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A b s t r a c t  

Biihlmann(1967) gave a formal Bayesian derivation of the credi- 
bility ratio estimators that actuaries had been using for many years. 
Since then various generalizations of Biihlmann's model have appeared 
in the literature, each relaxing the i.i.d, assumptions in its own way. 
The introduction of weights is due to Biihlmann & Straub(1970) and 
that of regressors to Hachemeister(1975), but the first comprehensive 
actuarial application of the Kalman filter is due to de Jong & Zehn- 
wirth(1983). 

More recent efforts have concentrated on the robustification of 
these estimators, as they proved to be extremely sensitive to large 
claims. Kremer(1991) studies a robust regression credibility modal 
and Kiinsch(t992) tackles the weighted case. Following Kremer(1994) 
we propose here a robust KaJman filter credibility model. Since our 
results should appear in more detail in a separate refereed publica- 
tion, we only include here a summary of the paper, as presented at 
the Conference. 
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1 I n t r o d u c t i o n  

The lack of robustness of classical credibility estimators, i.e. their extreme 
sensitivity to large claims, is adressed in a series of recent works. Kre- 
met(1991) studies a robust regression credibility model, duplicating, to a 
certain extent, the independent and prior work of Kfinsch, that appeared 
in 1992 and where he treats the weighted observations case. Following Kre- 
mer(1994), we propose here a robustification of the Kalman filter, a recursive 
estimator that can be given a Credibility interpretation. In the paper, we 
also implement the empirical version of this robust Kalman filter credibility 
estimator with a data set, and compare its sensitivity to large claims with 
that of other credibility estimators in the literature. 

2 

2 . 1  

C l a s s i c a l  C r e d i b i l i t y  

B i i h h n a n n ( 1 9 6 7 ) :  f o r  i . i . d ,  o b s e r v a t i o n s .  

Assumptions: 

(i) For j = 1, ..., k the pairs (Oj,){j)  are i.i.d., 

(ii) Conditionally oll @, the r.v.'s Xj~ .... , Xjt are i.i.d.. 

Since the results only depend on the first two momeJ~ts of the distribu- 
tion of Xj, ,  the last assumption is usually replaced by 

(ii) E ( X j r l O j ) = # ( % )  and V ( X ~ , I %  ) = a 2 ( O J )  for a l l , ' =  1,... ,t .  

• The non-homogeneous linear Bayes rule which minimizes 

t 

E{[tt(Oj) - c~ - y~ c, Xj,] 2} , j = 1 . . . .  , k f i x e d  
1 

is given by 

for 

.a (o , )  = s ( x j , )  + z Ix , .  - E ( x , , ) ]  

z = v [~ , (e , ) ]  ~ 
~[~(es)] + v[~,(es)] t 
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• The empirical Bayes rule is obtained by substituting the parameters 
E(Xs), V[#(Oj)} and E[a2(Oj)] with unbiassed estimators. 

2 . 2  B i i h l m a n n  & S t r a u b ( 1 9 7 0 ) :  the weighted c a s e  

• Assumptions: Here the observations are still assumed independent and 
with constant mean, but the variance is allowed to vary with the values 
of known weights. 

(i) For j = 1 .... , k the vectors (Oi, ~'j) are pair-wise independent and 
the Oj's are identically distributed, 

(ii) Conditionally on Oj the r.v.'s Xj,,..., Xjt are independent, 

(iii) E(XjrlOj) = #(Oj) for all r = 1,.. . , t ,  

(iv) Cov(X,r, Xj~[Oj) = ~-~, a~(Oj) where the W, are known weights. 

• The non-homogeneous linear Bayes rule in Bfihlmann-Straub's ease (B- 
S) is given by 

~(Oj)  = E ( X . )  + Zj [X.~,,,. - E(Xj,-)} 

for 

w h e r e  

v[t , (o j ) ] , , , j .  
z j  = E[o-*(O~)l + v [ t , (e4 l , , , j .  ' 

t t 
i f ) j r  

r : l  r = l  

• The empirical Bayes rule is obtained by substituting the parameters 
E(Xj~), V[.u(Oj)] and E[a~(O~)] with unbiassed estimators. 

2.3 Hachemeister(1975):  the regression case 

• Assumptions: This model departs from the i.i.d, case by allowing for 
different means, explained through regressors, and for different vari- 
ances, which are again function of known weights, as in B-S's case. 
In addition it allows for possible covarianees between observations and 
contracts. 
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(i) For j = 1, ..., k the vectors (Oi, J(i) are pair-wise independent and 
the Oj 's  are identically distributed, 

(ii) Here ~(Oj)  = (/t t(Oj), . . . , t~t(Oi)) '  with 

E(2 j I%)  =/,j(oi) = Y,9(%) 
= Y ( C ' , ( O A  . . . .  , ~ , , ( O , ) ) '  

where Y is a design matrix (of rank n < t) and /)(Oj) is an 
unknown regression vector. 

(iii) Cov(Xj lOj )  = a2(O~i)b where Vj is a positive semi-definite matrix 
of known weights and a ~ a scalar function. 

• The weighted least squares estimators are 

~(0,) = ( Y ' V / Y ) - ' Y ' V ~ '  2 s 

and 
~(oj) = Y~(oA. 

• Tile non-homogeneous linear Bayes rule is given by 

E[~ (OA]  + YZj [ f l (%)  - E[/~(O,) l , 

where 

Zj = Co.[~(Oj)]Y'V;'Y [I + Cov[~(O~)]V'V'~'V]-' 

• The empirical Bayes rule is obtained by substituting tile parameters 
E[/~(OA] , Cov[~(Oj)] and E[a~(OA] with unbiassed estimators. 

2.4 de Jong & Zehnwirth(1983): the Kalman filter 

• Assmnptions: Here is a brief description of a Kalmau filter model. More 
general versions exist. 

(i) For r = 1, ..., t the row vectors of observations satisfy 

2(, = Yr~, + f i , ,  

where Y, is a known design matrix, fit is the parameter vector 
applicable at t ime r, and fi, is a zero mean error vector with 
covariance matrix U,. 
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(ii) Similarly, the row vectors of state parameters satisfy 

where Hr is a known transition matrix, and ~3~ is a zero mean 
vector of random shocks with covariance matrix Vr. 

(iii) The random vectors u(r),  u(s), v(r),  v(s) are uncorrelated. 

• The least squares estimators of /3~ are obtained recursively from the 
observations )(1, . - . , ) (r- l ,  given a fl0 

~ + _ ,  = m ~ - ,  fo,. ,- - -  1 . . . . .  t 

where 

and given Co 

lit = C+_~Y'~[Y~C,I~_,Y'~ + U~]-' for  r = l , . . . , t  

where 
Crk-,  = HrCr_, H',  + V,. 

• The filter can be given a Credibility interpretation, for instance in the 
Bfihhnann & Straub case, fixing j = 1,. . . ,k 

HT= 1 = Y ,  

/~ = , ( % )  UT -- a~(Oj) and V~ = 0 
w jr 

/~o : E [ . ( o j ) ] ,  c0  = v [ . ( o j ) ] .  

• Tile same is possible for Hachemeister's model introducing vectors in 
the above relations. 
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3 R o b u s t  C r e d i b i l i t y  

3.1 M o t i v a t i o n  

• Before analysing robust credibility models we give here a simple elnpiri- 
cal example that shows the sensitivity of classical credibility estimators 
to large claims. 

Consider Hachemeister's data set: 5 contracts, 12 periods (of 3 months). 
Available information: 

(i) Average bodily injury claims/period for an Automobile Insurance 
portfolio. 

(ii) Number of claims/period, used here as weights. 

Table 1: Hachemeis ter ' s  Data  Set 
Average  Cla ims  pe r  Pe r iod  ( N u m b e r  of Cla ims  

1,738 (7,861) 
1,642 (9,251) 
1,794 (8,706) 
2,051 (8,575) 
2,079 (7,917) 
2,234 (8,263) 
2,032 (9,456) 
2,035 (8,003) 
2,115 (7,365) 
2,262 (7,832) 
2,267 (7,849) 
2,517 (9,077) 

1,364 (1,622) 
1,408 (1,742) 
1,597 (1,523) 
1,444 (1,515) 
1,342 (1,622) 
1,675 (1,602) 
1,470 (1,964) 
1,448 (1,515) 
1,464 (1,527) 
1,831 (1,748) 
1,612 (1,654) 
1,471 (1,861) 

1,759 (1,147) 
1,685 (1,357) 
1,479 (1,329) 
1,763 (1,204) 

1,674 (998) 
2,103 (1,077) 
1,502 (1,277) 
1,622 (1,218) 

1,828 (896) 
2,155 (1,0o3) 
2,233 (1,108) 
2,759 (1,121) 

)er  pe r iod )  
1,223 
1,146 
1,010 
1,257 
1,426 
1,532 
1,953 
1,123 
1,343 
1,243 
1,762 
1,306 

(407) 1,456 (2,902) 
(396) 1,499 (3,172) 
(348) 1,609 (3,046) 
(341) 1,741 (3,068) 
(315) 1,482 (2,693) 
(328) 1,572 (2,910) 
(352) 1,606 (3,275) 
(331) 1,735 (2,697) 
(287) 1,607 (2,663) 
(384) 1,573 (3,017) 
(321) 1,613 (3,242) 
(342) 1,690 (3,425) 

Now assume that the last claim amount of $1,690 in Table 1 was miscoded 
or is replaced by a large claim. Table 2 gives the various components of 
the B-S premium estimators for the correct data value of $1,690, as well 
as for three outlier values: $5,000, $6,000 and $7,000. Notice the radical 
change in the individual premium Xsw for contract 5, affected by the outlier 
contamination. 
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A more serious problem, also apparent in Table 2, is the large effect a 
small contamination to a single data point of contract 5 has on the indi- 
vidual credibility factors, Zs, and hence credibility premiums,/2(O j), for all 
contracts. The last row of Table 2 shows the effect on the credibility weighted 
portfolio average Xzw. 

Table 2: B i ih lmann-S t raub ' s  P r e m i u m s  
'Outlier 1 ,690  5,000 6,000 7,000 
Xlw 2,061 2,061 2 , 0 6 1  2,061 
)(2w 1,511 1 , 5 1 1  1 ,511  1,511 
X~w 1,805 1,805 1 , 8 0 5  1,805 
X4w 1,352 1 , 3 5 2  1,352 1,352 
Xsw 1,599 1,913 2,008 2,032 
Z1 0.9847 0.8130 0.6077 0.9653 
Z2 0.9276 0.4634 0.2353 0.8467 
Z~ 0.8985 0.3740 0.1752 0.7922 
Z4 0.7279 0.1527 0.0603 0.5355 
Zs 0.9588 0.6105 0.3583 0.5355 
/2(0~) 2,055 2,018 1,997 2,051 i 
/2(02) 1,524 1,684 1,806 1,551 I 

/2(0~) 1,793 1,823 1 , 8 8 1  1,799 
fi(04) 1,443 1,760 1 ,864  1,548, 
/2(@s) 1,603 1,883 1,937 1,911[ 
Xzw 1,684 1 , 8 3 3  1,897 1,772 i 

The estimation is so unstable that when the outlier takes values larger 
than $7,500, overflow occurs. One reason for this lack of robustness of B-S 
premiums is the sensitivity of the variance component estimators, E[a~(@j)] 
for the between contract variance (or heterogeneity) and l~'[tz(@~)] for within 
contract variance. Table 3 shows how classical unbiassed estimators of these 
components wildly vary from exe~ct to contaminated data sets. 

Table 3: Variance Components Estimators 
Outlier 1,690 5,000 6,000 7,000 
/~[a2(Oj)] 139,120,026 793,846,681 1,234,587,691 301,901,954 
9[~(oj)] 89,639 34,457 19,093 83,819 
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Similar problems occur when estimating premiums with the other classical 
methods such as Hachemeister 's and the Kahnan filter. 

3.2 Kiinsch(1992), Gisler & Reinhard(1993) 

Assumptions: t lere the robustification essentially takes B-S's model as 
a starting point. 

(i) In [ ,(Oj)  = E ( X j ~ )  + Zj [-;k~w - E(Xj~)] replace Xpv by a ro- 
bust estimator: e.g. Kfinsch uses an M-estimator, T j ( X j I , .  . . . .  ¥i t) ,  
which is the implicit solution of 

r = l  

where 

X(z)  = m a x { - c , ,  m i n ( z  - 1,c2)} f o r  0 < e, <_ 1 a n d  O < c., . 

(ii) For the empirical credibility estimator,  replace the unbiassed esti- 
mators of E ( X j , )  by  robust estimators, and the variance compo- 
nents V[p(Oj)] and E[a2(Oj)] by robust estimators: e.g. Kiinsch 
uses M-estimators again, while Gisler & Reinhard, which account 
for the large-claims provision in Swiss law, suggest another robust 
est imator defined imp]icitely according to an optimal truncation 
property. 

3.3 Kremer(1991) 

• Assumptions: As in Kfinsch(1992), a robust t reatment  of the B-S case 
is given, but in addition a robust regression model is discussed. Essen- 
tially the suggestion is to use an M-estimator to replace the weighted 
h'ast squares estimation of [~((-):). Gisler & Reinhard(1993) also hint 
to this idea but with using rather a general t luber estimator. 

3.4 Kremer(1994) 
Starting from the Kalman filter model of de Jong & Zehnwirth(1983), a ro- 
bustificatitm is used and interpreted ill a Credibility context. Various robust 
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versions of tile Kalman filter can be found in the Statistics literature. Kremer 
uses that of Cipra & Romera(1991). 

Assumptions: Kremer uses a simple version of the robust Kalman filter 
^ 

of Cipra & Romera, estimating the one step ahead prediction 13,1,_1 
with an M-estimator. The model can be given a B-S, regression or 
general filtering interpretation in Credibility. 

(i) No robustification of the empirical credibility estimator is sug- 
gested. 

(ii) No comparison is made of the relative robustness of these Kahnan 
credibility estimators. Other robust estimators, such as K6nsch's 
M-estimator, Kremer's L-estimator or Gisler's optimal trimming 
estimator may be easier to implement and just as robust. 

(iii) The problems that arise in implementation with data are not 
treated. 

The deficiencies in Kremer's study are addressed in this paper and a full 
study of the implementation phase carried out. 
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