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Abstract 
 

Interrupting phenomena are commonly encountered in time-series data analysis with the study of 
mortality trends being no exception. Nevertheless, previous demographic forecasts have paid little attention to 
the existence of such phenomena. In this study we use mortality data from the United States and Canada to 
perform time-series outlier analysis on the key component of the Lee-Carter model: the mortality index. We 
begin by employing a systematic outlier detection process to ascertain the timing, magnitude, and persistence of 
any outliers present in historical trends of the mortality index. We then try to match the identified outliers with 
important events that could possibly justify the vacillations in human mortality levels. At the same time, we 
adjust the effect of the outliers for model reestimation. The empirical results indicate that the outlier-adjusted 
model could achieve better fits and more efficient forecasts of variables such as the central rates of death and the 
life expectancies at birth. Finally, we conclude our study with possible extensions on the valuations of life 
annuities and the probabilistic distribution of the highest attainable age, incorporating the effect of mortality 
improvement portrayed by the revised model. 

 
1. Introduction 

 
The Lee-Carter model (Lee and Carter 1992a) is the current gold standard of 

mortality trend fitting and projection. Over the past 10 years, the model and its 
variants have been used by actuaries for a wide range of purposes, from the 
forecasting of mortality reduction factors (Renshaw and Haberman 2003) to the 
assessment of retirement income adequacy (Chia and Tsui 2003). Other applications 
in demographic science include population projections (Booth and Tickle 2003), the 
forecasting of sex differentials in mortality (Lee and Carter 1992b), and the projection 
of mortality patterns for the “oldest-old” (Buettner 2002). Intrinsically, the model 
assumes that the dynamics of death rates over time are driven by a single 
time-varying parameter, namely, the mortality index. The mortality forecast relies on 
the extrapolation of this index under an appropriate statistical linear time-series 
model. 

 
With no exception to the mortality index, longitudinal data are often 

contaminated with various forms of discrepant observations, which, in the statistical 
literature, are commonly referred to as outliers. Outliers have a variety of sources: 
they may arise from mere recording or typographical errors, or from nonrepetitive 
exogenous interventions, such as pandemics or hostilities in a mortality series. Thus, 
the analysis of outliers may reveal invaluable information about the external shocks 
that affect the series, which may then enable actuaries to predict how the series will 
respond if these or similar interruptive events recur. When adequate data are 
available, outlier analysis may possibly shed some light on recent discussions on the 
impact of the SARS crisis (see Panjer 2003) and the effect of terrorist attacks (see 
Rowley and Bishop 2001; Wolak et al. 2003) on future mortality assumptions. 

 
In addition, outlier detection and adjustment are critical to both model 

estimation and forecasting. Tsay (1986) noted that the existence of outliers might 
cause serious biases in both the sample autocorrelation function and partial 
autocorrelation functions, thus resulting in erroneous model specification. Hillmer 
(1984) and Ledolter (1989) found that outliers could have a disastrous effect when 
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they occur near the forecast origin, due partly to the bias in model parameter 
estimation and partly to the carryover effect of the outlier on the forecast. Li and 
Chan (2005) further demonstrated that this carryover effect is exceptionally severe in 
the original Lee-Carter model (see Lee and Carter 1992a; Tuljapurkar et al. 2000), in 
which the mortality index is modeled by a random walk with drift.  

 
Yet the existence of outliers often has been overlooked in extrapolative 

mortality forecasts. Even when the presence of outliers was acknowledged, the 
identification process was exclusively based on prior knowledge, rather than a 
sound statistical detection method. This is exemplified by Lee and Carter (1992a), 
who viewed subjectively the known influenza epidemic in 1918 as an anomaly and 
dealt with it by means of an intervention model with a dummy variable. Although 
not commonly used in mortality studies, outlier analysis is widely accepted by 
actuaries in stochastic investment modeling (see, e.g., Chan and Wang 1998; Chan 
1998). It has also been applied in fields as diverse as macroeconomic analysis (Balke 
and Fomby 1994), data mining (Liu and Hudak 2001), and clinical studies (Thomas 
et al. 1992). 

 
In this study we perform a systematic time-series outlier analysis of the 

mortality index encompassed in the Lee-Carter model, using mortality data of both 
the American and the Canadian populations. We begin our analysis by identifying 
exogenous events that might significantly affect the mortality dynamics. We do this 
via Chen and Liu’s (1993) method to search iteratively for outliers present on the 
mortality index, and then we match the identified outliers with events that may have 
caused them. Noting that the masking effect of outliers might lead to biases in 
parameter estimates (Tsay 1986) and even erroneous model identification (Chan 
1995), we also implement the additional iterative cycle proposed by Li and Chan 
(2005), aiming at unveiling the true model underlying the outlier-free series of the 
mortality index. Along the way, we scrutinize the efficiency of the outlier-adjusted 
model by comparing the interval forecasts of the mortality index and related 
variables such as the central rates of death, the complete life expectancies at birth, 
and the actuarial present values of a life annuity at pensionable age. 

 
So far actuaries and demographers have concentrated on the estimation of 

population aggregates, such as life expectancies at birth or at some other ages, but 
have paid far less attention to extreme values. Nonetheless, the rapid emergence of 
centenarians and supercentenarians has highlighted the importance of the “tail” in 
different types of life tables (Fishman 2002) and has motivated some actuaries to 
look for appropriate ways for closing off the life tables instead of the prevailing 
practice of using the value of 1 in an arbitrarily chosen limiting age (Johansen 2002). 
Thatcher (1999) made the first attempt to derive the probabilistic distribution of the 
highest attainable age, actuarially denoted as ω, assuming that the age pattern of 
mortality follows a logistic distribution. Thatcher’s study, however, focused on 
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period mortality only and made no effort to consider the effect of changing mortality 
levels on the maximum life span. Following in Thatcher’s footsteps, we attempt to 
compute the probabilistic distribution of ω for various cohorts of Canadians, 
incorporating the effect of mortality improvement portrayed by the outlier-adjusted 
Lee-Carter model.  

 
2. The Data 

 
To fit the Lee-Carter model and to perform the outlier analysis, we require 

both the central rates of death and the exposures to risk. Below we list, for each 
population to be investigated, the sources of data, sample period, and modifications 
made (if any). 

 
The United States 
 

The matrix of age-specific central rates of death from 1900 to 2000 is available 
from the National Center for Health Statistics (NCHS 2004a, 2004b). Unfortunately 
the mortality data are presented in an abridged form:  that is, values of death rates 
are shown at age 0, age group 1–4, decadal age groups 5–14, 15–24, and so on up to 
75–84, and the open age group 85 and over. Such a layout is not sufficient for the 
computation of various monetary functions involving life contingencies, which 
requires probabilities of death for every single year of age. To overcome this 
problem, we apply the disaggregation method proposed by Pollard (1988) to derive 
full life tables from the mortality data tabulated in 10-year age groups, assuming that 
the force of mortality (μx) varies in an exponential manner and that the population 
is stable within each of the age intervals. 

 
Under the assumption of uniform distribution of death within each year of 

age, the exposure to risk is approximated by the midyear population estimate, which 
is available form the U.S. Census Bureau (2004). From 1990 to 2000 the estimates can 
be retrieved online, and from 1900 to 1989 the estimates are obtained by written 
request. 

 
Canada 

 
The required data are not available from a single source. From 1921 to 1997 

the death count and the exposure to risk (midyear population estimate) for every 
single year of age up to 90 are obtained from the Human Mortality Database (HMD 
2004). From 1992 to 2000 the death count and the exposure to risk are obtained, 
respectively, from Statistics Canada by written request and from CANSIM (an online 
socioeconomic database provided by Statistics Canada; see Statistics Canada 2004). 
By comparing the overlapping portion (1992–1997), we confirmed that the two data 
series commensurate with each other.  
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At very high ages the acquired central rate of death defined by the ratio of death 
counts to the exposure to risk may not be trustworthy, due partly to the inaccuracy 
of reported age at death and partly to the sampling error of estimated death rates 
when numbers are small. The significance of these problems in the United States and 
Canada is highlighted by Tuljapurkar and Boe (1998) and Boureau and Desjardins 
(2002). To have a satisfactory termination of the life tables, we apply the method 
suggested in Coale and Guo (1989, pp. 614–615) to extend the central rates of death 
from age 85 to 109. The original rates beyond 85 are discarded. 

 
3. The Lee-Carter Model 

 
The Lee-Carter model essentially describes the logarithmically transformed 

age-specific central rate of death (mx,t) as a sum of an age-specific component that is 
independent of time (ax), and the product of a time-varying parameter (kt, also 
known as the mortality index) that summarizes the general level of mortality and an 
additional age-specific component (bx) that represents how rapidly or slowly 
mortality at each age varies when the mortality index changes. Mathematically, 

 
txtxxtx kbam ,, )log( ε++= .     (1) 

 
The final term, εx,t, is the error term, which reflects the age-specific influences 

not captured by the model. Mortality forecasting is carried out using the model of 
the mortality index time series, on which the outlier analysis in this study is 
performed. 

 
The equation underpinning the Lee-Carter model is known to be 

overparameterized. To stipulate a unique solution, we take ax as the arithmetic mean 
of the log(mx,t) over time, while the sums of bx and kt are normalized to unity and 
zero, respectively. As all parameters on the right-hand side of equation (1) are 
unobservable, fitting the model by the ordinary least squares  method is impossible. 
To overcome the situation, we employ Lee and Carter’s (1992a) two-stage estimation 
procedure, which gives exact solutions. In the first stage, singular value 
decomposition (SVD) is applied to the matrix of {log(mx,t)—ax} to obtain estimates of 
bx and kt. The SVD procedure can be implemented by using various standard 
mathematical/statistical packages such as GENSTAT (Payne et al. 1993), MATLAB 
(Brose 1997), and IMSL MATH/ LIBRARY (IMSL 1997). In the second stage, the time 
series of kt is reestimated by solving for kt such that 

 
,}){exp( ,∑ +=

x
txtxxt NkbaD      (2) 

 
where Dt is the total number of deaths in time t, and Nx,t is the exposure to risk 

of age x in time t. This is to ensure that the mortality schedules fitted over the sample 
years will reconcile the total number of deaths and the population age distributions. 
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An autoregressive integrated moving-average (ARIMA) model is then used to model 
the dynamics of kt. The orthodox Box and Jenkins (1976) approach often is employed 
to obtain a fitted ARIMA model from the empirical kt data.  

 
In addition to the two-stage estimation procedure, many alternative methods 

have been proposed in the actuarial literature. For example, Wilmoth (1993) and 
Brouhns et al. (2002) considered a regression-type model under the Poisson 
assumption on the number of deaths (Dt). In this way standard maximum likelihood 
estimates for the ax’s, bx’s, and kt’s can be obtained. This parametric approach has 
excellent statistical properties if the assumed Poisson density is the correct one, but 
could lead to grossly incorrect inferences if the Dt (or kt) series is contaminated with 
outliers. To alleviate the situation, the penalized likelihood approach may be used. A 
penalty function P(kt) is subtracted from the original log-likelihood function, where 
P(kt) ≥ 0 is a roughness penalty that decreases as kt becomes smoother. Maximum 
penalized likelihood estimates can be computed by maximizing the modified 
log-likelihood function. This method has the advantage of smoothing the estimated 
kt’s and allowing for an extrapolation directly from the penalty structure. However, 
it requires a subjective choice of P(kt), and different choices of the penalty function 
will yield different estimators. Furthermore, it may smooth out useful information 
concerning occasional disturbances to the general mortality evolution pattern (i.e., 
outliers in kt). Therefore, we shall concentrate only on the original fitting 
methodology in this paper. 

 
Figures 5 and 6, respectively, plot the fitted values of kt based on the 

American and Canadian mortality (they also plot forecasts, which should be ignored 
for now). The trends are roughly linear despite the existence of several aberrant 
observations, which will be discussed in later sections. For completeness, 
corresponding fitted values of ax and bx for both countries are shown in Table 1. 
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TABLE 1 

Fitted Values of ax and bx at Selected Ages 
 

 United States Canada
Age x ax bx ax bx 
0 −3.3629 0.0176 −3.6219 0.0226
5 −6.4513 0.0224 −7.1893 0.0212 
10 −7.1535 0.0183 −7.5977 0.0189 
15 −6.7123 0.0153 −7.1418 0.0141 
20 −6.2711 0.0124 −6.5359 0.0111 
25 −6.1198 0.0127 −6.5745 0.0128 
30 −5.9686 0.0131 −6.4752 0.0131 
35 −5.7186 0.0119 −6.2481 0.0123 
40 −5.4685 0.0107 −5.9261 0.0108 
45 −5.1183 0.0091 −5.5443 0.0091 
50 −4.7680 0.0075 −5.0929 0.0076 
55 −4.3822 0.0066 −4.6864 0.0059 
60 −3.9963 0.0057 −4.2096 0.0059 
65 −3.6006 0.0054 −3.7491 0.0058 
70 −3.2048 0.0052 −3.3306 0.0057 
75 −2.7790 0.0052 −2.8741 0.0056 
80 −2.3531 0.0052 −2.3993 0.0056 
85 −1.9278 0.0052 −1.9082 0.0056 
90 −1.5134 0.0048 −1.4287 0.0059 
95 −1.1134 0.0042 −0.9981 0.0055 
100 −0.7279 0.0032 −0.6165 0.0044 
105 −0.3567 0.0018 −0.2838 0.0026 

 
4. Outlier Analysis 

 
Having fitted the Lee-Carter model, we are now ready to proceed to the 

outlier analysis of the mortality index, kt. Outlier analysis of time-series data 
comprises two key issues: 

 
z To search for the location and type of outliers in a contaminated time series 

(known as the outlier detection problem in the time-series literature). 
 
z To obtain better estimates of parameters in the underlying time-series 

model through the incorporation of outlier effects within a model (known 
as the outlier adjustment problem). 
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Time-series outlier analysis was first studied by Fox (1972), who employed 
the likelihood ratio test for outlier detection, but it has also been considered by many 
other researchers. Chang et al. (1988) developed an iterative procedure for outlier 
detection and employed intervention models to incorporate outlier effects. Chen and 
Liu (1993) proposed an augmented iterative procedure for the joint estimation of 
model parameters and outlier effects. Other references on this topic include 
Abraham and Chuang (1989), Ljung (1993), Muirhead (1986), Tsay (1986, 1988), 
Vaage (2000), and Wei (1990).  

 
The first phase of an outlier detection procedure is to specify the underlying 

stochastic structure, that is, the appropriate ARIMA model, for the outlier-free series. 
However, the true underlying stochastic structure is seldom known a priori in 
practice, and this brings about the following problems, as noted by Chen and Liu 
(1993): 

 
z The existence of outliers may result in erroneous model selection. Chan 

(1995) showed that outliers create spurious autocorrelations, which can 
lead to erroneous model specification. This cannot be avoided even when 
the sample size is enlarged. 

 
z Even if the model is correctly specified, outliers may lead to biases in the 

estimation of parameters. This affects the detection of outliers and 
ultimately obscures the reestimation of parameters; the whole process 
repeats itself indefinitely. 

 
In this study we employ both the Chen and Liu (1993) method and the 

additional iterative cycle proposed by Li and Chan (2005) to ameliorate the problem 
of model selection. For brevity we will restrict our discussion to points necessary for 
describing the applications in this paper. 
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4.1 Outlier Models 

 
We assume that the outlier-free time series Zt follows an autoregressive 

integrated moving average, ARIMA(p,d,q) model, 
 

tt
d aBZBB )()1)(( θφ =− ,  (3) 

 
where B is the backshift operator such that BsZt,= Zt-s, 

 
pBφBφBφ p−−−= ...1)( 1 , 

qBθBθBθ q−−−= ...1)( 1 , 
 
and {at} is a sequence of white noise random variables, iid with mean 0 and 

constant variance σ2.  
 
By definition, outliers are nonrepetitive exogenous interventions. 

Quantitatively, an outlier-contaminated time series Yt consists of an outlier-free time 
series Zt plus an exogenous intervention effect, denoted as ∆t(T,ω), that is, 

 
),( ωTZY ttt ∆+= ,     (4) 

 
where T is the locality of the outlier and ω is the magnitude of the outlier. 
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We consider four common types of outliers, namely, an additive outlier (AO), 
innovational outlier (IO), level shifts (LS), and temporary change (TC). 

 
z An AO affects only the level of a single observation, that is,  
 

)(),( T
tt DT ωω =∆ .      (5) 

 
z An IO affects all observations beyond T through the memory of the 

underlying outlier-free process, that is,  
 

)(

)1)((
)(),( T

tdt D
BB

BT ω
φ

θω
−

=∆
.    (6) 

 
z An LS affects a series at a given time, and its effect is permanent, that is,  
 

)(

1
),( T

tt D
B

T
−

=∆
ωω

.     (7) 
 
z A TC affects a series at a given time, and its effect decays exponentially 

according to a dampening factor, say, δ, that is,  
 

)(

1
),( T

tt D
B

T
δ
ωω
−

=∆
.         (8) 

 
In practice, the value of δ often lies between 0.6 and 0.8 (Liu and Hudak 1994, 

p. 76). In our study we take δ = 0.7 as recommended by Chen and Liu (1993). 
 
Here t

TD )(  is an indicator variable that equals 1 when t = T and 0 otherwise. A 
graphical illustration of each type of outlier is given in Figure 1. For more detailed 
discussions of these types of outliers, see Chen and Tiao (1990), Fox (1972), and Tsay 
(1988). In general, a time series may contain more than one, say, m, outliers, and we 
have the general time-series outlier model, 

 

.),(
1
∑
=

∆+=
m

i
iittt TZY ω       (9) 
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Figure 1 
Different Types of Time-Series Outliers 
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4.2 Detection and Adjustment 
 
The detection process proposed by Chen and Liu (1993) is primarily based on 

the effect of outliers on the estimated residuals. To begin, we define a polynomial 
π(B) as 

 

...1
)(

)1)(()( 2
21 −−−=

−
= BπBπ

Bθ
BBφBπ

d

.   (10) 

 
Then equation (3) can be rewritten as 
 

tt aZB =)(π ,       (11) 
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and the fitted residuals ^
te  in equation (4), which may be contaminated with 

outliers, can be readily obtained and expressed as 
 

tt YBe )(^ π= .       (12) 
 
So, for each type of outlier, we have the following: 
 

AO ,
)(^

t
T

tt aDe += ω  (13) 

IO: ,)(
)(^

t
T

tt aDBe += ωπ  (14) 

TC: ,
)1(

)( )(^
t

T
tt aD

B
Be +

−
=

δ
πω (15) 

LS: .
1

)( )(^
t

T
tt aD

B
Be +
−

=
πω  (16) 

 
Alternatively, we can rewrite equations (13)–(16) as a general time-series 

regression, 
 

,
^ ),( tt atjde += ω  (17) 

 
where };LS,TC,IO,AO{=∈ Jj  0),( =tjd  for all j and t < T; 1),( =Tjd  for all j; and 

for all k ≥ 1, 
 

.1),LS(

,),TC(

),IO(
,0),AO(

1

1

1

,

∑

∑

=

−

=

−

−=+

−−=+

−=+
=+

k

i
k

k

i
kj

jk
k

k

kTd

kTd

kTd
kTd

π

ππδδ

π

 

 
Hence, for a given T (suspected locality of the outlier) and j (suspected type of 

outlier), the standardized t-statistic τ(j,T) for the effect of the outlier, that is, the slope 
parameter ω, can be readily computed using the principle of least squares. The final 
test statistic is the maximum value of this t-statistic over all possible T and j, that is, 

 
T )},({maxmax

1
Tj

JjnT
τ

∈≤≤
= .     (18) 

 
For a given j, the test statistics follow approximately a normal distribution. An 

outlier of type j is detected if the final test statistic is greater than a critical value of C. 
We employ C = 2.5 in this paper as recommended by Liu and Hudak (1994) for a 
reasonable level of sensitivity. With the type and the location of an outlier, we can 
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jointly reestimate the model parameters and the outlier effect. After the estimation is 
complete, we can adjust the original series for the effect of the detected outlier. The 
process is repeated until no other outlier is found. 

 
The outlier detection-estimation-adjustment process can be implemented by 

using various standard statistical software packages for time-series analysis, such as 
AUTOBOX (Ord and Lowe 1996), SAS/ETS (SAS Institute 2004), and SCA (Liu and 
Hudak 1994). 

 
To prevent problems with potential erroneous model selection, we also 

employ the following external iteration cycle proposed by Li and Chan (2005) to 
incorporate outlier effects in model specification.  

 
Step 1—Tentative Model Identification 
 

Use the orthodox Box and Jenkins approach (Box and Jenkins 1976), or any 
other appropriate method, to tentatively identify the order of the underlying 
outlier-free ARIMA (p,d,q) model. 
 
Step 2—Outlier Detection and Adjustment  
 

Use Chen and Liu’s (1993) iterative procedures for a joint estimation of outlier 
effects and ARIMA model parameters. After the incorporation of outlier effects, an 
outlier-adjusted data series is obtained. 

 
Step 3—Reidentification of the Model 

 
Using the method employed in Step 1, identify the ARIMA model underlying 

the adjusted data series. If the reidentification makes a difference in p, d, and/or q, go 
back to Step 2 using the original unadjusted data series under the reidentified order 
(p,d,q). Otherwise, terminate the iteration cycle, and the ultimate estimates of outliers 
and ARIMA model parameters are those obtained in the immediately previous 
Step 2. 
 
5. Empirical Results 
 
5.1 Detected Outliers 

 
Table 2 displays all the outliers found in the mortality indices derived from 

the American and Canadian data. Note that a negative outlier stands for 
improvement in mortality, whereas a positive one means deterioration. The outliers 
mostly are found in the first half of the century, and they can be roughly classified as 
pandemic-related and war-related. 
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World War I best explains the mild positive level shift in 1916. After a long 

stretch of isolationism, President Woodrow Wilson requested that the U.S. Congress 
declare war, which it did on April 6, 1917. The American contribution to the war was 
substantive: total casualties of the American armed forces amounted to 327,010 
(Wikipedia 2004a). This deadly war ended in 1918, and the fact that young men were 
no longer being killed could possibly account for the negative temporary change in 
1921.  

 
The positive additive outlier in 1918 is most likely a consequence of the 

“Spanish flu” pandemic, which particularly affected healthy young adults. The 
earliest known case in the United States was at Fort Riley, Kansas, on March 11, and 
it soon spread swiftly to other locations. During the next few months, the virus 
infected about 28 percent of the U.S. population and killed approximately 500,000 
Americans (Wikipedia 2004b). This pandemic of unprecedented virulence spread 
around the world and killed between 20 and 40 million people over the next six 
months (Holmes 2004); it was thought to have been the most deadly pandemic so far 
in human history. 

 
Figure 2 shows the death rates from influenza and pneumonia in the United 

States during this time of turmoil—the Great Depression and war. Abrupt jumps are 
observed in 1926, 1928–29, and 1936–37. This suggests that some small-scale and 
probably not widely reported influenza epidemic may have occurred during this 
time of economic insecurity, which may have given rise to outliers in the late 1920s 
and 1930s. 

 
In 1950 North and South Korea went to war. The Korean War killed about 

44,000 U.S. servicemen (Wikipedia 2004c) and temporarily reduced the population of 
healthy and robust Americans. The cessation of young men being killed after the 
war’s end might account for the negative temporary change in 1954. 

 
Finally, the negative level shift in 1975 may be associated with better nutrition, 

the use of antibiotics, or some other improvements in social conditions. 
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TABLE 2 

Summary of Outliers Detected in the Mortality Index 
 

Year Size t-Value Type 
United States

1916 7.182 3.26 LS 
1918 24.770 11.91 AO 
1921 −9.574 −4.25 TC 
1928 6.679 2.97 TC 
1936 9.438 4.21 TC 
1954 −6.280 −2.8 TC 
1975 −8.278 −3.78 LS 

Canada
1926 7.635 3.36 LS 
1937 6.736 3.75 AO 

 
Figure 2 

Death Rates from Influenza and Pneumonia, United States, 1924–1939 
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 Source: National Center for Health Statistics (2004a). 
 
5.2 The Outlier-Adjusted Model 
 

Below we evaluate the model performance in each mortality series under 
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investigation. The identified ARIMA order does not make a difference in Li and 
Chan’s (2005) iterative cycle: (0,1,0) fits both indices well throughout the entire 
process. Ljung-Box’s Portmanteau statistics (Ljung and Box 1978) are computed up 
to the tenth lags for testing serial correlation of the residuals. The results (not shown) 
do not suggest any inadequacy of the fitted models, either with or without outlier 
adjustment. 
 
 

To provide a tentative impression of the fitting performance, we report the 
residual standard errors in Table 3. Upon outlier detection and adjustment, values of 
residual standard error are significantly reduced. However, under the principle of 
parsimony, one should employ the least possible number of parameters for adequate 
representations, and it is therefore premature to make conclusions solely from the 
reduction in residual standard errors as the total number of model parameters is 
increased, as additional intervention components for outlier effects are included. To 
compare the fitting performance of models with a different number of parameters, 
Akaike (1974) introduced the Akaike Information Criterion (AIC), which is defined 
as 
 

Mn 2)ln(AIC 2^ += σ ,       (19) 
 
where n is the number of effective observations, σ̂  denotes the residual standard 
deviation, and M represents the number of parameters in the model. The criterion 
rewards the reduction of the residual standard deviation, but at the same time 
harshly penalizes the increased number of parameters. In other words, a smaller AIC 
value is more favorable. In Table 3 we also report the AIC values both before and 
after outlier adjustment. The results support the view that the outlier-adjusted 
models provide a better fit. 

TABLE 3 
Fitting Diagnostics, ARIMA Model for the Mortality Indices 

 
Residual Standard Error AIC  
Before 

Adjustment
After 

Adjustment 
Before 

Adjustment 
After 

Adjustment
United States 4.4262 2.4323 301.51 195.77 

Canada 2.6218 2.2318 156.29 134.84 
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TABLE 4 
Interval Forecast of the Central Rate of Death at Selected Ages at 2025 

 
Without Outlier 

Adjustment 
With Outlier 
Adjustment 

Age 
Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Percentage 
Reduction in Width 

of Interval 

United States 
20 0.000240 0.000479 0.000285 0.000406 49.29% 
50 0.002436 0.003703 0.002705 0.003352 48.90 
80 0.039981 0.053458 0.042990 0.049890 48.80 

Canada 
20 0.000152 0.000307 0.000237 0.000359 20.93 
50 0.002062 0.002976 0.001777 0.002362 35.96 
80 0.059350 0.071268 0.036401 0.044906 28.65 

 
Chatfield (1993) pointed out that it is important to provide interval forecasts 

so that forecasts obtained by different methods may be compared more thoroughly. 
In Table 4 we report the interval forecast for the central rates of death at selected 
ages; and in Figures 5–10 we plot both the mean and the interval forecasts of the 
mortality index, the complete life expectancy at birth, and the actuarial present value 
(APV) of a life annuity at age 65. The confidence intervals are substantially narrower 
after the adjustment for outliers; they are coherent with the empirical results of 
Ledolter (1989), which found that estimated prediction intervals are sensitive to 
outliers, as they strongly inflate the estimate of the innovation variance. For 
mathematical derivations of the interval forecast for the APV of life annuities, see the 
Appendix. 
 

Readers should note the interpretation of the reduction in width of the 
interval forecasts. There are a number of reasons for the increased narrowness. First, 
as mentioned earlier, the detection and adjustment process effectively mitigates the 
problem of biases in parameter estimation due to outliers. Second, if an outlier 
occurs at the forecast origin, an assumption on the type of that outlier is required, 
and the uncertainty of the type of the outlier is not reflected the interval forecast. 
Third, the narrowness essentially reflects the optimistic nature of the 
outlier-adjusted forecasts. Under the outlier-adjusted models we presume that the 
same event will not recur in the future, and so the question arises which model a 
practitioner should pursue during the forecasting exercise. Chan (2002, p. 559-560) 
offers the following suggestion for stochastic investment modeling: 
 

Whether or not it is appropriate to adjust the data for outliers depends on the 
purpose to which the model so derived will be used. If the model will be used in an 
application for which extreme stochastic fluctuations are less important (e.g. to 
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ensure that premiums are adequate in most, but not extreme, scenarios), then it may 
be preferable to use a model based on outlier-adjusted data. If, however, the model 
will be used in an application for which extreme stochastic fluctuations are 
important (such as pricing catastrophe risks or ensuring that investment guarantee 
reserves are sufficient to keep an insurance company solvent in all but the most 
extreme scenarios), then a model which is sympathetic to outliers in the data ought 
to be used. 
 

This rationale also applies to mortality forecasting. The outlier-adjusted 
version may be more preferred if the model is used in an application where the 
major mortality trend is the primary focus, for example, in forecasting cohort life 
tables for the assessment of pecuniary loss in personal injury litigations (Sarony et al. 
2003). Some other measures that allow for the recurrence of outliers should be 
undertaken if the model is used in an application where extreme fluctuations are 
important. Further discussions are provided in the next section on predicting the 
highest attainable age. 
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6. Extension—Predicting the Highest Attainable Age of Canadians 
 
6.1 Extension of Period Life Tables 
 

The age pattern of mortality of the oldest-old is of paramount importance in 
the estimation of the highest attainable age. Yet, as noted earlier, mortality data at 
higher ages are subject to problems in data quality, and because of the lack of 
reliable observation at advanced ages, there has been no consensus on which 
mathematical technique to use to generate mortality rates for advanced ages as an 
extension of earlier mortality.  
 

A mutual shortcoming of the method proposed by Coale and Guo (1989, pp. 
614–615) and the method of extinct generations suggested by Vincent (1951) is that 
they require an assumed age limit at around 110, which is contradictory to our goal 
of predicting the maximum life span. In the following analysis, we revise the 
estimates of death rates beyond age 85 by relying on the relational mortality model 
(Himes et al. 1994), which imposes no assumption on the limiting age. The relational 
model, recommended by the Working Group on Projecting Old-Age Mortality and 
Its Consequences of the Population Division in the United Nations (United Nations 
1997), consists of a “standard” age pattern of mortality by sex and by single year of 
age from 45 to 99, calibrated from 82 different mortality schedules (for each sex) 
observed in a variety of low-mortality countries. (The “standard” mortality schedule 
from age 45 to 99 can be found in Himes et al. [1994], p. 273.) The “standard” is then 
made useful at higher ages by fitting a straight line to the logits of the age-specific 
death rates, beginning at age 80, as recommended by Himes et al. (1994). 
Mathematically,  
 

xm s
x βα +=)(logit ,      (20) 

 

where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

= s
x

s
xs

x m
mm

1
ln)(logit , and s

xm  denotes the “standard” central rate of death at 

age x. It is then used to produce “standard” age-specific death rates from age 100 to 
150. Finally, we relate the “standard” schedule to each of the historical Canadian 
period life tables by regressing on their logit transformations, that is,  
 

s
xx mm logitlogit γδ += ,     (21) 

 
where mx’s are the death rates in the life table where values for the higher ages are to 
be estimated, and δ and γ are the regression coefficients.  
 

Buettner (2002) showed that the linear extension in the logit domain 
represented by equation (20) is equivalent to the old-age term of the Heligman- 
Pollard model (Heligman and Pollard 1980). Furthermore, it is noteworthy to see the 
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limiting behavior of this extension. Equation (20) implies that 
 

1
1

limlim =
+

=
+

+

∞→∞→ x

x

x

s
xx e

em
βα

βα

,     (22) 

 
for our estimates of α and β, which satisfy the condition of α ��0 and β ��0. 
Then it follows that 
 

γδ

γδ

+

+

∞→ +
=

e
emxx 1

lim .      (23) 

 
In other words, as x tends to infinity, the value of mx tends to a certain limit 

that is less than 1. This is parallel to the property of the logistic model of mortality 
that was used in Thatcher’s (1999) study on the highest attainable age. 
 
6.2 The Probability Model on the Highest Attainable Age 
 

Suppose that N members of a single birth cohort survive to age x0; then when 
all of these N members have died, there will be a highest value, say, ωN, among 
their ages at death. Prior to realization, ωN can be regarded as a random variable, 
and by basic actuarial mathematics, its distribution function is given by  
 

N
xoxxN px )1()Pr(
0−−=<ω .     (24) 

 
Thatcher (1999) showed that this distribution function demonstrates strong 

robustness with respect to both N and x0. In this study we shall take x0 = 70 and N as 
the size of a cohort when it reached age 70 years, which can be approximated by the 
appropriate midyear population estimate. In addition, Thatcher fitted the logistic 
mortality model to some period life tables and worked out their corresponding 
distribution function, which has the following closed form: 
 

[ ]NN xxxxx )}]exp(1ln{)}exp(1ln{)(exp[1)Pr( 1
0

1
0 βαββαβγω +−++−−=< −− , (25) 

 
where γβα  and,, are the parameters in the logistic mortality model, given by 
 

γ
βα

βαµ +
+

=
)exp(1

)exp(
x

x
x .     (26) 

 
Unfortunately, Thatcher’s layout failed to acknowledge the improvement in 

human mortality, and it is therefore likely to underpredict the maximum life span 
that a specific cohort could achieve. To illustrate, we consider the cohort of 
Canadians born in 1886, that is, the supercentenarians at age 118 in the year 2004. 
This cohort attained age x0 ��70 in 1956. Following Thatcher’s methodology, we 
compute the distribution function of the highest attainable age for this particular 
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cohort using the period life tables in 1956, and the results are depicted in Figure 3. 
The modes, far less than 110, are seemingly too low. Moreover, the 99th percentiles 
fail to capture the currently living supercentenarians in Canada, such as Julie 
Winnefred Bertrand (currently at the age of 113 in 2004; see Gerontology Research 
Group 2004), and even the Canadian supercentenarians who died in the last few 
years, be they Jeanne Clament (dead at the age of 112 years in 1997) or Louise 
Meilleur (dead at the age of 117 years in 1998; see Robine and Vaupal 2002). 
 

Here we attempt to incorporate the effect of mortality improvement on the 
highest attainable age by fitting the probability model in equation (24) to cohort life 
tables instead of the period ones. To construct the required cohort life tables, we first 
fit the Lee-Carter model to the extended sex-specific period life tables obtained in 
Section 6.2. Then we apply the procedures described in Section 4 to the time series of 
kt for estimates of outliers and outlier-adjusted model parameters. Based on the 
outlier-adjusted model, we obtain tentative extrapolative forecasts of kt. However, as 
noted earlier, these extrapolative forecasts essentially are based on the assumption 
that the outliers will not recur in the future, which is inappropriate in the application 
of the forecast to the prediction of the highest attainable age in which extreme 
fluctuations are important. In light of this, we relax this assumption by using a 
bootstrapping procedure: outliers in the postsample forecasts are obtained by 
sampling with replacement from the array of detected outliers, separately for each 
sex. Informal experiments indicate that the resultant distribution of the highest 
attainable age is rather insensitive to the combination of outliers we added in the 
postsample forecast of kt. Having obtained the revised forecasts, future period life 
tables can be readily computed, and the appropriate cohort life tables can be 
constructed with basic mathematics from demography. Detailed steps can be found 
in Brown (1993).  
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Figure 3 

Distribution Function of the Highest Attainable Age (ω) for the Cohort of 
Canadians Born in 1886, Using Period Life Tables in 1956 
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Table 5 summarizes the predicted distributions of the highest attainable age 
for cohorts born in 1886 (the prevailing supercentenarians), 1900, 1910, 1920, and 
1930. Note that these cohorts attained age x0 ��70 in 1956, 1970, 1980, 1990, and 2000, 
respectively. For the information of readers, results derived from the unadjusted 
Lee-Carter model are also presented in tandem. In the first column the predicted 
distributions for the cohort of current supercentenarians agree reasonably well with 
the reality. The mode for females is pretty close to the current age of Julie Winnefred 
Bertrand, which is 113; and apparently the 99th percentile may be able to capture all 
possible values of the highest age that she will attain. Across the row, we can 
observe that the effect of mortality improvement on the maximum life span is 
substantial. On average, the mode increases by approximately three years in every 
10-year period, and the trend is seemingly accelerating. 
 

Here we would like to sound a few cautionary notes in the interpretation of 
the results. First, the 99th percentile of the highest attainable age is completely 
different from that of the lifetime: the former is the extreme of the maximum life span, 
whereas the latter is merely the extreme of the life span. Although there may be 
some extent of positive correlation, these two values are significantly different in 
magnitude and are by no means comparable with each other. Second, the 
probabilistic distribution of the highest attainable age is conditional on the mortality 
experience of the specific cohort from which the distribution is derived, and thus it is 

99th percentile (111) 

99th percentile (112) 

Mode (107) 

Mode (105) 
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not applicable to any other cohort whose mortality experience is different. Third, the 
variance of the distribution takes no account of the uncertainty that arises from the 
forecast of future period life tables. The widening of the prediction intervals in Table 
5 and the thickening of the “tails” in Figure 4 should be attributed to the 
rectangularization and the expansion of the survival functions arising from the 
rapidly improving mortality. The actual variance, taken into account the forecast 
error, could be higher.  
 

Note also that in the prediction of maximum age, we require a very long-term 
forecast of future period life tables. To illustrate, we consider the cohort of male 
Canadians born in 1930 and who attained age x0 ��70 in 2000. Table 5 shows that the 
99th percentile is 135, which implies that more than 65 successive future life tables 
have been used in the computation of the probability distribution corresponding to 
this cohort. This leads to the question of whether the inertia of mortality 
improvement still continues in such a long forecast horizon. In Tables 6 and 7 we 
present a number of scenario forecasts to provide readers with some ideas on how 
the predicted distributions will vary if mortality improvement ceases at some 
specific future dates. 
 

TABLE 5 
Predicted Distribution of the Highest Attainable Age for Selected Cohorts of 
Canadians, Assuming That Future Mortality Follows the Lee-Carter Forecast 

 
Year of Birth  

1886 1900 1910 1920 1930 
 Male, with Outlier Adjustment 

Mode 110 114 117 120 123 
99th percentile 119 124 128 132 135 

 Female, with Outlier Adjustment 
Mode 116 120 123 127 133 

99th percentile 126 132 137 144 >150 
 Male, without Outlier Adjustment 

Mode 110 114 117 120 123 
99th percentile 119 124 128 132 136 

 Female, without Outlier Adjustment 
Mode 116 121 126 132 138 

99th percentile 127 135 142 >150 >150 
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Figure 4 
Predicted Probability Mass Function of the Highest Attainable Age for Selected 
Cohorts of Male Canadians, Based on the Outlier-Adjusted Lee-Carter Forecast 

 
 

TABLE 6 
Predicted Distribution of the Highest Attainable Age for Selected Cohorts of 

Canadians, Under Different Scenarios of Mortality Improvement, Male 
 

Year of Birth  
1900 1910 1920 1930 

 Scenario 1: Mortality Improvement Ceases in 30 Years 
Mode 114 117 120 121 

99th percentile 124 128 130 132 
 Scenario 2: Mortality Improvement Ceases in 20 Years 

Mode 114 117 119 120 
99th percentile 124 127 129 130 

 Scenario 3: Mortality Improvement Ceases in 10 Years 
Mode 114 116 117 118 

99th percentile 124 126 127 128 
 Scenario 4: Mortality Improvement Ceases after 2000 

Mode 113 115 116 116 
99th percentile 122 124 125 125 
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TABLE 7 
Predicted Distribution of the Highest Attainable age for Selected Cohorts of 

Canadians, Under Different Scenarios of Mortality Improvement, Female 
 

Year of Birth  
1900 1910 1920 1930 

 Scenario 1: Mortality Improvement Ceases in 30 Years 
Mode 120 124 128 130 

99th percentile 133 138 141 143 
 Scenario 2: Mortality Improvement Ceases in 20 Years 

Mode 120 123 126 126 
99th percentile 132 135 137 138 

 Scenario 3: Mortality Improvement Ceases in 10 Years 
Mode 120 121 123 123 

99th percentile 130 132 133 133 
 Scenario 4: Mortality Improvement Ceases after 2000 

Mode 119 120 121 121 
99th percentile 129 130 131 131 

 
7. Discussion and Conclusion 
 

In this paper we performed a systematic outlier analysis of the mortality 
index built in the Lee-Carter model. Through outlier detection we found that 
mortality levels in the United States and Canada are vulnerable to events like 
pandemics and wars. By incorporating the effect of outliers, we created an 
outlier-adjusted Lee-Carter model. Given the better fit and the enhancement in 
forecast efficiency, the outlier-adjusted version seems to be an attractive alternative 
to the original model. 
 

To simplify the analysis, we assumed that the mortality index follows a linear 
time-series model throughout the process of outlier detection and adjustment. 
Nevertheless, the detected outliers could be signs of nonlinearity in the mortality 
index, and it is therefore warranted to explore the use of nonlinear time-series 
models, for example, the Threshold model (Tong 1983), for a more comprehensive 
picture of the underlying stochastic structure. 
 

The availability of data is a critical factor in the analysis of old-age mortality. 
In this study the original data are disaggregated (historical life tables are available 
only in abridged form in the United States) and extrapolated to very advanced ages. 
In this way the data are unavoidably contaminated, and this might influence the 
ultimate conclusion. To avoid this problem, we might perform the analysis using the 
Canadian Pension Plan/Quebec Pension Plan data (for Canada) and the Social 
Security Administration (OASDI) data (for the United States), which are more 
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detailed.  
 

As noted earlier, the prediction of the highest attainable age requires a 
long-term mortality forecast, whereas the period on which the forecast is based is 
relatively too short. In addition, as pointed out by Smith (1999) and Ledford and 
Robinson (1999), the prediction might be improved by considering some modern 
statistical methods based on exceedances over a high threshold (see, e.g., Davison 
and Smith 1990; Pickands 1975). These methods, however, require detailed mortality 
data over the threshold selected. All in all, for a better understanding of the 
maximum life span, we require more accurate mortality data for the 
supercentenarians, and we wholeheartedly look forward to future developments of 
the International Database on Longevity. 
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Figure 5 
Mean Forecast and 95 Percent Pointwise Confidence Interval for the Mortality 

Index, kt, United States 
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Figure 6 
Mean Forecast and 95 Percent Pointwise Confidence Interval for the Mortality 

Index, kt, Canada 
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Figure 7 
Mean Forecast and 95 Percent Pointwise Confidence Interval for the Complete 

Life Expectancy at Birth, United States 

40

50

60

70

80

90

100

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Year

Li
fe

 E
xp

ec
ta

nc
y 

at
 B

irt
h 

in
 Y

ea
rs

 Actual values (1901-2000)

 Mean forecast, without outlier adjustment

 95 percent CI, without outlier adjustment

 Mean forecast, with outlier adjustment

 95 percent CI, with outlier adjustment

 



 29 

Figure 8 
Mean Forecast and 95 Percent Pointwise Confidence Interval for the Complete 

Life Expectancy at Birth, Canada 
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Figure 9 
Mean Forecast and 95 Percent Pointwise Confidence Interval for the Actuarial 

Present Value of Life Annuity at Age 65, i = 2.5 percent, United States 
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Figure 10 
Mean Forecast and 95 Percent Pointwise Confidence Interval for the Actuarial 

Present Value of Life Annuity at Age 65, i = 2.5 percent, Canada 
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Appendix 
 
Derivation of the Interval Forecast of the Actuarial Present Value of a Life 
Annuity Under the Lee-Carter Model 
 

The s-period ahead forecast of the logarithm of each age-specific death rate is 
specified by  
 

xstxstx bkam
^^^

,

^
)(ln ++ += ,     (A1) 

 
where the carat indicates an estimate (for ax and bx) or a forecast (for kt), and t 
denotes the base period. Assuming the model specification is correct, the true value 
of ln(mx,t+s) is given by 
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where xα  and xβ  are the errors in estimating ax and bx, ut+s is the error in the 
s-period ahead forecast of kt, and stx +,ε  is the error term that reflects all remaining 
age-specific influences not captured by the model. On the whole, the forecast error 
for the logarithm of the age-specific death rate can be expressed as  
 

stxstxxstxxstxstxstx kubmmE ++++++ ++++=−=
^^

,,

^

,, )()(ln)ln( ββεα .   (A3) 
 

 For a given x, the error terms are assumed to be independent of one another. 
In addition, following the suggestion by Lee and Carter (1992a), Ex,t+s can be 
decomposed into two parts, namely, xststx bu

^

, ++ =ϕ  and stxstxxstxxstx uk ++++ +++= ββεαξ ,

^

,, , 
such that stx +,ϕ  is perfectly correlated across x, and stx +,ξ  is assumed independent 
across x. Both stx +,ϕ  and stx +,ξ  are assumed to have mean 0. On the ground of Ex,t+s, the 
forecast error for the APV of a life annuity can be readily derived using the following 
three arguments. Actuarial notations here follow Bowers et al. (1997). 
 
Claim 1:  
 

The forecast error in stxm +,  is approximately stxstx mE ++ ,
^

, . 
 
Proof of Claim 1: 
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Claim 2:  
 
On a small change of xm , say, xm∆ , xq  changes by xx mp ∆ . 

 
Proof of Claim 2: 
 

Assuming uniform distribution of death within each year of age, 
x

x
x q

qm
2

11−
= . 

This implies that 
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 Then, using a first-order approximation,  
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 (for small values of xm∆ ). 

 
Claim 3: 
 

On a small increase in yxm + , say, yxm +∆ , ,...} 2, 1, 0{∈∃y , ..

xa deceases by 

xyyx am
..

|1++∆ . 
 
Proof of Claim 3: 
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 Suppose that yxm + is increased by yxm +∆ ; then by Claim 1, yxq + will increase by 

yxyx mp ++ ∆ . Let ..

xa∆ be the change of ..

xa when yxm + is increased by yxm +∆ ; then 
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By Claim 3, the forecast error of ..

xa for time t + s can be written as 
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Denoting E as expectation and using equation (29), the approximate error 
variance can be written as 
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Substituting variances, we get  
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Finally, the approximate 95 percent pointwise confidence interval is given by  
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For technical details on the computations of 2
, stu +σ , 2

,xασ , 2
,xβσ , 2

,, stx +εσ , see Lee 
and Carter (1992a, p. 669). 
 


