact, Carriere [1] found that the parameter estimates based on relative 

almost equal to those based on loge{Ioge(1- 0 qb ) q[=l+k)/l°ge( I -  [ z l + k ) "  Next, error a r e  

the Basic Tables give select rates for 70 and over, as a group. We excluded these rates 

because we were unable to determine the appropriate issue age for this group. Finally, our 

fit measure does not include the ultimate rates because we were unable to determine what 

policy year would be appropriate for these rates since they are based on the experience 

from policy years 16 and over. 

A Good-Fitting Formula 

Using SYSTAT,  we were aDle to find parameter values a, b, 60 and 000 that 

minimized (3.1) for the select rates. Initially, the full eighteen-parameter model was fit to 

the data with good success. In a search for a parsimonious model, we found that  imposing 

the constraints ~bto = ~1~o, ~b2o = ~b2oo, ~b3o = ~3oo, mlo m mloo , m20 _ ~  m2oo o.10 ___~ O'1oo, 

and #20 = ~r2oo lead to a reduced model that was almost as good as the full model. The 

parameter est imates for this reduced twelve-parameter model are given in Table 1. Note 

that  ~b30 = .9798 and so the Gompertz component of our model explained most of  the 

deaths. Therefore, it is not surprising that restricting the parameters in the Weibull and 

Inverse-Weibull components had little effect on the fit. 
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The best way, in our opinion, of verifying that the parameters in Table 1 yield a 

good-fittlng formula is to plot the estimated rates against the table rates. Figure 2 shows 

fifteen graphs, one for each k = O  . . . . .  14, of loge(q~y_k]+k ) at y E k + X  and of 

I°ge(q~y-k] + k) at y = k, .... k +  67. After examining Figure 2, we believe that the rates 

calculated with our formulas are almost indistinguishable from the tabular rates. 

TABLE 1 

PARAMETER ESTIMATES FOR THE MODEL 

k 0 oo 

~blk 

¢2k 

talk 

m2k 

o'lk 

a2k 

dr31 ¢ 

.0133 .0133 

.0069 .0069 

.9798 .9798 

9.763 9.763 

19.71 19.71 

95.42 73.09 

25.54 25.54 

4.671 4.671 

12.67 10.12 

a = .2817 b = .4766 

Let us illustrate the behavior of our model at some advanced policy years and issue 

ages. Let qy denote the ultimate rates, based on our formula, and let q[y_/~] + k denote 

the select rates. Figure 3 plots |oge(qv ) for y =  0 . . . . .  90 and it plots loge(q[~_k]+k ) for 

the policy years k-t- 1 = 1, 3, 10, 18, 25 and the attained ages y- -  k, ..., 90. I t  may be 

instructive to compare Figure 1 with Figure 3. Note the strict monotonicity in the rates, 

as you increase the policy year. Also note that the ultimate rates strictly dominate the 

select rates and finally note the smoothness that our mathematical formula imparts to 

these rates. 
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FIGURE 3 

A Plot of  the Logarithms of  the Ultimate Rates and the Select Rates in Policy 

Years 1, 3, 10, 18, 25 using the Formula at the Issue Ages 0 to 90 
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4. VALIDATION 

We did not include the ult imate rates in the derivation of  our formula because we 

were unable to determine a policy year that would be appropriate for this data. Let us 

val idate  our formula by comparing our rates to the ult imate rates. Let qy denote the 

ul t imate  rates and let 0 denote our select rates, based on the formula, for q[v - k u] + k u 

policy year k u. The value k u can be interpreted as the average policy year of the data  

used in the ult imate rates. To  estimate k u we used a squared error loss function, similar 

to (3.1),  and found that letting k u = 19 yielded good estimates of qv" To verify this claim, 

examine  Figure 4 where the actual rates are plotted against the predicted values at the 

at ta ined ages y -- 15, . . . .  100. In our opinion, the graph shows that the predicted rates are 

very close to the actual rates and so we believe that our rates provide reliable est imates.  
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FIGURE 4 

A Comparison of the Ultimat~ Rates from the Basic Tables 

With the Predicted Values Based on the Formula 
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6. CONCLUSION 

Based on the success of our mathematical  law of select and ult imate mortality, in 

capturing the pattern of mortality in the 1965-70 Basic Tables, we suggest that future 

graduations be done with mathematical formulas. There are many advantages of using 

this approach. First, interpolation becomes a trivial exercise. Second, we do not have to 

restrict the model to issue ages below 70. Third, we can easily extend the select period 

beyond 15 years. Fourth, the parameters in tile model provide insightful demographic and 

statistical information about the effects of selection. Therefore, a mathematical  model is 

the most convenient way for practitioners to calculate select rates. 
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