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Abstract

Easy access computing power is harnessed to approximate ruin probabilities. The
dynamics of the traditional insurance model are stated in the form of period to period
constraints. This allows the development of a life-table with the survival probabilities for a
given set of parameters. Given the spreadsheet approach of the model, sensitivity analysis
to study the impact of different parameter values and loss variable distributions can be
easily implemented.
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Introduction

The traditional definition of surplus in an insurance process can be perceived as a

simple accounting identity that relates the 'end of a period’ surplus to the ‘beginning of the
period’ surplus augmented by the premiums collected in the period and subject to the claims
that are paid out during the period. Any insurance system so defined will be deemed to be
solvent so long as the end of the period surplus is not less than zero. In order to simplify
our presentation we will assume that all premiums are collected at the beginning of the period
and that all claims are settled at the end of the period.

With sucha definition of the surplus process we have an intuitively satisfying framework for
defining the underlying insurance processes' ruin probability which in turn can be
computed by deriving the cumulative claims distribution function. Solution techniques
discussed in the literature are often based on approximations and/or simplifying assumptions
about the claims distributions (see [1],{2], for example). Given the complexities of the
convolution process even in the case of relatively simple and well-defired (and well-known)
random processes (see [3] for a succinct presentation), approximating the ruin probabilities
may be unavoidable except in simple text-book cases.

These commonly adopted solution strategies lead to two important questions about the
practical uses of ruin probabilities: (1) canthe convolution procedures be simplified so that
ruin probabilities are readily available for decision-making? and (2) can the simplifying
assumptions take into account the changes in the claims processes and in investment income?
Our research was primarily focused on developing an applications package that would provide
the answers to the above questions.
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The Model

We were guided in our search by the simplicity and the succinct description of the surplus
process. By relating the 'end of period' surplus to the beginning of (next) period’ surplus, we
could build the dynamics of the inter-relationship. Naturally, this increased the complexity of the
claims process because we had to evaluate an 'n'fold convolution if we intended to study
the dynamics of 'n' periods.

We decided to circumvent the difficulties of complex convolutions by simulation. This was
suggested by the increasing capabilitics of readily available spreadsheet programs. We have
included an applications moduleto illustrate the simplicity of the methodology. The simulation
approach also provided an answer to the other problem of incorporating changes in claims
distribution and in investment income. We could parametrize the changes in these values.

The model was built in the form of the constraints of a forward looking dynamic programming
problem. This gave us the flexibility of defining the time horizon based on the

description of the underlying insurance system. We could relate it to the length of the tail of
the claims process. For example, we could assumea five to seven year horizon to analyze
auto policies or we could assume a 25 to 50 year horizon to analyze pension plans. We
could also incorporate single premium payment at the beginning of the policy term like in
many property and casualty products or a payment schedule that was in parallel with the
policy term like in most life products. The model is developed in three steps.
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THE MODEL

Used the Dynamic Programming Strategy of writing down a law
motion.

STEP 1

U1 = (1 + r)Uo + (1 +0)(r + r)u - X1
U; 1is the surplus at the end of period ‘0';
U; is the surplus at the end of period ‘1';
r is the rate of interest;
(] is the loading factor;
n is the mean of the claim variable; and
Xy is the period ‘1! claim variable.

Step 2

U, is developed as follows:

U, = (1 +r)y, + (1 +86)(1+r)p - X

Substituting for U; we get:

Uy = (1 +1)[(L+1x)U, + (1L+6)(L+r)p -~ X4 1 +
(L+6)(1+1r)p - X,
= (1 + 1)U, + (1+86)(1+r)(2+r)
- (L + )X, + X]
Step 3

This process can be extended and we get:

Uy, = (1L + 1), + (1L+8)(1+x)™m+ryp
- [+ n)x o+ (1 o+ ) (2,

Fooooit (14 D)Xy + Xp)
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Computation and Implementation

The computation of ruin probabilities is done in the form of a life-table. If the surplus
variable is greater than or equal to zero at the end of the period then we can interpret that the
system is solvent provided the system was solvent at the end of the previous period (or
equivalently, at the beginning of the current period). In other words we have to verify whether
the surplus is non-negative at time 'n' conditional on the event that it was non-negative at
time 'n- 1,

An examination of the right-hand side of the surplus equations will suggest that this
probability can be obtained from evaluating the probability that a convolution of the loss
variables is smaller than a given constant. The simulation experiment is designed to evaluate
these probabilities.

The only major assumption needed to implement this computation is that the loss variables be
independent from period to period. Under normal circumstances this need not be a stumbling
block in most practical applications. For example, IBNR (incurred but not reported) claims
from one period can be modeled directly as being part of the following periods’ loss variables. In
cases where catastrophic losses occur (like hurricane Andrew) the model is flexible enough to
the introduction of a fixed charge in any period.

Implementing the simulation is quite straight forward in a spread sheet environment. Using
random digits and representative loss distributions (that could be continuous or discrete) loss
values are generated for the 'n’ periods. The rest of the equation can be seen to be merely an
accumulation calculus using the appropriate number of periods and discounting factors. The
conditional probability that the surplus function is solvent at the end of a given period is
obtained from the simulated values. A straight product rule is used to arrive at the probability
that the system is solvent at the end of 'n’ periods.

Given the structure of the experimental process it is easy to observe how the results from such
an analysis can be used as a tool in decision-making. For example, one can study the impact
of lowering the loading factor (in order to be competitive in a market?) on the required rate of
return in order not to increase the probability of ruin. Or else, if the rate of return cannot be
moved upward because of the current market forces then one can evaluate the additional initial
surplus that may be needed to improve the solvency of the system. The rates of return can
themselves be changed. Thus the experimental opportunities are plentiful for applications.

A simple application for an obviously hypothetical system has been appended. But given the
simplicity of the method, the model can be easily adapted to represent different conditions.
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0.822338
0.007113
0.548816
0.945337
0.260826
0.848298
0.343079
0.254815
0.675521
0.481441

0.5869083
0.430268
0472430
0.126883
0.518327
0.517253
0478779
0.843920
0.762340
0.802838

0.262731
0.034420
0.950508
0.148532
0.375578
0.344148
0.100381
0.105299
0.753722
0.812499

0671814
0.188109
0.937758
0.904139
0.859562
0.664738
0213768
0.802820
0.000135
0.262682

0.880930
0.054700
0.3%08:.0
0.338008
0.200359
0.0689¢4
0.578204
0.383891
0.063145
0,285623

3.968388
1073177
3953611
3.063233
2791378
3147080
2075775
2890737
2979015
3331152

2798599
1.744070
3265428
2470298
2273654
2708280
1.381346
2278851
2650790
2763683

1.933440
1416328
2134245
1.431861
1.285538
1.939568
1.043253
1.341937
2400687
2278185

1401553
0.438000
1.078127
1.166754
0.827236
1450381
0.857158
1.124216
1506422
1.332423

10

0.904570
0.007824
0803697
1.039871
0.308909
0.833128
0.378377
0.280206
0.743073
0.529586

(1) Tosimpiify presentation, we haveinciuded a 5 - period horizon snd shown only 10 loss realizations for each period.

(2) Columns 1-5 are random redlizations of the loss variable assuming a uniform [0,1] distibution

(3) Columnse, 7, 8, 9, and 10 ara respectively the 5, 4, 3, 2and 1 period accumutations of the loss variable.

(4) Interest rale was assumed 1o be 10%, risk-load was 0.25 and the Initia) surplus was ).3.

(5) The survival probability is computed by counting the number of poinits that lie beiow the accumulated values of the
inflows in each period.
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