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Abstract 

Easy access computing power is harnessed to approximate ruin probabilities. The 
dynamics of the traditional insurance model are stated in the form of period to period 
constraints. This allows the development of a life-table with the survival probabilities for a 
given set of parameters. Given the spreadsheet approach of the model, sensitivity analysis 
to study the impact of different parameter values and loss variable distributions can be 
easily implemented. 
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Introduction 

The traditional defudtion of surplus in an insurance process can be perceived as a 
simple accounting identity that relates the 'end of a period' surplus to the "veginning of the 
period' surplus augmented by the premiums collected in the period and subject to the claims 
that are paid out during the period. Any insmance system so defined will be deemed to be 
solvent so long as the end of the period surplus is not less than zero. In order to simplify 
our presentation we will assume that all premiums are collected at the beginning of the period 
and that all claims are settled at the end of the period. 

With such a definition of the surplus process we have an intuitively satisfying framework for 
defining the underlying insurance processes' ruin probability which in turn can be 
computed by deriving the cumulative claims distribution function. Solution techniques 
discussed in the literature are often based oi1 approximations and/or simplifying assumptions 
about the claims distributions (see [1],[2], for example). Given the complexities of the 
convolution process even in the case of  relatively simple and well-defined (and well-known) 
random processes (see [3] for a succinct presentation), approximating the ruin probabilities 
may be unavoidable except in simple text-book cases. 

These commonly adopted solution strategies lead to two important questions about the 
practical uses of rain probabilities: (1) can the convolution procedures be simplified so that 
ruin probabilities are readily available for decision-making? and (2) can the simplifying 
assumptions take into account the changes in the claims processes and in investment income? 
Our research was primarily focused on developing an applications package that would provide 
the answers to the above questions. 
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The Model 

We were guided in our search by the simplicity and the succinct description of the surplus 
process. By relating the 'end of period' surplus to the ~eginning of(next) period' surplus, we 
could build the dynamics of the inter-relationship. Naturally, this increased the complexity of the 
claims process because we had to evaluate an 'n' fold convolution if we intended to study 
the dynamics of 'n' periods. 

We decided to circumvent the difficulties of  complex convolutions by simulation. This was 
suggested by the increasing capabilities of  readily available spreadsheet programs. We have 
included an applications module to illustrate the simplicity of  the methodology. The simulation 
approach also provided an answer to the other pzoblem of incorporating changes in claims 
distribution and in investment income. We could parametrize the changes in these values. 

The model was built in the form of the constraints of a forward looking dynamic programming 
problem. This gave us the fle~,ibility of defining tile time horizon based on the 

description of the underlying insurance system. We could relate it to the length of the tail of 
the claims process. For example, we could assume a five to seven year horizon to analyze 
auto policies or we could assume a 25 to 50 year horizon to analyze pension plans. We 
could also incorporate single premium payment at the beginning of the policy term like in 
many property and casualty products or a payment schedule that was in parallel with the 
policy term like in most life products. The model is developed in three steps. 
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THE MODEL 

Used the Dynamic Programming Strategy of writing down a law of 
motion. 

STEP 1 

U 1 = (i + r)u 0 + (i + 8)(I + r)B - X 1 

U 0 is the surplus at the end of period '0'; 
U 1 is the surplus at the end of period 'i'; 
r is the rate of interest; 
8 is the loading factor; 

is the mean of the claim variable; and 
X 1 is the period 'i' claim variable. 

Step 2 

u 2 is developed as follows: 

U 2 = (I + r)U I + (i + 8)(i + r)~ - X 2 

Substituting for U 1 we get: 

U2 = (I + r)[(i + r)U 0 + (i + e)(i + r)D - X 1 ] + 

(i + e)(1 + r)~ - X 2 

= (i + r)2Uo + (1 + e)(I + r)(2 + r)~ 

- [(i + r)X 1 + X2] 

Step 3 

This process can be extended and we get: 

U n = (i + r)nUo + (i + e)(i + r){n-l)(n + r)~ 

- [ (l + r)(n-1)X 1 + (1 + r)(n-2)X 2 

+ ..... + (i + r)Xn_ I + Xn] 
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Computation and Implementation 

The computation of  ruin probabilities is done in the form of a life-table. If the surplus 
variable is greater than or equal to zero at the end of the period then we can interpret that the 
system is solvent provided the system was solvent at the end of  the previous period (or 
equivalently, at the beginning of  the current period). In other words we have to verify whether 
the surplus is non-negative at time 'n' conditional on the event that it was non-negative at 
time 'n - 1'. 

An examination of  the right-hand slde of  the surplus equations will suggest that this 
probability can be obtained from evaluating the probability that a convolution of  the loss 
variables is smaller than a given constant. The simulation experiment is designed to evaluate 
these probabilities. 

The only major assumption needed to implement this computation is that the loss variables be 
independent fIom period to period. Under normal circumstances this need not be a stumbling 
block in most practical applications. For example, IBNR (incurred but not reported) claims 
from one period can be modeled directly as being part of the following periods' loss variables. In 
cases where catastrophic losses occur (like hurricane Andrew) the model is flexible enough to 
the introduction of  a fixed charge in any period. 

Implementing the simulation is quite straight forward in a spread sheet environment. Using 
random digits and representative loss distributions (that could be continuous or discrete) loss 
values are generated for the 'n' periods. The rest of the equation can be seen to be merely an 
accumulation calculus using the appropriate number of periods and discounting factors. The 
conditional probability that the surplus function is solvent at the end of a given period is 
obtained from the simulated values. A straight product rule is used to arrive at the probability 
that the system is solvent at the end of'n' periods. 

Given the structure of  the experimental process it is easy to observe how the results fi'om such 
an analysis can be used as a tool in decision-making. For example, one can study the impact 
of  lowering the loading factor (in order to be comp,~itive in a market7) on the required rate of 
return in order not to increase the probability of  ruin. Or else, if the rate of return cannot be 
moved upward because of  the current market forces then one can evaluate the additional initial 
surplus that may be needed to improve the solvenc~ of the system. The rates of  return can 
themselves be changed. Thus the experimental opportunities are plentiful for appfications. 

A simple application for an obviously hypothetical system has been appended. But given the 
simplicity of the method, the model can be easily adapted to represent different conditions. 
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1 2 3 4 5 6 7 8 g 10 

0.822336 0.5~983 0.292731 0.671814 0.880930 3.968388 2.708599 1.933440 1.491553 0.904570 
0.007113 6430266 0.g3442g 0.108109 0.054700 1.073177 1.744070 1.416328 0.438000 0.007824 
0548816 0.472430 0950506 0.937758 0.3308tO 3.95,3611 3285428 2.134245 1.078127 0603607 
0.945337 0.126~3 0.148532 0.904139 0.338008 3.063233 2.470296 t.43198t 1.188754 1.030871 
0.280826 0.518327 0.375578 0.859562 0.208369 2.791378 2.273664 1.285538 0.827238 0.308909 
0.848298 0.517253 0.344148 0.664736 0.0680(~4 3.147060 2.708280 1.959588 1.450381 0.933128 
0.343979 0.478T79 0.100381 0.213768 0.578204 2.075775 1.361346 1.043253 0.857156 0.378377 
0.254815 0.843920 0.105299 0.802820 0383891 2.890737 2278951 1.341937 1.124218 0.280296 
0.675521 0.782340 0.753722 0.000135 0.063145 2.970015 2.659790 2.409687 1.505422 0.743073 
0.481441 0.802838 0.812499 0.262682 0.28562.3 3.331152 2.768883 2.278105 1.332423 0.529586 

(1) To slm~ify presa)l/atJon, we have included 8 5 - peho¢l horizon ~¢d shown only 10 bss malizalJons for each period 

('2) Columns 1 - 5  are random realizations of the loss v~,'taMa assuming a ur#o(m [0,1] dislribufJon 

(3) Columns 6, 7, 8, 9, and 10 am mspectivdy the 5,4. 3, 2 and 1 pedod aoeumuieliens of Ihe loss vedable. 

(4) Inte(est rate was assumed to be 10% risk-load was 0,25end the ~ surplus was ).3. 

(5) The survival pml~bllity is compuled by countk)g the number of points thai lie below the accumulated values of the 
inflows in ~ h  peciod. 
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