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AI~STRACT 

Currently, multiple decrement theory is based on the assumption that competing 

causes of decrement are stochastically independent even though this assumption is usually 

not true in reality. This paper presents some fundamental results towards a dependent 

decrement theory. First, we show how to model dependence with copula functions and 

next we present a theorem that characterizes the mathematical relationship between the 

crude and net probabilities when the decrements are dependent. Finally, we apply our 

results by examining the effect of removing cancer from the United States population 

when cancer is correlated with the other causes of death. 
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1. INTRODUCTION 

The book Actuarial Mathematics [2] develops multiple decrement theory under the 

assumpt ion that  the competing causes of decrement are stochastically independent. 

Notwithstanding the rarity of completely independent decrements, it is often convenient 

to assume independence. We believe that the errors in analysis that  occur from this 

convenient assumption are unacceptable. To rectify this situation, this paper presents 

some fundamental  results towards a dependent decrement theory. 

We show how to characterize the dependence structure of any continuous mult ivariate 

probability distribution with a copula function. This  will allow us to generalize the 

current  independent decrement theory to a dependent decrement theory. Finally, we will 

investigate the effect of removing cancer, as a cause of death, from the United States 

population, assuming that  cancer is dependent on the other causes. We discover that  if 

the correlation between decrements is negative then removing a cause of death will extend 

the median lifetime more than  if the correlation is positive. 

2. DEFINITIONS AND BASIC RESULTS 

Following the example of Elandt-Johnson and Johnson [5], let 0 _4 T) < oo for j = 1, 

. . . ,  m be the latent random t ime of withdrawal, due to cause j, for a life aged a _> 0. Note 

tha t  these random variables may  be stochasticatly dependent  and they are not observable 

in a competing risk or multiple decrement model. 'eVe will assume that  these random 

variables are not defective, tha t  is P r ( T j  < oo) -- I. Let tj > 0 for j - -  I . . . . .  m. Consider 

the mult ivariate survival function 

S(t 1 . . . . .  tin) = Pr (T  1 > t I . . . . .  Tra > tin). (2.1) 
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See Tucker (14] for a nice discu.'sion about mult ivariate probability distributions. 

Throughout  the paper, we will assume that S(l t . . . .  , tin) is absolutely continuous. Tha t  

is, there exists a function f ( t !  . . . .  , In, ) such that 

f S ( t ~  . . . . .  t,.,,) = . . . .  I ( s ~  . . . . .  s , , , )  a s , , , . . . d s ~ .  
J t I trn 

(2.2) 

In reality, some decrements occur only at year-ends and so the absolute continuity 

assumpt ion is not valid in all cases but we believe tha t  this is a good approximating 

assumption.  

Let t _> 0 and consider the net survival function 

s'(J)(O = P,(T,  > O. (2.3) 

Next, consider the random variable rr, in(T I . . . . .  Tin) and the index random variable 

J = . ~  j I (min(T 1 . . . . .  Tin) = T/). (2.4) 
3 = 1  

Using (2.4) we can define the crude survival function as 

SU) ( I )  = P r ( m i n ( r  I . . . . .  Tin) > l, J = j ) .  (2.5) 

To ensure that  all the mass  of J is on the integers l , . . . ,m we will assume tha t  

Pr (  Tj = T,) = 0 whenever j ~ i. 

The following lemma is a well-known result in the theory of competing risks. Th i s  

result gives a representation of the crude survival function, that  will be useful later. An 

alternate proof of this lemma may be found in Tsiatis [13]. 
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Lemma 1: If S(t I . . . .  , tin) is differentiable with respe.:t to t~ > 0 for all j =  1, . . . ,  m; then 

s(~)(O = - s~( . . . . . .  r) d,, (2.6~) 
t 

where Si(r ..... r) = 0 S(t I . . . . .  lm)~ k = ~,vk • (2.6b) 
Otj 

Proo/: s(J)Ct) = er(min(T~ ..... T,,~) > t, J=3)= Pr([Tk > t and T 3 < T k Vk])= 

P r ( T j >  ~and [T k> Tj VkCj])= t t f ' "  " ' "  tm) k~j~I dtk) dt~= 
o o  

I t ~ ~ "  S(tl . . . . .  t m ) ~  = tj, Vk} dtj, which is exactly equal to (2.6a-b). [3 

3. COPULAS AND MEASURES OF ASSOCIATION 

"In this section, we will show how to characterize the dependence structure of any 

cont inuous multivariate probability distribution. This will allow us to generalize the 

current  independent decrement theory to a dependent decrement theory or equivalently, a 

dependent  theory of competing risks. 

Let a = (u I . . . . .  urn)' E [0, 1] m and let 6"(a) denote the so-called copula function that 

is associated with every mul t ivar ia te  distribution. Following the example of Schweizer 

and  Sklar [12], we define a copula, C(a), as a mult ivariate  cumulat ive distribution 

function tha t  has uniform marginals  with support oil the hyper-cube [0, 1] rn. This  means 

tha t  for all j = 1 ..... m we have C(n I .. . . .  u j _  1,0,uj + 1 , . . . ,urn)= 0 and C(1 . . . . .  l ,uj ,1 ..... 1) 

m 

= uj. An example of a copula is C(I) =jI'[ lu j . =  and another is C(I) = min(u 1 . . . . .  urn). 

Some examples of 2 - d i m e n s i o n a l  copulas may be found in Barnett  [1] or Mardia [9]. 

The  copula function is very useful in understanding the dependence structure of 

mul t ivar ia te  probability distr ibutions because of the following lemma. This l emma  states 

tha t  if we know the form of  the copula, C(a}, and we know the net survival functions, 

S t ( J ) (0  Vj, then S(t z . . . .  , ~m) is identifiable. 
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Lerarna 2: There exists a unique copula C(u) such that 

(3.~) 

{ " l[s'CJ)(T~) } Proof: Let C(u) = Pr ~= <. uj} . It is well known that  if oc'(/)(O is a 
J 

continuous survival function then the transformed random variable S'(J)(Tj) has a 

uniform distribution on [0, 11. Therefore, C(u) is a copula because it is a cumulative 

distribution function with uniform marginals. Next, C(S' (t)(tl)  . . . . .  S '  (") ( t in))  = 

• " j = l  - " j = !  - 

because the event [S ' ( J} (T j )<  S ' ( i ) ( t j ) ]  is equal to [Tj> fj], except on a set of 

probability O. Let us suppose that C~) is not unique; then there exists C*(~) ~ C'~u) such 

= (u~ . . . . .  U~n) t e [0, 1] m be a value such that  C*(m*) ¢ C(u*). Using the continuity of 

S~(J)(t/),  we know there exists ;~E[0 ,  oo] such that  S ° ( D ( t ~ ) = u ~ .  Therefore 

C ( S ' ( I ) ( t l  *) ..... S ' (m) ( '~ ) )  ¢ C'(S ' (1)( t l*  ) . . . . .  S'(rn)(t:))  This is a contradiction to our 

supposition that  C(u) is not unique, therefore U(u) is unique. I"1 

Let us give a few facts about copulas. If T 1 ..... Trn are stochastically independent; 

m 

then the unique copula associated with $'(t n . . . .  ,tin) is equal t O j g l U J .  Moreover, if 

T I . . . . .  Tin; then the unique copula associated with oc(t I . . . . .  fro) is equal to min(u  1, 

... .  urn). This last copula is actually an upper bound because C(=) < min (a I . . . . .  urn), for 

any copula C(I) and for all mE[0,1Jrn. For more information about  copulas, consult 

Genest  and MacKay [6] or Kimeldorf and Sampson [7]. 

We are now in a position to give a representation of the crude survival function, in 

terms of copulas. Using the results in Lemma 1 and Lemma 2, along with the chain rule, 

we get the following result. 
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Theorem 3: If C(u I . . . . .  u,,,) is differentiabh with r,~spect to uj E (0, l) and S ' (~ ) ( t j )  is 

differentiable with respect to tj > 0 for all j = 1 . . . . .  m; then 

~s(Jl(t) = cj(s' (~(t) ..... s' (r';)(t)) × ,,'S' (")(t) , 
dt dt 

(3.2a) 

where C i (u  I . . . . .  u,n ) = 0 C ( u  I . . . . .  Urn ) . (3.2b) 
Ouj 

Measures o f  Associat ion 

Nonparametric measures of association are very useful for understanding the nature of 

the dependence in a copula. They are also useful for parametrizing families of copulas, as 

we will see later. An example of a measure is Spearman's p. Given a bivariate copula 

function C(ul, u2), we can calculate this correlation coefficient as follows, 

f 
p = 12 ] u lu  2 dC(u 1, u 2 ) -  3, (3.3) 

[0,112 

Note that  IP l  < 1 , a n d  p = - I  if and only if C(u 1, u2)=max(0 ,  u l+u2-1)  and p = + l  

if and only if C~u t, u2) = min(u l, u2). The copulas max(0, ul+u2-1 ) and min(u t, ~ )  are 

called the Frechet bounds because max(0, Ul+U2-1 ) <_ C(ut, u2)<_ min(ul, u2) for all 

C(ui, u2). For more information, see Genest and MacKay [fi] or Carriere and Chan [4]. 

The Norma l  Copula 

Finally, let us give an example of a bivariate copula. Specifically, let us give the 

probability density function of the copula asscziated with the bivariate normal 

distribution. For t, ~ E ~,  define 

where 

&(f)= ~b(z) dr, (3.4) 
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for u E (0, 1) define + - ' (u)  a~ the inverse function of (l)(t), that  is (l(+ - ' (u ) )  Next, U. 

Next, let R denote an 2 x 2 non-singular correlation matrix with the off-diagonal e lement  

denoted as r12. This  is actually a variance-covariance matr ix  where all the diagonal  

dements  are equal to 1. Note that R is a symmetric  and positive definite matr ix .  Let 

(zl,z2)rE 32; then the probability density function of a standardized bivariate normal  

distribution is 

h(zvh ) = (2~)-' IRI -l /~ exp{- (z , , z2)R- l (h ,~) '  }. (3.6) 
2 

See Mardia, Kent and Bibby [10] for more details about  the multivariate normal  

distribution. Let (ul, u2) I E (0, 1)2; then the density of the normal  copula is 

82 C(ul, ~2) = h(# - 1(ul), ~ - 1(~)) . (3.~) 
au;0u~ ~(¢- ~(u~)) × ¢(¢-  1(.~)) 

We can express r12 as a function of Spearman's correlation coefficient. Using the results 

in Kruskal [8], we find that  rl2 = 2f in0rp/6) ,  where p is Spearman's  correlation for the  

bivariate normal copula with parameter rl~. 

4. THE EFFECT OF REMOVING CANCER 

In this section, we will investigate the effect of removing cancer, as a cause of death ,  

from the United States (U. S.) population. Specifically, we will calculate the net survival  

probabilities from the crude probabilities, assuming that  this disease is dependent on the  

other causes. We will model the dependence with a normal copula. 
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The data comes from the National Center for Health Statistics [11]. This publication 

gives the number of deaths from cancer and from the other causes, in five year age 

groups. Using this data, we can calculate the crude survival functions S(C)(t) and 

S (-c)(t) for t = 0, 5, . . . ,  95, 100. The superscript (c) will denote that cancer is the cause 

of death while ( - c) will denote the other causes of death. Using the data, we find that 

the probability of dying from cancer is equal to ooq~c)= .1956. Using an interpolating 

formula, we approximated the crude survival functions at t = 0, 1 . . . . .  110 and we 

estimated the densities ~ c ) ( 0  and f ( - ¢ ) ( 0 .  Figure 1 is a plot of f(r)(t)= 

f(oC)(t) + f(o-c)(f) and of ~ c ) ( t ) , / ' ( -  c)(0. All the graphs and calculations were done with 

the statistical computing language GAUSS. 

FIGURE 1 

A Plot of the Densities Io (r), .to (c) and/o - c )  Based on 

The 1979-81 U. S. Life Tabl¢~ by Cause of Death 
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The net survival functions S'(e)([) and S '(  - c ) (0  can be found by solving a system 

of differential equations. Consider the equations (3.2a-b) that relate the net and crude 

probabilities with the copula function. If we assume that the copula is normal, then we 

get the system 

/o~(,) = c,(s'~l(o, s'~-~(o I p) x/~(, ) ,  (4Aa) 
.to ( -¢)(0 = C2(S'(C)(O, S '( -c)(o I P) x.f~ ( - c)(O, (4.1b) 

where 

(4.1c) 

and C 2(u, v I p) -- C I (v, u I P) and r(p) = 2sin(a'p/6). Note that we parametrized the 

copula with Spearman's p because we believe that this parametrization is informative, 

albeit complicated. 

Let us describe how we solved this system numerically. Most of the techniques that 

we used are given in Burden and Falres [3]. First, we transformed the differential system 

into a system of difference equations. We did this by letting 

/0¢*)(k + .s) ~ s(¢)(k) - s(¢)(k + ]), 

I0 < - ¢)(k+ .s) ~ s(- ~)(k) - s( - ~)(k + I), 

/~(~}(k + .5) ~ s'(~)(k) - ~'(e)(k + 1), 

/~( -*)(k + .5) ~ s '( -*~(,'0 - s'( - °)(k+ i), 

s'l°~(k+.5) ~ .5 × {S'¢~)Ik + 1) + S'C°I(k)}, 

S '(-C)(k+.5) ~ .5 x{S '( -c)(k+ 1)+ S '{-c)(k)}, 

for k = O, 1 . . . . .  110. Using the initial condition S'{c)(O) = S ' ( -c ) (O)  = I, we find that 

we can solve the problem recursively. Moreover, the problem reduces to finding the zeros 

of a sequence of nonlinear system of equations which were solved with Newton's method. 
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To verify our numerical solution, we checked that 

c(s'(¢~(t), s' (-ol(t) i ,,,) = s('=l(t) + s I - , l (  t). (4.2) 

We solved the system under the assumption that Spearman's correlation is equal to 

p = - .99 ,  - . 50 ,  0, , +.50 +.99. Note that the copula is not differentiable when p is 

equal to - 1 or + 1. If p = 0 then the net probabilities are independent and we have the 

standard analysis. But if the correlation is + .99 then this strong positive dependence 

means that removing cancer has little effect on survival. But if the correlation is - . 9 9  

then this strong negative dependence means that removing cancer will increase the 

chances of survival. 
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FIGURE 2 

A Plot of S ' ( - ¢ ) ( t )  when Cancer is Correlated with the Other Causes 
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These effects can be seen in Figure 2 where S ' ( - c ) ( t )  was plotted at t =  0, 1 . . . . .  l l0  

and p = - .99 ,  - . 5 0 ,  0, +.50, +.99. These graphs indicate that S ' ( - c ) ( t )  increases 

when p decreases. If p =  - .99 ,  then S ' ( - c ) ( t )  is essentially an upper bound on the 

improvement that can be expected when cancer is removed. Moreover, if p = + .99, then 

S~( -c ) ( t )  is essentially a lower bound on the improvement in mortality that can be 

expected when cancer is removed. 

The graph also reveals that if we remove cancer then the median age at death of a 

newborn will increase as p decreases. Currently, the median age at death of a newborn is 

77. Under the standard analysis (p = 0), removing cancer will increase the median age at 

death to 81. If p = +.99 then remoging cancer will only increase the median age to 78 

but if p = - .99 then the median age will increase to 83. 

5. SUMMARY 

We showed that the effect of removing a cause of death depends on the copula used 

in the analysis, We found that if the correlation between decrements is negative then 

removing a cause of death will extend the median lifetime more than if the correlation is 

positive. We also gave a theorem that characterizes the mathematical relationship 

between the crude and net probabilities when the decrements are dependent. 
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