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Abstract

A fundamental problem in actuarial science is the determination of the reserves necessary to
meet future obligations. Reserves are useful quantities because they summarize a vector of dis-
counted cash flows. However, through this summarization, they mask the dynamic nature of interest
rates. To study the effects on reserves of the dynamic nature of a stochastic interest environment,
we propose looking at a change in discounted reserves. By looking at the appropriate measure of
change, we can study potential short-term consequences of changes in the interest environment.

Both the traditional linear ARIMA and newer nonlinear ARCH processes are used to model
the force of interest stochastically. We find that, in general, the next period reserve js a function
of previous interest rate. However, this is not true when the force of interest can be modelled as a
white noise process. Explicit formulas are presented for computing changes in discounted reserves
for linear interest rate processes. For nonlinear processes, we describe some approximations and

exact simulation algorithms for these computations.
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1 Introduction

In financial statements, assets must equal the capital equity plus liabilities of the firm. An important
component of these liabilities for insurance organizations is the reserve, the portion of a firms’ assets
set aside to meet future uncertain obligations arising from insurance contracts. Although the
obligations of each contract are contingent upon uncertain future events, and thus may be modeled
stochastically, the reserve set aside is a single number. There are limitations when using a single
number to summarize a stochastic quantity. However, reserves play a prominent role in financial
statements and thus these quantities are important to managers of insurance organizations.

There are several important problems in actuarial science that rely heavily on the determination
of a reserve. Lo illustrate, if a company or a block of business is to be traded on the open market,
a value must be determined for the associated set of obligations. Thus, it is useful to think of
a reserve as the “value” associated with a set of stochastic obligations. As another application,
reserves have been traditionally used as a measure of financial strength of an organization. In
this context, the reserve should be larger than the “value” of obligations, because a conservative
approach should be taken for assessing potential future abligations.

Life insurance and annuity reserves are calculated by summarizing discounted cash flows, where
the discounting is done with respect to investment earnings, as well as decrements due to mortality,
disability, policy lapse, and so on, that may be applicable to a particular policy. For brevity, in
this paper we work only with investment earnings and the mortality decrement. Extensions to the
multi-decrement case are straightforward.

In the traditional insurance literature, as in Jordan (1967), the deterministic assumption domi-
nates the development of the theory of life contingencies. Namely, mortality happens according to
a known mortality table and the interest rate is assumed to have a deterministic value. One step
further is to allow the age at death to be a random variable, although the interest rate is assumed to
be deterministic. This “semi-stochastic” approach is followed in Bowers et al. {1986). The recent
past insurance literature has generalized the traditional theory of life contingencies by introducing
stochastic variation in interest rates. This literature includes Boyle (1976), Waters (1978), Panjer
and Belthouse (1980), Bellhouse and Panjer (1981), Giaccotto {(1986), Dhaene (1989), Frees (1990),
and Beekman and Fuelling (1990, 1992).

In this paper, we compute reserves as (conditional) expectations of sums of future cash flows.
Motivation for this approach can be found in, for example, Bowers et al. (1986) for the semi-
stochastic approach and Bithlmann (1992) for models using stochastic interest.

Here, we are primarily concerned with quantifying changes in reserves from one financial period
to the next. Changes in reserves could be used to quantify the amount of profit released, as in
Ramlau-Hansen (1988). In that study, gains and losses emerging from margins built into mor-

tality and other decrements where studied while those arising from investments were ignored. To
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complement that work, here we focus on changes arising from stochastic interest rates and do not
explicitly consider margins built into other decrement rates.

Changes in value of future obligations due to dynamic models of interest have been extensively
considered in the financial economics literature, in particular as part of immunization theory. Unlike
this paper, immunization theory deals with instantancous changes in value. Here, we examine
changes in value from one financial period to the next.

The new idea of examining changes in reserves can be ilfustrated by considering the following
simple scenario. Let {y,} represent the random force of interest in the sth period. As argued in
Frees (1990}, y, can be interpreted as a one-period spot rate. Consider the case of a T-year pure

discount bond. At time 0, the random present value of one unit payable at time T is
T

T
v = JL e = expl= Y

=1 =1
Without loss of generality, it is assumed that the time interval is year. Suppose an insurance
company has to pay one unit T years later with certainty, but under a stochastic interest rate

environment. The reserve at time 0 is denoted by

T
Vi = E(vr) = Elezp(- 3 u)].

=1
where the expectation is taken at time zero. After one year, the maturity time of the payment
shortens by one and the reserve becomes

T
‘JI(T_ D= E[(’LI,‘]I(— E Ys )]7

s=2
where the expectation is taken at time one.

This paper examines the change from the initial reserve V, to the time one reserve V. To
examine this change, we discount the time one reserve Vl(T_” back to time zero and then study its
distribution. That is, we investigate the distribution and the statistical properties of the random

reserve
-~ T-1
€ ”‘VT h

from time zero viewpoint. Although Vy represents the current value of the asset or obligation, ¥}
represents the value at the subsequent time period. Thus, for budgeting and other purposes, V;
and its discounted value e~¥1V, are important quantities for risk and other financial managers.
An outline of this paper is as follows. Section 2 describes the model that we will be using in
the analysis. The linear process for interest rates is investigated in Section 3. Section 4 considers a
nonlinear process for interest rates, the Autoregressive Conditionally Heteroskedastic process, that
is widely used in economics. Section 5 concludes with some remarks. The proofs of all results are

given in the Appendix.
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2 The Basic Model

2.1 Insurance Model

We consider here the individual risk model for insurance contracts, using the notation of Bowers et
al. (1986). Denote the valuation time to be £ so that, at the initial valuation, k = 0. Assume that
there are n policies in the block of business. For i-th policy, the age at issue is z;, the duration is
ki when h = 0, the curtate random time of decrement is Ky, and the curtate-future-lifetime is J;
(i.e. J; = K;—k —h). Suppose that a death benefit b; i 4 is payable at the end of the year of loss
and that the annual premiums a; ,, are payable at the beginning of each year up to and including

the year of loss. Then, at time point A 4+ 7 + 1, the random cash flow of i-th policy is

— pphirdr > T

h .
EQa(B) = bugnerss i di=7 (1)
0 if J,' < T
where 1‘"«(.3) = —a; 4,44, and the probability function of J; is: Prob(J; = 7) = |qr.4k,44,7 =

0,1,... and Prob(J; > 7) = 419z, 44,+n. Here, .[g, and ,p, are the traditional deferred decrement
probabilities and survival functions calculated from a lifetable.

Because the definition of cash flow is quite general, it can be used for general insurance as well
as combinations of whole life insurance, term life insurance, deferred life insurance, annuities, and

pure discount bonds.

2.2 Interest Rate Model

Let y, denote the force of interest in the s-th year (s = 1,2,...). It is natural to assume that y,

has a parametric form,

Ys :f(Q;617"'Y(J)H

where 8 is a vector of parameters, {¢,} are i.i.d., and f is a known function. To illustrate, in Section

3 we will consider the recursive linear process

Ye :a+¢>1y«_| +"'+¢pﬁl/z—p+(x — O €y — s — Oy

The traditional ARMA/ARIMA model belongs to this class of model. In Section 4, we will consider
an ARCH model, a nonlinear representation for the force of interest.

Before going to the next section, we make the following basic assumption and notations here.

Assumption

(A1): y, is a Borel measurable function of (¢, €5,...,¢).
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Notations

{1) Let M{t) = E(e'*), the moment generating function of .
(2)3_i=0forj<iand, [[{.;,=1forj<i.
(3) E(-|X) means taking expectation conditional on the information generated by X.

2.3 The Reserves

To introduce reserves, we first define the loss at valuation time A for i-th policy,

htr
A {h)
b= S ren- 5
s=ht1
So the sum of losses for the whole block of business at time h is
h4T1
50 =35 - 3 )
i=11=0 s=htl
The reserve at time h is defined as V), = I*Jh(A‘)'(L"’) where E,() = E{-|e,,...,€), so that V, is
a function of (€,...,€,). The discussion below will concentrate on Vy and V), the reserves at the

beginning of valuation and its following period respectively. The notions can be extended to the
considerations of further periods.

In the following discussion we assume the random cash flows (F‘(v':)) are independent of the
stochastic interest rates (y,). The following result for the reserves is a basic one that we will use

frequently.

Proposition 1 Under (A1), we have

T41

Vo = Eo(S)) = Z(Zc") Elexp(- Zy.)J—Za.L, (2)

=0 i=1

742 n
= B = (0 ) ) Elesp(= 3 wia] = ik, (3)

F=0 §=1
where

C,‘)k, =ikt e ek, — @kbr a1 1Pk, (4)
provided the expectations exist. O

In fact, E(Flo)ﬂ) = cr k , the expected cash flow of i-th policy at time h = 0, and E(F,(‘l,)“) =
(,),: 41, the expected cash flow of i-th palicy at time A = 1. Although V; is a constant, V| is usually
stochastic since it is a function of ¢, the disturbance of force of interest generated in period one.
When considering the discounted reserve, we simply multiply V; by e V'. In actuarial science, it is
traditional to present recursive calculations of reserves. In Appendix 1, we provide the recursive

calculations relating V) to V.
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3 Linear Interest Rate Process

Define a linear interest process to mean that the force of interest {y,} can be represented as

Ve=a+ Gyt + Pplfeep € — CLELy — = Gy, (5)
where (a,d1,...,¢,,¢1,...,¢,) are parameters, {¢,} are t.i.d., E(¢) = 0, (Yo, ¥-1,---,%1—p) and
(€0,€_1,--.,€1_¢) are known, The linear interest rate process can also be written in the form

-1
yt:"il+25iﬂ—nt2 1, (6)
=0
where
4 i-1 q . i—1 (=1
=Y p D i = DGy D ot a) a @
i=1 j=maz(0i-t) i=1 j=maz(0i-1) i=0
min(i,p) min(i,q)
ag=1,0 =10 = Z ¢jﬂ,_1,i21;ﬁ,:(k,— Z C}“:-)vizlv (8)

i=1
see, for example, Box and Jenkins (1976) or Dhaene (1989). In other words, y, is affine (linear plus
constant) in (e,...,¢).
If the force of interest follows a linear process, then the two discount factors in Proposition 1

can be expressed explicitly by using the next theorem.

Theorem 1 For a one unit T-year default-free pure discount bond, if {y,} follows a linear interest

process, then
I T T-1 1 T
Va" = Elexp(=Y )] = T] M(= 3 8:) - exp(= 3 %),
=1 =0 =0 =1

and
T

T-2 ! T T~1
VT = Bleap(- Y wla) = I M(=3_8.) -exp(= 3 %) -exp(—, Y Bi).
i=0 =0 =2 =1

a=2

where {0;} and {v,} are defined in (7) and (8). O

Therefore, supposing a linear process for the force of interest, we can combine Proposition 1
and Theorem 1 to write down the reserves V4, and V;. To illustrate, it is of interest to write down

the special case of independent interest.

Corollary 1 (Independent Interest Case) If ¢y = - = ¢, = ¢; = <~ = ¢, = 0 so that {y,} are
iid, then
V"-E EC(') e M-+ _Zai,k.’
=0 i=1 =1
and

= 3 (S th) - M-y ZG‘A.HD

=0 4=1
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From equation (3), it is evident that, in general, ¥, is a function of ¢, and is thus a random
variable. However, in the z.2.d. case, V] becomes a constant, which means that it is independent of
€. The intuition is that in this 1.7.d. case, {y,) are purely random, and thus ¢, does not provide
any sequential information about {y,, ¥4, ...) and hence the next-period reserve V). Therefore, by
employing the expectation approach for pricing and assuming that the force of interest is generated
by a white noise series, the measure V; (also for ¥y, h > 1) is a deterministic value, which may not
capture the real events. Examining an autocorrelated interest environment may model practical

situations more appropriately than the independent interest benchmark case.

3.1 Default-free Pure Discount Bond Example

The simplest special case for the cash flows is a pure discount bond. Suppose that an insurance
company has to pay one unit T years later with certainty. Then, using Theorem 1 and a linear
process for the interest rates as in (5), we have

T T-1

ey = H M- Zu‘ (=) 6 AT 2
=0 =0 =1 1=
Making normality assumption for ¢’s yields
eV, V{T'l) 4 v
where
T-1
U~ N(- 27.+ 50 Z Zd. (YT 2 2,
=1 =0 i=0 1=0

2

a® = Var(e).

Thus, the discounted reserve e™¥ - V{7~ has a lognormal distribution in this special case. It is
easy to check that if ¢ increases, so does the mean and variance of 7% - V,(T_l).

For a single payment with fixed payment date as above, the exact distribution of e7¥'V; can
be obtained. However, for a general insurance contract such as life insurance or deferred annuity,
analytically the exact distribution is extremely difficult to find. Appendix 2 presents a moment-

matching method to approximate the distribution. A simulation example for the distribution under

a general insurance contract is provided in next subsection.

3.2 A Simulation Example for Linear Process

To illustrate the distributions of V; and e~¥'V;, we consider a block of whole life business that was
also used in Example 4.1 in Frees (1990). For simplicity, policies are categorized into three groups

of size 10 so the total size is 30. Assume that, for each category, ages at issue are z = 30,30,40
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(a) Reserve (V1) (b) Discounted Reserve

Figure 1: Frequency Histograms for Random Reserve V; and Discounted Reserve
e~¥V,. Each histogram was generated from 500 simulations using an AR(2) mmodel for the
force of interest. For comparison, Vi = 0.765 and 0.808 corresponding to constant force of
interest 0.08 and 0.079 respectively, are plotted on (a). The initial reserve, Vo = 0.602, is

plotted on (b).

and durations are k = 5,10, 5, respectively. All death benefits are $1. The mortality decrements
are the 1979-81 U.S. Life Table that appear in Bowers et al. (1986). Here, assume that we have

the following stationary AR(2) model for the interest rate:
ye = 0.08 4 0.6(ye—, — 0.08) — 0.3(ye—7 — 0.08) + ¢, 1 > 1,

where ¢, ~ t1id N(0,0 = 0.025),y, = 0.06,y_, = 0.07, as in Giaccotto (1986) and Dhaene (1989).
To compute the level premiums for each of three categories, first use constant force of interest
0.08(= E(y.)) to get the net level annual premiums, and then add 20% as the relative security
loading to obtain the final level premiums.

Combining Proposition 1 and Theorem 1 yields analytic expressions for V; and its discounted
version, e V'V;. To approximate these expressions, we performed 500 simulations. The resulting
frequency histograms are shown in Figure 1. Normally distributed curves are superimposed for
comparison purposes. The sample mean and standard deviation of the simulated distribution of

reserve V) is 0.7875 and 0.009748, respectively. For discounted reserve ¢~¥'V;, the corresponding
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measures are 0.7349 and 0.02799. It is interesting that the dispersion for discounted reserve e 91V,
is almost three times as for reserve V; (0.02799/0.009748=2.9) in this example. The difference
originates from the additional random portiou -— the discount factor e7¥1.

Because the mean of the force of interest E(y,) = 0.08, supppose that we had used & = 0.08 as
constant force of interest to calculate the next-period reserve. Then, V| = 0.765, which underesti-
mates the “true” reserve, as shown in Iigure 1{a). For comparison, choosing another é = 0.079 as
constant force of interest gives I, = 0.808, which overestimates (he “true” distribution. This ex-
ample indicates that ignoring the stochastic interest vate environment would easily miss the target
distribution.

Since V; and discounted reserve €791}, are both valued at time 0, we can compare V, = 0.602
and the distribution of ¢7¥: V] to see the changes in reserves. To illustrate, we may wish to know
how much to add to the current reserve so that the next-period funds can meet future obligations
measured by V) with 95% probability. That is to say, we want to find A such that P[{V, + A)e¥r >
V1] = 0.95. Hence A = (95-th percentile of ¥ V) — Vo & 0.782 ~ 0.602 = 0.18. The sample values
of (skewness, kurtosis) for Vi and ¢7¥' ¥} in this simulation example are (0.0643, 3.19) and (0.155,
3.21) respectively. The kurtosis defined here js equal to 3 for a normal variate. Thus, a normal
distribution could be used to approximate the reserve V; even though slightly positive skewness
and slight thicker tails feature are exhibited from the sample quantities. The positivity of skewness
of ¥V, is larger than that of ¥} but a normal approximation to the distribution of discounted

reserve ¢ ¥V, scems adequate.

4 Nonlinear Interest Rate Process

4.1 Introduction to ARCH Process

Under the traditional linear time series setting, the conditional variance of one-step-ahead predic-
tion is time invariant. Recently, applied researchers have recognized the importance of explicitly
modeling time-varying second- and higher-order moments. One of the most prominent tools that
has emerged for describing such changing variances js the Antoregressive Conditional Heteroskedas-
ticity (ARCH) model of Engle (1982) and its varions extensions. Bollerslev et al. (1992) contains an
overview of some of the developments in the formulation of ARCH models and a survey of the nu-
merous empirical applications using financial data. In particular, this survey includes a discussion
of the modeling of interest rates.

The simplest non-trivial ARCH model is the first order linear model given by:

el ~ N(0,hy),
hy = 6+ 6y, (9)
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where ¥, is the information set {o-field) available at time t — 1 and 8, > 0,6; > 0, unknown
parameters. The nonlinear ARCH process is serially uncorrelated with nonconstant variances con-
ditional on the past, hut constant unconditional variances. This model captures the tendency for
volatility clustering, that is, for large (small) changes to be followed by other large (small) changes,
but of unpredictable sign. The non-linearity stems from the variance of disturbance terin e,. If §
were equal to zero, then the model would be the conventional Gaussian white noise. However, for
81 # 0, the effect of {9) is to make the variance of the disturbance terms at time ¢ dependent on
the realized value of the disturbance term in the previous period.

We have just seen a simple example of ARCH process for the innovations. To certain extent,
reserves V, and Vy, as obtained from (2) and (3), involve the moment generating function of ¢,’s.
Because of the nonexistence of higher moments under ARCH model (9) and hence its moment
generating function (see Engle (1082) and Bollerslev (1986)), we consider a model similar to (9)

but in absolute value form:

€ty ~ N(0,hy),
hy= 85 + & |ey], (10)

where &, > 0,8, > 0. This model was mentioned in the seminal paper of Engle (1982), but is
seldom used in the ARCH literature. Perhaps it is due to the mathematical tractability difficulty
in absolute values. Recent papers that discuss the absolute version of ARCH model include Engle
and Bollerslev (1986), Schwert (1990), and Higgins and Bera (1992). The absolute value form of
the model in {10) not only shares the features described above for model (9), but also possesses the
existence of the moment generating function, a desirable characteristic. We note that &, in model
(10) depends on the measurement unit.

In the discussion below we use the following model for the force of interest:

(A)y=a+dy +--+ PoYiop + € —Cre — - — Cy€i_gs
(b) €]y ~ N0, k), (11)
(c) he = 6o + 81lei], 2 > 1.

That is, we allow for conditional (prediction) variance to depend on the absolute value of immedi-

ately previous innovation.

4.2 Approximate Results for Reserves Under ARCH Processes

We will examine the effect of 6, on the reserves V5 and V, under model (11), supposing &, to be
small. Before stating the result for reserves, a lemma for the finiteness of the moment generating
function of innovations is given first. Engle (1982) said that “The absolute value form ... can be
shown to have finite variance for any parameter values”. In fact, we can prove a stronger, new

result that the moment generating function is finite, hence so are all moments of ¢,’s.
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Lemma 1 If¢’s follows model (11) (b} and (¢}, then the moment gencrating function of (e;, ..., ep)
ts fintte for all 6, > 0,6, > 0.

With the above lemma, we are ready to stale the basic main result for a pure discount bond

under the ARCH process.

Theorem 2 For a one unit T-year defauli-free pure discount bond, under model (11) for the jorce

of interest, we have that, as §; — 0,

T
(1) Vi = Efeap—= Y u)l = x5 + 0(87)

s=1

T
(1) VT = Blexp(= Yyl = 7 + 0(82).
=2

Here,
) < 8o - & AT & )
xo = exp(= v+ 5 DG (14 O o) + 5 ),
s=1 1=0

x(lr) = exp(— z.)’ ,(1Zﬁ + _Z [1+ (T n( 04 C"T 1)( o

$=2 i=0

T-2
C{(x) = 21C oy + Voo 3 (Pl V(i)
i=0

1
CgT)(T) \‘/—— (I(V olr_1) - —\/Z—E_O"CT ‘“] + 6n Z Cl 1 + 50C1+1 - QZ(V 60C4+1)]
=0
. 1,
\/ s _ PRLIGRYR IR Peitl 2
< 0G24l \/ICIH \/_n' ] 4[ ED)!
2 ~xif2
glz) = —=e™"7 4 2[28(2) - 1],
27
$(z) = dustribution function of a standard normal variable,

and

We can see that the terms outside the square brackets of {7’ and y{7” correspond to the results
of the linear process case (§; = 0) under normality. It can be shown that both coefficients of the
linear and quadratic order terins (with respect to é;)—C'; and (', ~are nonnegative. Thus for a

pure discount bond, when &, small, the reserves V; and V| are both Jarger in the ARCH process
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(11) case than in the linear process case. Moreover, we expert that Vi and V) would increase if 6,
increases.

Once we have Theorem 2 for a pure discount bond we can have corresponding results for ¥,
and V) in the general block of business case. That is, by retrieving (2) and (3) in Proposition 1
and substituting ,\'E)"H) and X(1r+2) for those two discount factors, respectively, the desired results
are obtained.

The above analysis studies the case where &8, is assumed to be small. For larger values of é,, we

resort Lo simulation techniques, as described in the following subsection.

4.3 A Simulation Example for an ARCH Process

Unlike the ARMA model, the ARCH model takes into account the conditional heteroscedasticity.
The model that we use for an ARCH process resembles that for lincar process. The insurance

model is the same as in Section 3.2. However, the model for interest rate variations becomes:

Y, = 0.08 + 0.6(y,~, — 0.08) — 0.3(y,_» — 0.08) + ¢,
€1 ~ N(U, R he = (0.025)° + 6161, t > 1,

with 6, = 0,0.001,0.003,...,0.08, where 3, = 0.06,y_; = 0.07,¢q = —0.01. We shall use this
ARCH model as a nonlinear time series example to do the stmulations for illustrating the next
period reserve. The largest value of §, chosen to investigate is 0.08. The reason is as follows. In
Appendix 3, we show that sd(e,) < \/au + 6,(6y + VBT + 2még)/7. With 6, = (0.025)%,6, = 0.08,
we have sd(€;) < 0.072, which is about 2.9 times the standard deviation of ¢, in the linear process

case (0.072/0.025 = 2.88).

4.3.1 The Valuation Algorithm

Part of the simulation ideas that we use comes from Tilley {1993), where he presents a simulation
algorithm for valuing American-style options.

For nonlinear time series models, like ARCH processes, it is difficult to compute analytically,
Elezp(— Y1, 4.)] or Elezp(- T7_,v.)le1], and hence the distribution of the reserve, since the
error term ¢’s are no longer independent. However, using simulations can gain some insight into
the distribution of V; and e ¥'V,. For simplicity, consider first a one unit T-year pure discount
bond,

Vi = Elezp(- Z_:y,)lfd

Since it involves an expectation that could not be expressed simply, we need to approximate it by

simulation. Figure 2 helps us to understand how the simulation works.
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B paths

Time: 0 i 2 e T-1 T
Figure 2: Diagram exhibiting the simulation paths for the ARCH process.

Given a value of ¢ (its 98-th percentile, for example), we simulate {«s,...,¢r) on each path
from time 1 to T Suppose we have HB{= 1200, say) such repetitions. Then the expectation

Elexp(— 5T_, y,)|e1] can be approximated by

TR W

s=2
where %) is the simulated s-th period force of interest on path k (K = 1....,B) for a certain
percentile of ¢,.

Now extend a pure discount bond to the case of wlole block of business with n insureds. Let
w be the limiting age. From (3), we have

42

M-—2
VI: ZfrE[f'fp Zy’ I(I]_Zutk-ﬂ
=0

i=1

where M = w —minjqcn(z, + k) and f = 31 Lr, L 41 since fp =0 for r > M — 2. In this case
we use the same ideas as above with replacing 7' = 7 42,0 < 7 < M — 2, then we obtain a value

of V| which corresponds to a given percentile of ¢,.

4.3.2 Sensitivity of the Reserve to Variance Autoregression Parameter

In our numerical example, we use different values of 6, in the simulation. Thus, we can study the
sensitivity of V; and ¢7V'V] to a change in the value of the variance autoregression parameter 6;.
For example, we might like to see how large this parameter can be before it matters. Therefore,
we include the case ¢, = @ for comparison purposes. For each percentile of ¢;, we implement the
simulation method described above to obtain the values of Vi(y,, 8 ) where 1, denotes the 100p-th

percentile of the distribution of ¢;. By examining many different percentiles of €, especially the
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Table 1: Simulated values of reserve V; for different combinations of percentiles of ¢,
and values of §;. The value in parentheses beneath V) corresponds to its simulation standard

ervor. Number of simulation (B) is 1200.

Percentile of ¢;
1% 2% 5% 10% 20% 50% 80% 90% 95% 98% 99%
5y =0 0.8107 0.8080 0.8041 0.8006 0.7963 0.7883 0.7804 0.7762 0.7728 0.7690 0.7665
(0.0075)  (0.0075)  (0.0075)  (0.0074)  (0.0074) (0.0073) (0.0073) (0 0072)  (0.0072)  (0.0072)  (0.0072)
34.001 0.8120 0.8093 0.8053 0.8017 0.7974 0.7893 0.7813 0.7772 0.7737 0.7700 0.7674
(0.0077)  (0.0076)  (0.0076) {0D.0076) (00075}  (DO0OTS) (0 0O0T4) (0.00T4)  (0.0073)  (0.0073)  (0.0073)
0.003 0.8147 0.8119 0.8078 0.8042 0.7998 0.7914 0.7834 0.7782 0.7757 0.7719 0.7693

{0.0080)  (0.0079) (D.0G79)  (0.0078) (0.0078)  (0.0077) (0.0077) (0.0076)  (0.0076)  (0.0076) (0.0076)
0.005 0.8176 0.8147 0.8105 0.8068 0.8022 0.7936 0.7855 0.7813 a.7778 0.7740 0.7713
(0.0082) (0.0082) (0.0082) (0.0081) (0.0081) (0.00BO) (0.0080) (0 0OTI) (0 0079) (0.0079)  (0.0078)

0.010 | 0.8253 08223 0.8178 (.8138 0.8090 0.7998 0.7915 0.7872 0.7837 0.7797  0.7771
(0.0090)  (0.0090) (0 .0DAI}  (0.0089) (0.0088) (D.0G87) (0 0087) (0.0086) (0.0086) (0.0086) (0 0086}
0.020 0.8436 0.8402 0.8351 0.8306 0.8252 0.8148 0.8063 0.8018 0.7981 0.7940 0.7912

(0.0108)  (0.0108) (0.0107)  (0.0106)  (0.0105)  (D.0103)  (0.0103) (0.0103)  (0.0103)  (0.0102)  (0.0102)
0.036 | 0.8660 0.8622 0.8565 0.8514 0.8453 0.8336  0.8248 0.8202 0.8164 0.8122  0.8093
(0.0129)  (0.0128) (0.0127) (0.0J26) (00124) (00122) (0.0122) (0.0122) (0.0121)  (0.0121) (0.0121)

0.040 | 0.8930 0.8887 0.8824 0.8767 0.8698 0.8565 0.8477 0.8430 0.8391 0.8347 06.8317
{0.0152)  {00151) (D O1498) (D OI4B)  (0.0146)  (D.0143)  (D.03143) (O HI43) (D DI4Y)  {60142) (D02
0.060 0.9628 0.9574 0.9495 0.9423 0.9336 0.9165 0.9079 0.9031 0.8990 0.8945 0.8914
(0.0208)  {0.0206) {6.0204)  {0.0201)  {0.0199) (D DIF3)  (DOIYE) (0OIBE)  (O0I%M) {00184} (B.0184)
0.080 1.0576 1.0508 1.0408 1.0318 1.0207 0.9U83 0.9907 0.9859 0.9818 0.9771 .9739
(0.0281)  (0.0273)  (0.0275)  (0.0271)  (0.0267)  (0.0257) (0.0260) {00260) {00261} (0.0261) (0.0261)

tails, we can present the whole picture of sensitivity of variance autoregression parameter on the
next-period reserve.

The simulated values of V), and associated simulation standard errors, are summarized in Table
1. Plotting those values of V| together in Figure 3(a) presents a more clear picture. We see that for
each fixed value of ¢, as é, increases the reserve V, also increases. This aspect is consistent with the
discussion following Theorem 2 for a pure discount bond. On the other hand, fixing é,, larger value
of €; Teduces the reserve V|, as shown in Table 1 and Figure 3(a). However, it is not necessary that
this is always true. That is, recall from Theoremn 1 that there need not be a monotonic relationship

i

between the value of ¢; and reserve V;. From Figure 3(a), it seems that V| increases “quadraticly”
for é, € [0,0.08] so the approximation up to second order term appears adequate. When 8, < 0.02,
the linear order term already gives good approximation to the reserve V;. The plot also indicates
that the dispersion of ¥ tends to increase as &, increases. A corresponding graph for discounted
reserve €%V is shown in Figure 3(b) in which similar features appear. In this example, the
discounted reserve is less influenced by &; than the reserve, as indicated by the growing rate of
curves in the figure. As noted in linear process case, the dispersion of discounted reserve e=¥'V| is

larger than that of reserve V}, for various values of 6,. In addition, the discounted reserve seems to
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Figure 3: Using simulation method. (a)Upper—Plot of reserve V, against 4, for given
percentile of ¢;. (b)Lower—Plot of discounted reserve e~¥'V, against 8§, for given

percentile of €;. The 1% denotes the first percentile of €;, and so forth.
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Table 2: Values of V; obtained from approximation result of Theorem 2.

Percentile of ¢y

1% 2% 5% 10% 20% 50% 80% 90% 95% 98% 99%
5§, =0 | 0.8088 0.8061 0.8022 0.7987 0.7945 0.7865 0.7786 0.7744 0.7710 0.7672 0.7647
0.001 | 0.8099 08072 0.8033 07998 0.7955 0.7874 0.7794 0.7752 0.7718 0.7680 0.7654
0.003 } 0.8124 D0.8096 0.8055 08D1% 0.7975 0.7893 0.7812 0.7770 0.7735 0.7697 0.7670
0.005 { 0.8150 0.8121 08080 0.8043 0.7998 0.7913 07832 0.7789 0.7754 0.7715 0.7689
0.010 | 0.8223 0.8193 08149 08110 0.8062 0.7972 0.7889 07845 07809 0.7769 0.7742
0.020 | 0.8406 0.8372 0.8323 08278 0.8225 0.8123 0.8036 0.7990 0.7953 0.7912 0.7883
0.030 | 0.8637 0.8599 0.8543 0.8493 0.8432 08318 038228 08181 08143 08100 0.8071
0.040 | 0.8918 0.8874 0.8810 08754 0.8686 0.8555 0.8465 0.8417 0.8378 08335 0.8305
0.060 | 0.9628 0.9572 0.9480 09416 0.9328 09162 0.9071 09024 08985 08942 0.8913
0.080 | 1.0541 1.0468 1.0363 1.0269 1.0155 0.9942 0.9856 0.9811 0.9775 0.9734 0.9706

Table 3: Values of ratio = (approximation value — simulated

dard error.

value) /simulation stan-

Percentile of ¢;

1% 2% 5% 10% 0% 50% 80% 0% 95% 98% 99%

& =0 | -0.247 -0.248 -0.248 -0.247 -0.247 -0.248 -0.248 -0.247 -0.248 -0.248 -0.247
0.001 | -0.267 -0.266 -0.264 -0.264 -0.261 -0.258 -0.261 -0.263 -0.264 -0.267 -0.267
0003 | -0.297 -0294 -0.200 -0.288 .0.284 -0.276 -0.284 -0.288 -0.292 -0.2904 -0.298
0.005 | -0.316 -0.315 -0.308 -0.305 -0.299 -0.287 -0.298 -0.305 -0.309 -0.314 -0.318
0.010 | -0.334 -0.330 -0.323 -0.317 -0.309 -0.291 -0.309 -0.318 -0.324 -0.331 -0.335
0.020 | -0.279 -0.276 -0.271 -0.265 -0.256 -0.235 -0.257 -0.265 -0.271 -0.277 -0.280
0030 ( -0.178 -0.178 -0.175 -0.173 -0.167 -0.147 -0.167 -0.173 -0.176 -0.178 -0.179
0.040 | -0.083 -0.085 -0.089 -0.089 -0.088 -0.068 -0.088 -0.090 -0.089 -0.086 -0.084
0.060 | -0,002 -0013 -0026 -0.034 -0041 -0019 -0.041 -0.035 -0.026 -0.013 -0.004
0.080 | -0.127 -0.143 -0.165 -0.181 -0.194 -0.161 -0.194 -0.181 -0.165 -0.144 -0.128

grow linearly for 6, up to about 0.03.

Next, we compare the values of reserve V| obtained from two different methods: (1) by simula-

tion and (2) by the approximation result in Theorem 2. Table 2 shows the values of V; obtained

from approximation approach. The corresponding plot for Table 2 would look like as Figure 3(a)

so that it is not presented here. To compare these two methods let us consider the following ratio:

approximation value — simulated value

simulation standard error

The ratio values are reported in Table 3 in which we find that all of them are less than 0.34 in

absolute value. Theorem 2 therefore provides us good approximations to the reserve Vi under the

ARCH model (11) for the force of interest. It is noted that all of the ratio values are negative from

which we induce that in this example the approximation method would slightly underestimate the

“true” reserve Vi.
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5 Concluding Remarks

This paper has examined the discrete-time shorl-term consequences on reserves due to changes in
the interest rate environment. Generally, when viewed at initial time, the next period reserve is
random variable, which is a function of the disturbance generated in the first period. However, in the
special case of white noise process for the force of interest, the next period reserve is a deterministic
value. Linear and nonlinear ARCH process models for the force of interest are considered in the
paper. Under linear interest rate processes, explicit expressions are given for the changes in reserves.
In particular, for a pure discount bond, the next period reserve and its discounted value have a
lognormal distribution. As an extension from linear processes to nonlinear processes, approximation
formulas and simulation algorithms are presented. Compared with simulation results, we have
found that the approximation formulas perform well in the sense that the discrepancies between
the approximations and simulations are small, relative to the simulation standard error. Even
though we used only one type of insurance contract for our comparisons, the results are applicable
as long as the cash flows are independent of interest rates. This is because, under this assumption,
those two factors can be separated, as shown in Proposition 1.

We considered in this paper only the initial and next period reserves. The values will evolve as
the time goes by. To handle this one-period ahead problem sequentially, stochastic control theory
may be used to access not only the dynamic nature of the time development, but also the mobility
of the cash flows (claims, premiums, and expenses) in an insurance organization. See Martin-Lof
(1983), and Vandebroek and Dhaene (1990) for applying the control theory on insurance context,
where they assume fixed interest rates.

In this paper, the cash flows are assumed to be independent of interest rate variations. For
many insurance contracts, this assumption appears to be unnecessarily restrictive. We hope to

invesiigate 1his issue in the future.
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Appendix 1: Expected Value of Discounted Reserve

For single policy we have the following result which can be served as a stepping stone to compute

the expected value of discounted reserve for a whole block of business.
Proposition 2 Suppose that (A1) holds. For single policy, we have
Vici 4 @Gesns = Elpegiony - € Vit qegpancr -7 bela, . an ), h 2 1
In particular, for h = 1,
Votae = pegn E(e7 - Vi) 4 qoyi - b E(e7¥).0 (12)

(Compare Bowers et al. (1986, 7.8.2).) In words, the resources required at the beginning of policy
year h equal the present value of year-end requirements in expected value sense. Furthermore, we
can employ (12) to calculate the expected discounted reserve E(e~¥' - V)) for each policy and then
add them up to obtain the whole block of business expected discounted reserve.

A recursive expression for Elexp(— Zle ¥s) - Val, the expected value of discounted period-h

reserve, is obtained from Propaosition 2:

h=1
Elexp(- Z?/. “Vaoil + aegnoi Elexp(- Zy;
=1
A
= Poirsn-i Elezp(— Zy, Vil 4 Geardna bk+).E[€T»P(—ZyJ)],hZ L.
=1 =1

Note that V(h) Elexp(- )'_':':zl ¥, )], its value can therefore be computed by using Theorems 1 and
2 under different models for {y,}.

Proof

For single policy, let the loss at time & be

AT
Ly = E F(")erp Z Ys)
=0 s=h+41L

where F{" is defined similarly as (1). By definition,

htr
Vi = Eh(Lh)—ZEJ F®y- Eleap(— 3 wler, .. 0l
=0 s=h4l
A4l
= —'ak+h+ZEJ(F£+1) E[(’Z‘p Z ys)kh ~x‘h}
=0 s=h+l

= ~Qp4n t+ Z(bk+h+r+l |G akeh — Ckphtret S r41Prbkth)
=0
htr41

- Elexp(~ Z Vsl 6] (13)

s=htt
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o
eV, = —eTVhiapn + Z(kbk+h+r+l Qe rkeh = Qeghtret " T41Praken)
=0
htr+1
Efezp(~ 3 wlas ol
=h
which implies
E(peyrsrcr- €7 - Vilen, o o 1) = —tugn - Pegian-1 - (e, o 6n)

o0

+ Z(bk+h+v+1 et Ge kb1 — @ighprdt " r42lrykinot)

7=0
htr41
<Elezp(~ Y y)les, - ennnl. (14)
s=h
From (13), we obtain
Vit + Gign
o0
“Yh
= Z(bk+h+r o lrakenot = Begagr reiPrarsnot)  EleT o=Vl o ay)
=0
= (brsh  Qrokahor = Qg Pryren—t) E(€7 6,0, €n1)
o0
N
+ Z(bk+h+r+l '7+1|q::+k+h-1 B TTVRERETS SSTRD B E(e e=h Pleg, )
=0

= b Gearrnor c B(€7 e e )+ Epagran-y - 7 Viden o ay)
by noting (14). The proof is completed. O
Appendix 2: An Approximation Method to the Distribution Under Linear Process
If {y.} follow (5) and ¢, ~ iid N(0,0?), then e ¥* V) has the form
X = 291-6*"
j=0
where ¢ ~ N(0,0?), with

A R e J=0
t A n 3 -~ { .
T & empl3o DT B2 - 05w g2 )
J
N==38.5>0.
=0
Although X looks to have a simple form in terms of ¢, the exact distribution of X is very difficult to

compute. Nevertheless, its first four motents can be relatively easily derived by using Proposition

3 given below.
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Proposition 3 Let X = 372,85 where ¢ ~ N(0,0%). Then

E(X)=Y 85,

j=t

a9 oo
E(X7) =3 62"75 23 60,0,037 0’
j=0

i<l

oG o [e 0]
BOX) = 30003 1 35820040 [ S g06,c80 0
j=0n

J#! F<ti<m

E(XY) = 326085 145 020,377 O80T 4 6§ g2azere ka0’

j=0 i i<t

FLOY 4 5 4 5 et oy

j<li<m  I<j<m I<mc<j
Lo, 4 A 4Am+an)?
+24 3 0,8,8,0,e57 ”

j<i<mgn

provided they ezist. O
Proof

The proof is simply based on the expansions

(}_Ta.ﬂ)2 = Zuf +22a,-ai,

i<y
(Zﬂ.‘)s = Zaf+32a3a, +6 Z aia;a;,
23 i<j<k
(Za,-)" = Zaf+42a?a,+62afﬂf+l2( z + Z + Z )ala;ay
i#j i<y i<i<k  j<ick i<kl
+ 24 Z a;a;aga,
i<j<k<t

and the normality assumption on ¢, O
By employing Proposition 3 to calculate the first four moments of e~¥' V|, we can approximate

its distribution by a curve of Pearson family or normal power method. We can then use the

approximated distribution to compute its percentiles.
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Appendix 3: An Upper Bound for the Variance of Innovation Under ARCH Model
First, E(e,) = EE(¢|ti~)) = 0, by (11}{b). Thus,
Var(e,) = E(f) = EE(E|¢u_1) = & + 8§ Ele,_y], by {11){c).

Since for X ~ N(0,0%), E|X| = 7%:(7, we have

Elnl = EEUeallies) = ECh) = 2ot bl
< _\ fé + 61E[(,_._,1, by the Jensen's incquality
Ver
<

2 -
6o+ 5,\/?\/6” + é; E|¢,_s], by the same argument

2 2 2
< —=] 4 by —==/8 oo 8 —==\/bp + & Ele_i], 1 neral.
= Var o+ l"/27 o+ + 1\/2—”\/ o+ & Ele_g], in ge

Assuming that the series starts indefinitely far in the past with finite first absolute moment, the

@w
5

limit of the upper bound on the right hand side as k goes to infinity tends to L where

2 2 —
= — + b6 —==Vé .
\/27r\/ ARV =S
Hence L = 722—'\/50 + 8, L, which implies £, = (§, + /6% 4 27d,)/x. Thus

Var(e) < 6g + 81(6) + /6 + 2méo)/7.

Appendix 4: Proofs

Proof of Proposition 1

By definition,

n o T o n 41
S =S ST Ferp(= 3 w) = 3> Fieap(— Z ) - Z a .,
=1 1=0 s=1 T=0 i=| i=1
and
n ou 1 42 “
S“) F:(,lv)f’zp(_zys Z(ZF“,)‘,‘)GIP( Zys Z“n,kd—l‘
i=1 r=0 =2 T=0 i=1 =2 i=1

Then we have the desired results for Vy and V| by utilizing the independence between cash flows

and interest rates, the definition of cash flow R‘:Ll in (1} and the probability function of J,. O

224



Proof of Theorem 1

The y, expressing as (6) implies

T-s

T T T -
IUEDIED 3 ILUNED D %) B3 (15)
s=1 s=1 s=14=0 s=1 =0
and
7 T T s-1 T - Tos
Y= nt Y B = Z +el§jﬁ.+z (> 8. (16)
s=2 =2 s=2 i=0 =2 = =2 i=0
Therefore,
Elezp(~ Zy.)]—exp( 27.) HM( Zﬁ)
=1
and

T-1
Elezp(~- Zy.)lell = exp(- Z%) ezp(—€ }:ﬂ) H M(- Z
by using the iid property of €'s and re-indexing. O

Proof of Lemma 1

Let t = (¢1,...,t7). Then the moment generating function of ¢ = (¢y,...,€7) is

T T-1
MAt) = E[exp(Zt‘-ei)]: E[exp(Zt{(‘-)E(e‘T""[z/;T_l)]
T-1

™/ Eleap(y ties)- “P('—’rffr 1D, by (11) (b) and (c)
i=1
T
bt /2{ Bleap(2 Z:‘t"f.’ N/ Elexp(61t&{er_1])]}'/?, by the Holder inequality.

i=1

Since for all b > 0 and X ~ N(0,0%)

A

E(™) = E[e™I(X < 0)] + BE[e**I(X > 0)], where [ is an indicator function
< E(e™) + E(eb¥) = 212,
Thus,
1
Elexp(éitiler-il)] = EE[exp(éitpleri])l¥r_s] < E[Qezl’{iﬁft;wo + 8iler—21)}]

244 1
= 266°6“T/2E[31P(55?1;}57'-2])] < Cy < oo,
by a recursive argument, where

25 (6:t7)®" )<2’> o] (61t7)F")
_ aT~ 0 1T T
C] =2 l Z 2(2) 0 61 " 2(21‘-1)
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Tt
rrpZt() <('x" Bt /2 B e p(2 Z!‘(‘

i=1 1=1

T-1

= (Yg{l'f[rrp(QZt,(,)}}l/'z, say
=1

< Cy<oo,fortyeR,i=1,....7T,

=
iy
"
N
—

i}

by a recursive argument, where

2=(T-1y

Oy = 30 2p[2T 7228 + 81¢2)].0
To prove Theorem 2, we will require the following lemma.

Lemma 2 If the ARCH model (11} (b) and (c) governs the innovation process {¢,}, then for

a

fired positive integer T' and as &, — 0 we have that
(i) the joint denstly of € = {€1,...,ep) 18

flers o ex)

L o2 _
= (2néo) " exp(- TZ( 1+ ‘I’lu() Tzl‘q’z,o(f_)]‘f()(‘si‘)v

i=1

(i1) the joint density of {¢,,. .., ¢7) given ¢ is

flea, . erfey)

1, 52 v
= (2067 ey _TE(;) Wy o(e) + jww(g)] + 008,
where
| T
U, (e) = 65 Z le l(\+1 - b“ Z e
i=k ’

Vaule) = —[‘l’xk(f L f’." 26q Z(., A=0,11

0 0

=k =k

Proof of Lemma 2

Taylor’s series expausion is used to derive the results. From the conditional densities of (11) (b)

and {c) we have

_ T-1 - IT 2 _
fley, o ep) = (2m) T”IH (6 + &)™ - cxp( - Ez;m (17}

When & = 0, then f(ey,...,e¢r) = () where o(e) = (2mé,)" " 2exp|- 2/(264)]- From (17),

lll

[ij

In f T In(2n) lTilll((\ + &ef) 1
=~= -z n{dg =3
2 2 & T 2 +Mf. W
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Differentiating with respect to §, gives

Ld _ iT I Jei] eflei s
fas T Zéo+6 |f[ _Z (0 + 61l 12 (18)

=0
Differentiating again on (18) gives

2 2

ALy gy Ly S o
f2dé, f d67 EZ 6n+6 le:)? ; 6U+6 PRIER (
Thus,

df _ fe~_ €lan L

6, h QI‘Z (50 +51l€, ‘” pd §“+5‘|(i[]» (20)
50,

L #o), 1~ 1= #le

il = B Ltk = 5 D lal) = 2y, o).
Also,

ﬂ—l iz lT—l et _ T (?(?—I

dé? h f dél) +f[2 'Z: 60-}—6 }( ‘)’l ; (50 +61I(I~1|)3], (21)
and

a L Tl

5";— - = ?%[ ¥y o(€)]? + o( ()(267 Z € — ~g 2 ee2, ) = (€)Vy0(e).

From Taylor’s formula, as §; — 0,
flers o) = 90+ Ew, o0 -6, + ALele) g 4 o(ay),

so result (i) is proved.
For f(€,,...,€er|€y) in (ii), the derivation is essentially the same as f(e,,...,ep) with replacing

M= and 5, by [T7' and ¥ 2 , respectively. The proof of Lemma 2 is completed

Proof of Theorem 2

The proof of Theorem 2 is organized as follows. The first step is to write down the Taylor’s
expansion for f(¢) with an explicit form for the remainder. The second step is to derive the linear
and gquadratic order expressions (with respect to §,) for V[,(T). The boundedness of the remainder
term is established in the last step.

For the first step, we differentiate (19) to give

2 Yy 3dd 1 KT el o~ lal?
fl‘(dal) j2d51d62 fd63“ 2'(60+45]e.|)3 géo+6ll€._1l)"
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So, by substituting dj/dé; and d*f/dé; rom (20} and (21), we have
Ef 3 Ay 2 df

1 3
= _ - 3 _Tg ST T
463 = F dé, d8? fz(dé P4 STy = fele) (8 L+ 2T1 2+ 13)

where
-1 T-1
g |fi|(2+1 l(i‘
T, = * - ,
: E(ma |f.»|)2 gmmq
I DOF e I B s
' (60 + me D7 & (6o + il
T 1 T-1
K +1 Jeif®
T, = 3 : - .
’ ,Z:; {60 + 61 ) ,Z:% (8o + &, e])?

By Taylor’s formula with Lagrange form of the remainder,

J(0 = AN+ FU o) + S 0aa(0] + Ralb0),

5 &

Ra(by,€) = 3! d63

,0< &< by,
§y =€

The first step is done,
For the second step, by using (15)

o7 = Elexp(- Zy, = exp(~ Z‘r, frp(Z" 6

where 7, = — Y0 08,1 < s <T. Let e, = /8,0 <1 < T nr = Vogm,,1 <5 <T;
Be) = (2m60)" /2 exp[- L, 2/(260)], do(e) = (27) T 2exp(— Y21, €2/2), aud @ is the distribu-

tion function of a standard normal variate. Hence

E[ezp(z T

62 T T T
/erp(Zw e, )(1 + ‘Ill ole) + o ‘I’Qvg(s)]¢(£) H de; +/ezp(2 Tr,f,)R3(61,g)n de;

=1

T T
/ezp(z:n e,)d)u(e)n de; + ‘ /e:rp(z 7ie,)T ole) ¢0(§)H de,
1=1

s=1

§3 T d3f T
/“‘P(Z"’ e,)Tq0(e) dol F)H de; + & /FTP(Z €} prE H de; (22)

Pl =€ =1

{i

it

where

Tiole) = (Z:e.re.“ i;e.n,

0-0
T-1

, T-1 [ 172
Tro(e}) = (z fedel ) — 5 Z lesf - Z fedely, + %(Z led)? ~ Z et 2 Z el
1=0 =g =0
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By viewing ¢; ~ iid N(0,1), the first integral of (22) is [, Me(7}) = exp(2 T, 72) =
earp(%1 Z,T:‘ol ¢?), by noting ¢ = Zf:(, B:, te. m, = —(p_,, and after re-indexing. The second

integral (linear order term with respect to 4,) is

%{Z Blerp(3omie) Jedet) - Z Eleas(y- ) - le).

Fori=0,

T $ T
Eleap()_nie) - lol] = lealexp( Y1) = 5

s=1 Y =1

Fori=1,...,T,

T T
Elesp(3 me,) - lel] = Elled %) - Bleap(Y rre,)
=t 1;:
- (r)/2 CI])(—‘ZW -’CIP(—Zﬂz) q \/-—ﬂ_
a;t-

since for X ~ N(0,1), E(|X[e"X} = ¢*"/2¢(a) where q(a) = 72;;6_“2/2 + a[2®(a) — 1]. Define m,
such that ¢{v/Fome) = leol/+v/E. Then

T
Elezp(d)_nle,) lel] = exp(— Zw’) g(Vbom),i=0,1,...,T.
s=1

Similar technique is used to find that

T
E[ezp(Zw,‘e,)-k.»le?H]=ezp zxz) q(Vomi) - (1 + 6ol )i =0,1,...,T — 1,

a=1
by using, for X ~ N(0, 1), B(X%°*) = ¢**/*(1 + a?). Hence the second integral becomes

T

T-1
Ty L) T lalVEom) (1 -+ ol ~ a(/oon)

=1

-

6 T T-1
= Vieap(E 3w Y aViem) -,

=1

-

= \/—CIP%OZ: 'EOI 1+Z (VEomi) - wl,,]

6 T=1 7o
= ‘le’(‘; 268 leol¢Fo + \/‘EZ ¢2a(V6oGian)]
i=0 =0

i

(5(1 T-1 R )
eIP('2_ Z G- Ci (o),
=0

by noting 7, = —(r—,.q(a) = ¢(—a), and re-indexing. The linear order term for V& is proved.

For the quadratic order term (the third integral of {22)) the derivations are more tedious but the

229



ideas are the same as for the linear order term. That proof is omitted. The third integral can be
proved to be equal to cap(% PO ) - €57 (q). The secand step is done.

For the last (remainder) term in (22), by using calculus, it is easy to show that there exist
constants a,,a, such that

el
(6o +&le.f) ~

fei

(6o + £fei])?

Therefore,

< a,, and, < ay, for ¢; € R,0< 0,0y < 0o.

1 T . ! T T N
< E(G‘Z(: + Tay)® + g(alz(f + Tay)( Ta2 + ala,Z(‘)
=1 i=1

1=1

1 3 R
|§T13 + ETlTZ +Ts

T
+ Baialy €+ Ta3). (23)

i=1
We claim that
T

T dgf
R= /exp(,;«,s,). i 6‘:“[:]] de, = O(1).
Because
T Ly 3
|R| < /ezp(z To6 ) fele) - g '1 Ty + T H de;,
a=1

i=1

and note (23}, it suffices ta prove that for: = 1,... T and all r > 0,

T T T
]lf;lr -PI‘])(ZW,(,)]E(Q)H de, = Flle,]” '(‘IIJ(Z T, )] < oo
=1 s=1

s=1

It is obviously true since

T T
Elle] -erp(z 1.6)] < {E[](,|2’}'/3{E[r1p(22 7, 1'%, by the Holder inequality
s=1 =1

< oo, by Lemma 1.

Result (i) follows.
The proof for V{7~ follows the same steps as for V{7/, by noting that from (16)

T
V7D = Eleap(— ZV‘ Ve = exp(— 27‘ -q Zﬂ Elexp( Z lal

and using Lemma 2(ii). O
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