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Examin ing  Changes  in Reserves Using  

Stochastic  Interest Models  

Siu-Wai  I,ai 

Edw~trd W. Frees" 

A b s t r a c t  

A f lmdamenta l  problem in actuar ia l  science is the de terminat ion  of tile reserves necessary to 

meet future obligations.  Reserves are useful quant i t ies  because they sulnmarize a vector of dis- 

counted cash flows. However, through this summar iza t ion ,  they lnask the dynamic nature  of interest  

rates.  To s tudy the effects on reserves of the dynamic  nature  of a s tochast ic  interest  environment ,  

we propose looking at a change in di,~counted reserves. By looking at  the appropr ia te  measure of 

change, we can s tudy  potent ia l  shor t - term consequences of changes in the interest  environment .  

Both the t rad i t iona l  l inear AR1MA and newer nonlinear ARCI1 processes are used to model 

the force of interest  stochastically.  We find tha t ,  in general,  the next period reserve is a function 

of previous interest  rate.  However, this is not t rue  w h e n  the force of interest  can be modelled as a 

white n o i s e  process. Explici t  formulas are p r e s e n t e d  for comput ing  changes in discounted reserves 

for linear interest  ra te  processes. For nonlinear  processes, we describe some approximat ions  and 

exact  s imulat ion a lgor i thms  for these computa t ions .  

K e y w o r d s :  Pure discount bond; ARIMA process; AR(~t] process. 
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1 I n t r o d u c t i o n  

In financial s t a tements ,  assets must  equal the capital equity lllus liabilities of  the firm. An impor tan t  

component  of  these liabilities for insurance organizat ions is the reserve, the portion of a firms'  assets  

set aside to meet  future uncertain obligations arising from insurance contracts .  Al though the 

obligations of each contract  are contingent Ul)On uncerta in  future events,  and thus may be modeled 

stochastically,  the  reserve set aside is a single number .  There are l imitat ions when using a single 

number  to summar ize  a stochastic quantity. However, reserves play a prominent  role in financial 

s t a t emen t s  and thus these qnantit ies are impor tan t  to managers  of insurance  organizations.  

There  are several impor tan t  problems in actuarial  science tha t  rely heavily on the  de terminat ion  

of a reserve. To illustrate,  if a company or a block of business is to be t raded on the  open market ,  

a value mus t  be determined for the associated set of  obligations. Thus ,  it is useful to think of 

a reserve as the "value" associated with a set of s tochast ic  obligations. As another  application,  

reserves have been traditionally used as a measure  of financial s t reng th  of an organizat ion.  In 

this context ,  the reserve should be larger than  the  "value" of obligations, because a conservative 

approach should be taken for assessing potential  future obligations. 

Life insurance and annui ty  reserves are calculated by summar iz ing  discounted cash flows, where 

the  discounting is done with respect to inves tment  earnings,  as well as decrements  due to mortal i ty,  

disability, policy lapse, and so on, that  may be applicable to a par t icular  policy. For brevity, in 

this paper  we work only with investment  earnings and the  morta l i ty  decrement .  Extens ions  to the  

mul t i -decrement  case are straightforward.  

In the tradit ional  insurance literature, as in Jordan (1967), the determinis t ic  a s sumpt ion  domi- 

na tes  the development of the  theory of life contingencies. Namely, mor ta l i ty  happens  according to 

a known morta l i ty  table and the interest rate is assumed to have a determinis t ic  value. One step 

fur ther  is to allow the age at death to be a r andom v~riable, a l though the  interest  ra te  is asst imed to 

be determinist ic.  This  "semi-stochastic" approach is followed in Bowers et al. (1986). The  recent 

past  insurance l i terature has generalized the t radi t ional  theory of life contingencies by in t roducing 

s tochast ic  variation in interest  rates.  This  l i terature includes Boyle (1976), Wate r s  (1978), Panjer  

and Bellhouse (1980), Bellhouse and Punier  (1981), Giaccotto (1986), Dhaene  (1989), Frees (1990), 

and Beckman and Fuelling (1990, 1992). 

In this paper ,  we compute  reserves as (conditional)  expecta t ions  of sums  of future  cash flows. 

Motivat ion for this approach can be found in, for example,  Bowers et al. (1986) for the semi- 

s tochast ic  approach and B/ihlmann (1992) for models  using s tochast ic  interest .  

Here, we are primarily concerned with quant i fying changes in reserves from one financial period 

to the  next.  Changes  in reserves could be used to quant i fy  the a m o u n t  of  profit released, as in 

Ramlau-Hansen  (1988). In tha t  study, gains and losses emerging from marg ins  built into mor- 

tali ty and other  decrements  where studied while those arising from inves tmen t s  were ignored. To 
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cotnplement  that  work, here we focus on changes arising from stochastic b~terest rates and do not 

explicitly consider margins built into otiwr decrement rates. 

Changes  in value of future obligations due to dyuamic motl,-ls of interest  have been extensively 

considered in tile financial economics li terature, in particular as part  of i~zTnunizatior~ thtory. Unlike 

this paper,  immunizat ion theory deals with in,s'tantancous changes in value, llere, we examine  

changes in value from one financial period to the next. 

The  new idea of examining cltanges in reserves can be il lustrated by considering the h)llowing 

simple scenario. Let {y,} represent the random force of interest in the  s th  period. As ~rgued in 

Frees (1990), y, can be interpreted as a oncper iod  spot  rate. Consider the  case of a T-year  pure 

discount bond. At t ime O, the random present value of one unit payable at tbne  T is 

T T 

J = l  J = l  

Withou t  loss of generality, it is assumed that  the t ime interval is year. Suppose  an insurance  

company  has to pay one unit T years later with certainty, but  under a s tochast ic  interest  rate 

envi ronment .  The reserve at t ime 0 is denoled by 

T 

v~ ~ = F(, ,~) = ~:[e~p(-  ~ y,)], 
s = l  

where the  expectat ion is taken at t ime zero. After one year, the  ma tu r i t y  t ime of the payment  

shor tens  by one and the reserve becomes 

7' 

v: ~- ~ : t : [ ~ v l -  ~ y,)], 

where the  expectat ion is taken at t ime one. 

This  paper  examines  the  change from the initial reserve t~, to the  t ime one reserve V~. To 

examine  this change, we discount the time one reserve VI (T-l) back to t ime zero and then s tudy  its 

dis tr ibut ion.  Tha t  is, we investigate the distr ibution and the statist ical  propert ies  of  the r andom 

reserve 

¢2-YI vI(T-I) 

from time zero viewpoint. Al though V0 represents the current  value of the  asset  or obligation, 1/1 

represents  the value at the subsequent  t ime period. Thus ,  for budget ing  and  other  purposes ,  V~ 

and its discounted value e - r '  V 1 are impor tan t  quanti t ies  for risk and other  financial managers .  

An outl ine of this paper is as follows. Section 2 describes the  model tha t  we will be using in 

the  analysis.  The  linear process for interest rates is investigated in Section 3. Section 4 considers a 

nonfinear process for interest  rates,  the Autoregressive ('.onditionalty Heteroskedast ic  process,  tha t  

is widely used in economics. Section 5 concludes with some remarks.  The  proofs of all results are 

given in the  Appendix.  
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2 T h e  Bas ic  M o d e l  

2.1 I n s u r a n c e  M o d e l  

We consider here the individual risk model for insurance contracts, using the notation of Bowers et 

ul. (1986). Denote the valuation time to be h so that, at the initial valuation, h = 0. Assume that  

there are n policies in the block of business. For i-th policy, the age at issue is x,, the duration is 

k~ when h = 0, the curtate random time of decrement is K,, and the curtate-future-lifetinle is ,li 

(i.e. J, = h', - ki - h). Suppose that a death benefit b,.K,+l is payable at the end of the year of loss 

and that  the annual premiums ai.m are payalde at the beginning of each year up to and including 

the year of loss. Then, at time point h + T + l, the random cash flow of i-th policy is 

(a) I -a,.~,+h+~+1 if d, > r 
F,,~+i(Ji) = b,,k,+h+,+I if J, = r ( l )  

( 0 i f J i  < T, 

where ~!h 0) = --ai.k,+,, and the probability function of J, is: Prob(J,  = r )  = ~lq~.+k,+h,r = 

0, 1, . . . ;  and Prob(J,  > r)  = ~+lP~.+k,+h. Iiere, ~lq~ and ~p~ are the traditional deferred decrement 

probabilities and survival functions calculated from a lifetable. 

Because the definition of cash flow is quite general, it can I)e used for general insurance as well 

as combinations of whole life insurance, term life insurance, deferred life insurance, annuities, and 

pure discount bonds. 

2.2 Interest  Rate  Mode l  

Let y, denote the force of interest in the s-th year (s = 1 ,2 , . . . ) .  It is natural to assume that  y, 
has a parametric form, 

where _8 is a vector of parameters,  {c, } are i.i.d., and .f is a known function. To illustrate, in Section 

3 we will consider the recursive linear process 

Yt = a + CLY~-I + "'" + C v Y t - v  + et -- Clet-l . . . . .  Cq( t -~ .  

The traditional ARMA/ARIMA model belongs to this class of model. [n Section 4, we will consider 

an ARCH model, a nonlinear representation for the force of interest. 

Before going to the next section, we make the following l)a.~ic assumption and notations here. 

Assumption 

(A1): yt is a Borel measurable function of ( q , c 2 , . . . , e 0 .  
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Notations 

(1) Let M(t) = E(et~), the momen t  generat ing function of (. 

(2 )  , ~ , : i  : 0 for j < i and,  I],=i = 1 for j < i .  

(3) E( - ]X)  means  taking expecta t ion conditional on the information g(~neraled by X.  

2 . 3  T h e  R e s e r v e s  

To introduce reserves, we first define tile loss at valuation t ime h for i-th policy, 

co h + r  

LI~ = E r:;'exp(- E Y,) 
r=O s = h + l  

So the sum of losses for the whole block of business at t ime h is 

i = l  r = O  s = h + l  

The  reserve at t ime h is defined as Vh = Eh(S~ h)) where E~,(.) = E('I¢~,...,¢h), so tha t  Vh is 

a funct ion of (¢1 , . . . ,  ch). The  discussion below will concentrate  on V0 and Vl, the reserves at the 

beginning of valuat ion and its following period respectively. The  notions can be extended to the 

considerat ions of fur ther  periods. 

In the  following discussion we assume the random cash flows (F,(~)) are independent  of the 

s tochast ic  interest  rates (y,) .  The  following result for the reserves is a basic one tha t  we will use 

frequently. 

P r o p o s i t i o n  1 Under (A I), we have 

v0 = E0(s~°b : E ( E 4 ' L ) .  Eie~p(-E y~)l- E ~ ' ~ ,  (2) 
r=O i = l  s : l  i = i  

co rt r÷2 n 

v, = E~(S~ '~) : V'~V'd '~ ~ (3) Z__c~,Z~..~ r , l i + l ) ' E [ e x P ( - -  E ~ s ) t ( l ] - -  atfl;.+l, 
r = 0  i = l  s = 2  i=1 

where 

c (0 b,,k,+,+l rlq~,+~, --ai.k,+r+l "~+lp~,+~,, (4) r,k, ~ 

provided the expectations exist. [] 

: I P / / P  (1) In fact,  EtF(°)t ~,~+~¢'~ = ~,k,,'(i) the  expected cash flow of i- th policy at t ime h O, and ~ ,,~+l) = 

c(i) the  expected cash flow of i- th policy at t ime h = 1 Al though ~ is a cons tan t ,  I/1 is usually r , k , + l '  

s tochast ic  since it is a funct ion of q ,  the dis turbance of force of interest generated in period one. 

When  considering the  discounted reserve, we simply mult iply !/1 by e-~ ' .  In actuar ia l  science, it is 

t radi t ional  to present  reeursive calculations of reserves. In Appendix 1, we provide the reeursive 

calculations relat ing I/1 to V°. 
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3 L i n e a r  I n t e r e s t  R a t e  P r o c e s s  

Define a linear interest process to mean that tile force of interest {Yt} can be represented as 

y~ = a + Czy~-i + "'" + ¢,y~-~ + q - czq-1  . . . . .  % q - ~ ,  (5) 

where (a,(hl . . . . .  0v, ca . . . . .  %) are parameters,  {(t} are i.i.d., E(e,) = 0, (y(,, Y-I . . . . .  9a-e) and 

( % , e - z , . . . , q _ q )  are known. The linear interest rate process can also be written in the form 

t - I  

y, = ~, + ~ , < , _ , , t  >_ 1, (c,) 
i = 0  

where 
p i - I  q . t - I  t--1 

i = l  j m r ~ a a x ( O , i - t )  i z l  j z r n a x ( O , i - t )  t : 0  

m i n ( i , p )  , n in (~ ,q )  

,~o = 1,~o = 1;,~, : ~ ,  ¢ , c , , _ , . i  >_ 1;~, = , ,  - ~ c j ~ , _ , . i  >_ l .  (s) 
1 = 1  j = I  

see, for example, Box and Jenkins (1976) or Dhaene (1989). In other words, y, is affine (linear plus 

constant) in ( q  . . . .  , q ) .  

If the force of interest follows a linear process, then the two discount factors in Proposition 1 

can be expressed explicitly by using the next theorem. 

T h e o r e m  I For a one unit T -year  default-free pure discount bond, i f  {yt} ]ollows a linear interest 

process, then 

T T - I  l T 

V~T)= E[exp(- ~-~y.)] : 1-I M ( -  ~-~f3')" exl'(- ~-~. % ), 
s = l  I : O  i=O s = l  

and 
T T - 2  l T T - I  

V1 (T-') = E[exp(- ~ ys)le,] = I-i M ( -  ~-~t3,) . exp(- Z %)" exp(-q Z t3i). 
~=2 I : 0  i=t3 ~=2  i : l  

n,her~ 1~,} and {'~,} a,~ d41ned in (7)  ,,rid (S). [] 

Therefore, supposing a linear process for the force of interest, we can combine Proposition 1 

and Theorem 1 to write down the reserves V0 and VI. To illustrate, it is of interest to write down 

the special case of independent interest. 

C o r o l l a r y  1 ( Independent  Interest  Case) I f ¢ l  . . . . .  Cp = Cl . . . . .  % = 0 so that {Yt} are 

lid, then 
o o  n n 

Vo: Ce-°M(-1)]'+' - Z 
r : O  i = 1  i = 1  

and 
o o  n n 

V~ = z..~z__~V'tV" e(') ,.~,+~ .~ [ e - ° M ( - l ) ]  T M  - ~ a,.~,+z.o 
•=0 i = a  i : a  
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From equation (3), it is evident that ,  in gcueral, l't is a function of t t, and is thus a random 

variable, llowever, in thei . i .d ,  case, ~q becomes a( ' (mslant ,  which means *hat it is independent of 

¢~. The intuition is th~tt in this i.i.d, cas(,, {y,} are purely random, and thus q does IlOt provide 

any sequential information :tbout (Ye, Y:~,.-.) and hence tit(, next-period reserve V1. Therefore, by 

employing the exl)ectatiou approac]i for i)richlg and assuming lhat the force of interest is generated 

by a white noise series, the lneasure V1 (also for Vh, h >_ 1) is a deterministi( wdue, which may not 

capture the real ev ( , n t s ,  l~']xanlillillg an atitocorrelal(,(] irlterest onvironnlell{ niay niodel practical 

situations more at)propriately (ban the independ(,n( iiilerest benchniark case. 

3.1 D e f a u l t - f r e e  P u r e  D i s c o u n t  B o n d  E x a m p l e  

The simplest special case for the cash flows is a pure discount t)ond. Suppose that an insurance 

company has to pay one unit T years later with certainty. Then, using Theorem 1 aim a l inear  

process for the interest rates as in (5), we have 

T - 2  I 7" 7"-1 

( ' - Y ' '  v I ( T - I )  ~- 1" I  J~] ( - -  Z ~ t )  " ¢ ' T P ( - -  ~ 7 " ~ s )  ' ( ' X P ( - - ( 1 Z  ~ t ) ' ~ "  ~> ~" 
/ = 0  t~O s=l t=O 

Making normality assumption for ( 's yiehts 

w h e r e  

T ] T - 2  1 T - I  
2 , 2 2 

*=t  2 I=(/ i=O i : 0  -- 

0"2= Var(q). 

Thus, the discounted reserve e -v' • ~.~(T-1) has a lognormal distribution in this special case. It is 

easy to check that if 0 .2 increases, so does the mean and variance of e -~' • I/? T-I) 

For a single payment with fixed payment (late as above, the exact distribution of e-~'Vj can 

be obtained. However, for a general insurance contract such as life insurance or deferred annuity, 

analytically the exact distribution is extremely difficult to find. Appendix 2 presents a moment- 

matching method to approximate the distribution. A simulation example for the distribution under 

a general insurance contract is provided in next subsection, 

3 . 2  A S i m u l a t i o n  E x a m p l e  f o r  L i n e a r  P r o c e s s  

To i l lustrate the distributions of V1 and e -~' tq, we consider a block of whole life business that was 

also used in Example 4.1 in Frees (1990). For simplicity, policies are categorized into three groups 

of size l0 so the total size is 30. Assume that,  for each category, ages at issue are x = 30, 30, 40 
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O . 7 ~  O . ~ B O  

(~) Roaorv~ (V  1 ) 

1 
O.~O O .70  O .~3~O 

(b )  D i scoun ted  Rese rve  

F i g u r e  1: F r e q u e n c y  H i s t o g r a m s  for  R a n d o m  R e s e r v e  V2 a n d  D i s c o u n t e d  R e s e r v e  

e -~lVx. Each h i s togram was generated f rom 500 s imulat ions  using an AR(2)  model  for the 

force of interest .  For comparison,  V 1 = 0.765 and 0.808 cor responding  to cons tan t  force of 

interest  0.08 and 0.079 respectively, are p lo t ted  on (a). The initial reserve,  Vo = 0.602, is 

p lo t ted  on (b). 

and durations are k = 5, 10,5, respectively. All death benefits are $1. The mortality decrements 

are the 1979-81 U.S. Life Table that appear in Bowers et al. (1986). Here, assume that we have 

the following stationary AR(2) model for the interest rate: 

y, = 0 .08+ 0.6(y~_~ - 0.08) - 0.3(y~_2 - 0.08) + e,,t >_ l, 

where e, ~ lid N(O,a = 0.025),y0 = 0.06, y_~ = 0.07, as in Giaccotto (1986) and Dhaene (1989). 

To compute the level premiums for each of three categories, first use constant force of interest 

0.08(= E(y,)) to get the net level annual premiums, and then add 20% as the relative security 

loading to obtain the final level premiums. 

Combining Proposition 1 and Theorem 1 yields analytic expressions for Vl and its discounted 

version, e-v'V1. To approximate these expressions, we performed 500 simulations. The resulting 

frequency histograms are shown in Figure 1. Normally distrihuted curves are superimposed for 

comparison purposes. The sample mean and standard deviation of the simulated distribution of 

reserve Vl is 0.7875 and 0.009748, respectively. For discounted reserve e - u ' ~ ,  the corresponding 
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measures are 0.7349 and 0.02799. It is interesting that the dispersion for discounted reserve c-Y'V: 

is almost three times as for reserve t:l (0.02799/0.009748=2.9) in this example. The difference 

originates from the additional random i,ortio~,- the discount factor e-~' .  

Because the mean of the force of interest E(y~) = 0.08, supppose that we had used 5 = 0.08 as 

constant force of interest to calculate the next-period reserve. Then, VI = 0.765, which underesti 

inates the "true" reserve, as shown in Figure l(a). F'()r comparison, choosillg another 6 - 0.079 as 

constant force of interest gives I', = (J.~;08, which overeslimaIes (he "true" distribulion. This ex 

ample indicates that  ignoring the stochastic interest rate environment would easily iniss the target 

distribution. 

Since ~'~ and discounted reserve e -u' VI are both valued at time 0, we can compare }~ = 0.602 

and the distribution of e -u~ I."1 to see the changes in reserves. To illustrate, we may wish to know 

how much to add to the current reserve so that the rlext-period funds can meet future obligations 

measured by l'1 with 95% probability. That is to say, we waist to fi~l(l A s(~ch that P[(I'~ + A)eU, > 

Vl] = 0.95. Hence A = (95-~h percentih, of c -u' V I ) -  V0 ~ 0 .782-  0.602 = 0.18. The saml)le values 

of (skewness, kurtosis) for Vz and e.-~' ~'] iJ~ this simuh~tio~l example are (0.0643, 3.19) aJI4 (0.155, 

3.21) respectively. The kurtosis (lefilwd here is equal to 3 for a normal variate. Thus, a normal 

distribution could be used to approximate the reserve I~] even though slightly positiw, skewness 

and slight thicker tails feature are exhil)ited from the sample quantities. The positivity of skewness 

of e-~'l,] is larger than that of V~ but a normal approximalion to the distribution of discounted 

reserve c -~V~ seems adequate. 

4 N o n l i n e a r  In tere s t  R a t e  P r o c e s s  

4.1 I n t r o d u c t i o n  to A R C H  P r o c e s s  

Under the traditional linear time serie~ selling, the conditiolla] variance of one-step-ahead predic- 

tion is time invariant. Recently, applied researchers }lave recognized the importance of explicitly 

modeling time-varying second- and higher-order moments. One of the most prominent tools that  

has emerged for describing such changing variances is the AiJloregressive Conditional Heteroskedas- 

ticity (AI{C]t) model of Engle (1982) a~d its various extensiol~s. Bollerslev et al. (1992) contains an 

overview of some of the developnl(mts in the formulation of ARCH models and a survey of the nu- 

merous empirical applications using financial data. In particular, this survey includes a discussion 

of the modeling of interest rates. 

The simplest non-trivial ARCH model is the first order linear model given by: 

(,[~',-I ~ N(O,h,) ,  

2 tq = 6o + ~1c~_ l, (9) 
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where ~t-1 is the  information set (o-field) available at time / - 1 and ~i0 > 0, bl >_ 0, unknown 

parameters .  The nonlinear ARCH process is serially uncorrelated with nonconstant  variances con- 

ditional on the past, but constant unconditional variances. This model captures the tendency for 

volatility clustering, that  is, for large (small) changes to be followed by other large (small) changes, 

but of unpredictable sign. The non-linearity stems from the variance of disturbance term q .  If bl 

were equal to zero, then the model would be the conventional Gaussian white noise. However, for 

~l # 0, the effect of (9) is to make the variance of the disturbance terms at time ! depelldent on 

the realized value of the disturbance ternl in the previous period. 

We have just  seen a simple example of ARCtI process for the innovations. To certain extent ,  

reserves V0 and V1, as obtained from (2) and (3), involve the moment generating fimction of q ' s .  

Because of the nonexistence of higher moments under AI/Cll model (9) and hence its moment  

generating function (see Engle (1982) and Bollerslev (1986)), we consider a model similar to (9) 

but  in absolute value form: 

~,1¢,-~ ~ m(0, h,), 

t,, = 6 + ,~,1~,-,I, ( l o )  

where t~0 :> 0,~t _> 0. This model wa~ mentioned in the seminal paper of Engle (1982), but is 

seldom used in the ARCH literature. Perhaps it is due to the mathematical  tractabili ty difficulty 

in absolute values. Recent papers that  discuss the absolute version of ARCIt model include Engle 

and Bollerslev (1986), Sehwert (1990), and Itiggins and Bera (1992). The at)solute vMue form of 

the  model  in (10) not only shares the features described above for model (9), but also possesses the 

existence of the moment  generating function, a desirable characteristic. We note that  $~ in model 

(10) depends on the measurement unit. 

In the discussion below we use the following model for the force of interest: 

(a) Yt = a + C t Y t - i  + " ' "  + CrY~-p + e~ - c t ( , - i  . . . . .  c ¢ , _ q ,  ] 

(b) ,,10,-, ~ N(O,h,), [ (11) 
(e) ht = *o 4- 5~le~_tl,t k 1. 

That  is, we allow for conditional (prediction) variance to depend on the absolute value of immedi- 

ately previous innovation. 

4 .2  A p p r o x i m a t e  R e s u l t s  fo r  R e s e r v e s  U n d e r  A R C H  P r o c e s s e s  

We will examine the effect of 61 on the reserves l/o and t~ under model (11), supposing bl to be 

small. Before s tat ing the result for reserves, a lemma for the finiteness of the moment  generat ing 

function of innovations is given first. Engle (1.982) said that  "The absolute value form . . .  can be 

shown to have finite variance for any parameter values". I1) fact, we can prove a stronger,  new 

result that  the moment  generating function is finite, hence so are all moments  of q ' s .  

213  



L e m m a  1 l f  q 's follows model (11) (b ) and (c), then the mom('nt g( twratiny function of  ( ~, . . . ,  cr ) 

is finite for  all 6o > O, 61 > O. 

V~Tith the above ]emma, we are ready to s tate  the basic maiI~ result for a pure discount bond 

under  the ARC][ process. 

T h e o r e m  2 For a one unit T-year dcfault-free pure discount bo.,l, under model (11) for the force 

of interest, we have that, as 61 ---* 0, 

T 

(i) Vo (T) = E [ c x p ( -  y ~  y,)] = X(0 v) + 0(611 
s = l  

T 

8=2 

Here, 

£ T-I ~Iy,(T)L.~'~j, 
= C'~ )(,0)1, - ~ - ° V ' : : ~ . [ I +  2 . ,  1 ~ o ) +  X(o T) e x p ( -  % + 2 A.., "~z : 

~=1 I : 0  

0 . ~  _~ . , ( r - ~ ) .  )], 

s = 2  i=1  - -  l=[~ 

T - 2  

I = 0  

- -~V_2[q(v /~O(T- I )  -- --e-6°(~-'/2]v/~ + ~ 0  ~l=0 (~[1 + ~0~+1 -- q2(v~0(,+l)} 

T - 3  

2 
q(x) = ~ c - "  /2 + x[2+(x)  - 11, 

• (x) = distr*butiou function of  a sta~Mard normal variable, 

and 
! 

i = o  

We can see tha t  the terms outside the sqtlare brackets of Xly ) and XI T) correspond to the results 

of the  l inear process case (61 = 0) under normality. It can be shown that  both  coefficients of the 

linear and quadra t ic  order terms (with respect to 61) (?l and C2 -a re  nonnegative.  Thus for a 

pure discount bond,  when 6t small, the reserves Vo and Vi are both larger ip. the ARC[{ process 
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(1 1) case than in the linear process case. Moreow,r, we expect that l')j and !/1 would increase if ~1 

increases. 

Once we have Theorem 2 for a pure disconnt bond we can have corresponding results R~r l~, 

and lq in the genera/ block of business case. That  is, by' retrieving (2) and (3) in Proposition 1 

and substi tuting ~ ,+ l )  and X~ ~+21 for lhose two discount factors r~,st)ectively , tile desired results 

are obtained. 

The above analysis studies the case where ~1 iS assumed to be small. For larger values of hi, we 

resort to simulation techniques, as described in the following subsection. 

4 .3  A S i m u l a t i o n  E x a m p l e  fo r  a n  A R C t I  P r o c e s s  

Unlike the ARMA model, the ARCIt model takes into account the conditional heteroscedasticity. 

The model that we use for an ARCIf process resembles that for linear process. The insurance 

model is the same as in Section 3.2. However, the model for interest rate variations becomes: 

y~ = 0.08 + 0.6(y,_~ - 0.08) - 0.3(y,_2 - 0.08) + q,  

, , 1 ~ , - ,  ~ .~ (0 ,  h,) ,  h, = (0 .025)  ~ + ~, I~,-,1, t _ ~, 

with ~ = 0,0.001,0.003, . . . ,0 .08,  where Y0 = 0.06, y_x = 0.07,~o = -0.01.  We shall use this 

ARCH model as a nonlinear time series examllle to do the simulations for illustrating the next 

period reserve. The largest value of £l chosen to investigate is 0.08. Tile reason is as follows. In 

Appendix 3, we show that sd(et) < ~/b(~ + iix(6 t + ~ 2 r 6 ~ ) / r .  With ~(, = (0.025)2,(~ = 0.08, 

we have sd(q) <_ 0.072, which is about 2.9 times tile standard deviation of tt in the linear process 

case (0.072/0.025 = 2.88). 

4.3.1 The  Valuat ion  A l g o r i t h m  

Part  of the simulation ideas that  we use comes from Tilley (1993), where he presents a simulation 

algorithm for valuing American-style options. 

For nonlinear time series models, like ARCH processes, it is <lifficult to compute analytically, 

E{exp(- ~T=t y,)] or E[exp(- ~T=2 Y,)lq], and hence tile distribution of the reserve, since the 

error term o's are no longer independent. However, using simulations can gain some insight into 

the distribution of V1 and e -~'!/1. For simplicity, consider first a one unit T-year pure discount 

bond, 

T 

V, = E[exp(- Z y , ) l q  ]. 
, = 2  

Since it involves an expectation that  couht not be expressed simply, we need to approximate it by 

simulation. Figure 2 helps us to understand how the simulation works. 
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Time: 0 

( T  

/ /  

J ~ / J J  

l 2 . . .  T - 1  T 

1.1' paths 

Figure  2: D iagram exh ib i t ing  the  s imula t ion  paths  for the  A R C H  process .  

Given a value of q (its 98-th percentile, for example), we simulate ( (~ , . . . , {T)  on each palh 

from time i to T, Suppose we have b ' (= 1200, say) such repetitions. Then the expectation 

E(exp(-  y~T,= 2 Y,)lq] can be approximaled t)y 

B r 
~-~ ~ ~p(- ~. y?~l 

k = l  s=2  

where y~t) is the simulated s-th period fl)rce of inlerest on path k (/: = ] . . . .  , B )  for a certain 

percentile of q .  

Now extend a pure discount bond to the case of whole block of business ``,ith n insureds. Let 

be the limiting age. From (3), we have 

M - 2  r + 2  n 

r = 0  s : 2  i=1 

, , ' } ,ere  ~.t = ,., - , n in~< ,<_ , , ( ~ ,  + ~-,) a , , , t  f ,  = E ; ' = ~  ' : , ' ,~,+,, sl, ..... L = 0 f o r  ,- > ~.~.t - ~.  I,~ thi.~ , '~s~,  

we use the same ideas as above with replacing 7' = r + 2, 0 < r < M 2, lhen we obtain a value 

of I/1 which corresponds to a given percemile of (~. 

4.3.2  S e n s i t i v i t y  o f  t h e  R e s e r v e  to  V a r i a n c e  A u t o r e g r e s s i o n  P a r a m e t e r  

In our numerical example, we use different values of 61 in the simulation. Thus,  we can study the 

sensitivity of Iq and c -~' Vl to a change in the value of the variance autoregression parameter 61. 

For example, we might like to see how large this parameter  can be before it matters.  Therefore, 

we include the case b: = 0 for comparison purlmses. For each percentile of q ,  we implement the 

simulation method described above to obtain the values of Vl(tfl,, ~ )  where lq, denotes the 100p th 

percentile of the distribution of q .  By examining many different percentiles of q ,  especially the 
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T a b l e  1: S i m u l a t e d  v a l u e s  o f  r e s e r v e  V1 for  d i f f e r e n t  c o m b i n a t i o n s  o f  p e r c e n t i l e s  o f  e l  

a n d  v a l u e s  of/$1- The  value in p a r e n t h e s e s  b e n e a t h  111 c o r r e s p o n d s  to i ts  s i m u l a t i o n  s t a n d a r d  

error.  N u n i b e r  of  simulation ( B )  is 1200. 

6! = 0  

0.001 

0,003 

0.005 

0.010 

0.020 

0.030 

O .040 

0.060 

0.080 

Pelcen t i le  of q 

1% 2% S% 10% 20% SO% 80% 90% 98% 98% 99% 

0.8107 0.8080 0.8041 0.8006 (1.7963 0.7883 0.7804 0 7 7 6 2  0.7728 0 .7690 0.7665 

(00075) (0 0075) (0 0075) (0 0074) (0 007i) (00073) (00073) (0 0072) (0 0072) (00072) (0 0072) 

0.8120 0,8093 0,8053 0 ,8017 0.7974 0.7893 0,7813 0.7772 0 7 7 3 7  0 .7700 0.7674 

(00077) (0 0076) (00076) (0 0076) (0 0075) (000ZS) (0 0074 ) (0 007~=) (0 o07a} (0 0073) (00073) 

0.8147 0,8119 0.8078 0.8042 0.7998 0.7914 0.7834 0,7782 0.7757 0 .7719 0.7693 

(0 00~0) (0 0079) (0 0079) (0.007a) (0 007~) (00077) (0 0077) (00076) (0 0076) (0 0076) (0 0076) 

0.8176 0.8147 0,8105 0.8068 0.8022 0.7936 0.7855 0 .7813 0.7778 0 .7740 0.7713 

(0 00~2) (0 00s2) (o0o82) (0 0081) (0 00811 (0 0080) (000aO) (0 00791 (0 0079) (000;'9) (0 007~) 

0.8253 0.8223 0.8178 0 ,8138 0,8090 0.7998 0.7915 0.7872 0.7837 0 ,7797 0,7771 

(o oo9o) (o 0090) (o 00~91 (o oo80) (o oo8~) (o 0087) (o 0087) (00086) (00086) (0.0086) (o 0080) 

0.8438 0.8402 0.8351 0.8306 0.8252 0.8148 0 8 0 6 3  0.8018 0.7981 0 .7940 0.7912 

(0 01081 (00108) (00107) (0 0106} (0 01051 10 0103} (0 0103) (00103) (00103) (0.0102) (0 01021 

0~8669 0.8622 0.8565 0,8514 0.8453 0.8336 0.8248 0.8202 0.8164 0.8122 0.8093 

(0 01291 (0 01281 (00127) (0 0J201 10 01241 (0 0122) (00122) (00122) (0 01211 (0 01211 (0 01211 

0.8930 0.8887 0.882,1 0.8767 0.8698 0.8565 0 .8477 0 .8430 0.8391 0 .8347 0.6317 

(0 0152) (0015.1) (00).49) (0 01',8) (O 0145) (0 0143) (0 01#,3) {00143) (0 01'13) (0 01~2} (0 0~q}2) 

0,9628 0.9574 0.9495 0 .9423 0.9331:, 0.9165 0 .9079 0.9031 0 .8990 0 .8945 0.8914 

(o o'20s) (o o'2o61 (o o20,,) (o o2oi) (o ,~199) 1o ov~a) (o 0~*,) (o o~9~) (o o~9,,) i0 oI°.*,) (o 0~9,.) 

| ,0578 1.0508 1.0408 1 .03IS  1.0207 0.9983 0 .9907 0 .9859 0.9818 0.9771 0 .9739 

(o o2PA) (o o2~'9) ((~ o~Ts) (0 0~'ri) (0 o~(;r) (o o~s?) (o o'~oo) (o o20.o) (0 o2,s~) (oo2o D (o o2e.t) 

tails, we can present  the whole picture of sensitivity of variance autoregress ion pa rame te r  on the  

next-period reserve. 

The  s imulated values of I71, and associated shnulat ion s t anda rd  errors, are summar ized  in Table 

1. Plot t ing those values of Vl together  in Figure 3(a) presents  a more clear picture. We see tha t  for 

each fixed value of el, as bl increases the reserve Vl also increases. This  aspect  is consis tent  with the 

discussion following Theorem 2 for a pure discount bond. O1l the  other  hand,  fixing ~51, larger value 

of 01 reduces the reserve V(, as shown in "Fable 1 and Figure a(a).  However, it is not necessary tha t  

this is always true.  T h a t  is, recall from Theorem 1 tha t  there  need not  be a monotonic  relationship 

between the value of q and reserve I71. From Figure 3(a), it seems tha t  I/1 increases "quadrat lc ly"  

for ~t E [0,0.08] so the approximation up to second order t e rm appears  adequate .  W h e n  ~l < 0.02, 

the linear order term already gives good approximation to the  reserve V,. The  plot also indicates 

tha t  the  dispersion of VI tends to increase as 61 increases. A corresponding graph  for discounted 

reserve e-~"Vl is shown in Figure :3(b) in which shnilar features  appear .  In this example ,  the  

discounted reserve is less influenced by 6~ than  the reserve, as indicated by the  growing rate of 

curves in the  figure. As noted in linear process case, the  dispersion of discounted reserve e-Y'gq is 

larger t han  tha t  of reserve V~, for various values of 6~. In addit ion,  the discounted reserve seems to 
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 Ifl 
~ ~ ~ ! ~ I ~  

d , i ~ l i 

0 .0  0 . 0 2  0 . 0 4  0 . 0 6  0 . 0 8  

d e l t a  1 

Q) 
1,0 

:=} 
0 

O~ 

r~ 
c5 

o ~. o 

- ~ ~ ~ ~ ~ ~ 5 ~ .  

0 . 0  0 . 0 2  0 . 0 4  0 . 0 6  0 . 0 8  

d e l t a  1 

Figure  3: Using s imulat ion me thod .  ( a ) U p p e r - - P l o t  o f  r e se rve  V l aga ins t  bl for given 

pe rcen t i l e  of  ~i. ( b ) L o w e r - - P l o t  of  d i scounted  re se rve  e -v 'Vj  aga ins t  61 for given 

pe rcen t i l e  of  e~. Tile 1% denotes tile first percentile of ¢1, and so forth. 
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T a b l e  2: V a l u e s  o f  V1 o b t a i n e d  f r o m  a p p r o x i m a t i o n  re su l t  o f  T h e o r e m  2.  
Percenti le of q 

l %  2% 5% 10% 20% 50% 80% 90% 95% 98% 99% 

~1 = 0  

0.001 

0.003 

0.005 

0.010 

0.020 

0.030 

0.040 

0.060 

0.080 

0.8088 0.8061 0.8022 0.7987 0.7945 0.7865 0,7786 0.7744 0.7710 0.7672 0,7647 

0.8099 0,8072 0.8033 0,7998 0.7955 0,7874 0,7794 0.7752 0.7718 0.7680 0.7654 

0.8124 0.8096 0.8055 0,8019 0.7975 0.7893 0.7812 0.7770 0.7735 0.7697 0.7670 

0.8150 0,8121 0.8080 0.80,13 0.7998 0.7913 0 7 8 3 2  0,7789 0.7754 0,7715 0,7689 

0.8223 0.8193 0,8149 0,8110 0.8062 0.7972 0.7889 0,7845 0,7809 0.7769 0.7742 

0 .8406 0.8372 0.8323 0 8 2 7 S  0.8225 0,8123 0.8030 0,7990 0,7953 0 7 9 1 2  0,7883 

0.8637 0.8599 0.8543 0 8 4 9 3  0.8432 0.8318 0,8228 0,8181 0,8143 0.8100 0.8071 

0.8918 0.8874 0,8810 0.8754 0.8685 0.8555 0,8465 0,8417 0.8378 0.8335 0.8305 

0.9628 0.9572 0.9489 0.9416 0.9328 0.9162 0.9071 0,9024 0,8985 0.8942 0.8913 

1.0541 1.0468 1.0363 1.0269 1.0155 0.9942 0.9856 0,9811 0.9775 0.9734 0,9706 

T a b l e  3: V a l u e s  o f  ra t i o  = ( a p p r o x i m a t i o n  v a l u e  - s i m u l a t e d  v a l u e ) / s i m u l a t i o n  s t a n -  

d a r d  e r r o r ,  

51 = 0  

0.o01 

0.003 

0.005 

0,010 

0.020 

0,030 

0,040 

0,060 

0.080 

Percent i le  of el 

1% 2% s% 10% 20% s0% 80% 90% 95% 98% 99% 
-0,247 -0.248 -0,248 -0.247 -0.247 -0.248 -0.248 -O.247 -0,248 -0,248 -0.247 

-0.267 -0.266 -0.264 -0.264 -0.261 -0,258 -0.261 -0.263 -0,264 -0.267 -0.267 

-0.297 -0.294 -0.290 -0.288 -0.284 -0.276 -0.284 -0.288 -0.292 -0,294 -0~298 

-0.316 -0.315 -0,309 -0.305 -0.299 -0.287 -O.298 -0.305 -0.309 -0.314 -O.318 

-0.334 -0.330 -0.323 -0.317 -0.309 -0.201 -0.309 -0.318 -0,324 -0.331 -0.335 

-0.279 -0.276 -0.271 -0.265 -0.256 -0.235 -0,257 -0.265 -0.271 -0.277 -0.280 

-0.178 -0.178 -0.175 -0,173 -0,167 -0,147 -0.167 -0.173 -0,176 -0.178 -0,179 

-0.083 -0,085 -0,089 -0.089 -0.088 -0.068 -0.088 -0.090 -0.089 -0.086 -0.084 

-0,002 -0.013 - 0 0 2 6  -0.034 -0.041 -0,019 -0.041 -0,035 -0,026 -0.013 -O,O04 

-0.127 -0,143 -0.165 -0.181 -0.194 -0.161 -0194  -0.181 -0,165 -0.144 -0.128 

grow linearly for di 1 up to about  0.03. 

Next, we compare  the  values of reserve Vt obtained from two different methods :  (1) by simula- 

tion and  (2) by the  approximat ion result in Theorem 2. Table 2 shows the values of  VI ob ta ined  

from approximat ion  approach.  The  corresponding plot for Table 2 would look like as Figure 3(a)  

so tha t  it is not  presented here. To compare  these two methods  let us consider the following ratio: 

approximat ion  value - s imulated value 

s imulat ion s tandard  error 

The ratio values are reported in Table 3 in which we find tha t  all of them are less t han  0.34 in 

absolute  value. Theorem 2 therefore provides us good approximat ions  to the reserve V~ under  the  

ARCH model  (11) for the force of interest.  It is noted tha t  all of the ratio values are negat ive from 

which we induce t ha t  in this example the  al)proximation method would slightly unde res t ima te  the  

" true" reserve Wl. 
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5 Concluding Remarks 

This  paper has examined  the discrete-t ime shor t - te rm consequences on reserves due to changes in 

the interest  ra te  env i ronment .  Generally, when viewed at initial tilne, tile next  period reserve is 

r andom variable, which is a function of tile dis turbance generated ill the  first period. However, in the 

special case of white noise process fl>r tile force of interest,  the next period reserve is a determinist ic  

value. Linear and nonl inear  ARCIt  process models for the force of interest are considered in the 

paper.  Under  linear interest  rate processes, explicit expressions are given for the changes in reserves. 

In par t icular ,  for a lmre discount bond, the next  period reserve and its disconnted value have a 

lognormal  dis t r ibut ion.  As an extension from linear processes to nonlinear processes, approximat ion  

formulas and s imula t ion a lgor i thms are presented.  Compared with simulation results,  we have 

found tha t  the  approximat ion  formnlas perform well in the sense tha t  the discrepancies between 

the approx imat ions  and s imulat ions are small, relative to the simulation s tandard  error. Even 

though  we used only one type  of insurance contract  for our comparisons,  the results are applicable 

as long as the  cash flows are independent  of interest rates, This  is because,  under this assumpt ion ,  

those  two factors  can be separated,  as shown in Proposition 1. 

We considered in this paper  only the initial and next period reserves. The values will evolve as 

the  t ime goes by. To handle  this one period ahead problem sequentially, s tochastic control theory 

may  be used to access not  only the  dynamic  na ture  of the time development ,  but  also the  mobility 

of the  cash flows (claims, p remiums,  and expenses)  in an insurance organization.  See Mart in-L6f  

(1983), and Vandebroek and Dhaene (1990) for applying the control theory on insurance context ,  

where they assunle  fixed interest  rates. 

In this paper ,  the  cash flows are a.ssumed to be independent of interest  rate variations. For 

many  insurance  contrac ts ,  this a s sumpt ion  appears  to be unnecessarily restrictive. We hope to 

invest igate  this  issue in the  fl~ture. 
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A p p e n d i x  1: E x p e c t e d  V a l u e  o f  D i s c o u n t e d  R e s e r v e  

For single policy we have the following result which can be served as a stepping stone to compute 

the expected value of discounted reserve for a whole block of business. 

P r o p o s i t i o n  2 Suppose that (A1) hold.~. For single policy, we have 

V^-I + a~+a-1 = E(p,+~+h-1 " c - ~  ' t~ + q,~+*+h-1 " e - ~  "b~+h[q , . . . , eh-1) ,h  >_ 1. 

In particular, .for h = 1, 

V0 + a~ = p~+~E(e - ~ ' .  V,) + q=+~-b~+,E(e-~') .O (12) 

(Compare Bowers et al. (1986, 7.8.2).) In words, the resources required at the beginning of policy 

year h equal the present value of year-end requirements in expected vahm sense. Furthermore,  we 

can employ (12) to calculate the expected discounted reserve E(e-~'  • Vl) for each policy and then 

add them up to obtain the whole block of bnsiness expected discounted reserve. 

A recursive expression for E [ e x p ( - ~ = ~  y , ) .  Va], the expected value of discounted period-h 

reserve, is obtained from Proposition 2: 

h - I  h - 1  

E [ e x p ( -  ~ y,) . Vh-l] + ak .h_ ,E[exp( - -  Z Y')] 
s = l  s = l  

h h 

s = l  s = l  

Note that  V0 (h) = E[e:rp(-  ~ = l  Y,)], its value can therefore be computed by using Theorems 1 and 

2 under different models for {Yt}. 

P r o o f  

For single policy, let the loss at time h he 

h + r  

: E y,) 
r=O t = h 4 - t  

where F~ h) is defined similarly as (1). By definition, 

oo h + r  

r = 0  s = h + l  

(h) 
= -a~+~ + E~(FL~ ) • E i c x p ( -  E Y,)le~ . . . . .  e',] 

r=O s = h + I  

= --ak+h + ~-~(bk+h+~+l " ~]q~+k+h -- a~+h+f+l " ~+lP~+k+~) 

h T r + l  

• E [ c x p ( -  ~ y , ) ]q  . . . . .  eh] (13) 
s = h + l  
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S o  

which implies 

- e  -u~ . a~,+~ + ~ (b~+~+:+ ,  • ~lq:+~+,, - a~,+,,+:+~ . ,+,p:+k+,,)  
r = 0  

h + ~ + l  

s=h 

E ( m + ~ + ~ _ , .  e - ~  . v ~ l ( ~  . . . . .  ~ , ) : - ~ , + ~  " v ~ + . , , - ~  " ~ ( ~ - ~ 1 <  . . . . . .  ~ - ~ )  

+ Z ( b ~ + ~ + : + l . . + , l q : + ~ + , _ , - a ~ + , + . + ~ . . + 2 p : + ~ + , , _ ~ )  

h+r+l 

s ~ h  

From (13), we obtain 

(14) 

Vh-i + ak+h- I  

r = O  

= (bj,+n "q~+~+j,_~ - a~+h "P~'+k+h-1)' E ( e - Y ' ] e l  . . . . .  ¢h- l )  
oo 

+ ~-~(bk+~+,+l" ~+llq,+k+a-, - a~+s+,+,"  ,+~p~+k+,.-,)" E ( e - E : : ~ ' ~ '  ~'le, . . . . .  (A-I) 
r=O 

= br+h "q,+~,+h-1 " E(e-U~{C . . . . .  % - i )  + E ( p , + k + , , - l ' ,  - ~  " I:~,l(l . . . . .  ¢h-l)  

by not ing (14). The  proof is completed,  o 

A p p e n d i x  2: A n  A p p r o x i m a t i o n  M e t h o d  to  t h e  D i s t r i b u t i o n  U n d e r  L i n e a r  P r o c e s s  

X ~  

where ~ 

0,= 

If {y,} follow (5) and e, ~ i id  N(O,  a2), then e -v' I/~ has the  form 

¢xz 

Z Oj e ~j' 
j=o 

N(0 ,  aT), with 

- -  - ~ t  n 
e ~i=l ~*,k..+[ ~.]" = 0 

~-.,n c(i) CX r i o  "2 ~ ' J -  1 ( X - ' l  i + 1  
~ , = l  , -1 ,k ,+1"  "PL~ ~ = o ~ = o ~ )  ~ 7,1 , >- 

1 

A, = - ~ - ~  ~ , , j  > o. 
s = 0  

Although  X looks to have a simple form in te rms  of (, the  exact  dis t r ibut ion of X is very difficult to 

compute .  Nevertheless,  its first four lnoments  can be relatively easily derived by using Proposit ion 

3 given below. 
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P r o p o s i t i o n  3 Let X - ~?°oOieX,' where ~ ~ N(0,~: ' ) .  Then 2= 

E ( X )  = ~ ~ 
)=0  

co oo 

E(.¥ ~) : ~ o~°'~; + 2 ~ o,o,~o~,+~,~ ', 
j=O j < l  

j : O  j # l  I < l < m  

j=o  i# t  i<~ 

+ ~2( ~ + Z; + ~ )~°,o,,, *~°~'+*'+*'~ 
j < l < m  /<J<m I < m < j  

+ 24 ~ OjO~O,,~O,,e{ "~('~,+'~'+'~+'~)~, 
j< l<ro<n  

provided they ezist. Q 

P r o o f  

The  proof is simply based on the expansions 

i< j  

(~- 'a  )a= Z a Z  + 3 ~-~a2, a2 + ,. , ~ aiaiak, 
i~j i<j<k 

i # j  i<j  i < j < k  J < , < k  j < k < i  

+ 24 y ~  (Liclj f2k C~l , 
i < j < k < l  

and the normali ty  assumpt ion  on ¢. t3 

By employing Proposi t ion 3 to calculate the  first four momen t s  of e -u '  ~ ,  we can approximate  

its distr ibution by a curve of Pe&rson family or normal  power me thod .  We can then use the  

approximated  dis t r ibut ion to compute  its percentiles. 
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A p p e n d i x  3: A n  U p p e r  B o u n d  for  t h e  V a r i a n c e  o f  I n n o v a t i o n  U n d e r  A R C H  M o d e l  

First ,  E(e,)  = EE(qi~/,t_~) = O, by ( l l ) (b ) .  Thus, 

Vu,.(,,) = E(q)= EE(qIV,,_~)= ~,, + ~,~l(,-,I, by (ll)(,-). 

Since for X ~ N(O,a'~),EIX[ = 2 cr , we have 

'2 61E[¢,-~, by the Jensen's  inequMity _< + 

2 / 2 / 
- ~ V  6° /~t the argument  < 6 0 + ~ , ~  V + Ele,_zl, hy same 

<_ ""<_ ~ 60+ 6 o + ' - . + 6 ,  + b l E l q _ ~ l ,  ingenera l .  

Assuming that  the series starts  indefinitely far in the past with finite first absolute moment ,  the 

limit of the upper hound on the right harm side as k goes to infinity tends to L where 

L =  + . . . .  

Hence L = ~W;', v~o + ~ L ,  which implies L = (~ + ~/~5~ + "2~r~o)/~r. Thus 

V a r ( q )  < ~0 + ~ ( ~  + V ~ +  :~r&,)/r.. 

A p p e n d i x  4: Proofs 

Proof  of  Proposit ion 1 

By definition, 

and 

c~ n r + l  

i=l ~'=0 s=, r:O i:I s:l i~l 

s i  '>=  E = E ( E  Ey,  I- 
i=I r=O s=2 r:O i = 1  s = 2  I=l 

Then we have the desired results for l/u and 1~ by utilizing the" independence between cash flows 

and interest rates, the definition of cash flow ,~(h) in (1) a~M the probability function of J, c? * i , r + l  
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P r o o f  o f  T h e o r e m  1 

The Yt expressing as (6) implies 

T T T s - I  T T T - s  

= Z %  + Z Z %  + 
s=~, smI  a = I  i=O a = I  a = |  i=O 

and 
T T T s - I  T T - I  T T - s  

s = 2  s = 2  s = 2 i = 0  ~=2 i = l  s = 2  i=o  

Therefore,  

T T T - I  I 

# = 1  s = l  I=O i=O 

and 
T T T - I  T - 2  I 

s=2 J=2 I=1 I=0 i=0 

by using the iid property of e's ~nd re-indexing. [] 

P r o o f  o f  L e m m a  1 

Let t = ( t l , . . . , t T ) ' .  Then the moment  generating function o f t  = (eL, . . . ,~T) '  is 

T T - i  

M~(t) = EIexv(}2t,~,)] = E[~xp!~ t,~,)E(e . . . .  I¢~-,)1 
i = l  i = l  

T - I  

= e6°t$/=E[exp(i~=ltiei .exp(~t~[er-,I)], by ( 1 1 ) ( b ) a n d  (c) 

T - I  

< e'°'g/={E[e=p(2 ~,  t,e,)lI'/~{E[exp(e,t~ler_,l)]} '/'~, by the Halder inequality. 
i = l  

Since for all b > 0 and X ~ N(0, a2), 

E(e 'tx~) = E[~-"xl(X < 0)1 + E[e"XZ(X > 0)],  where  Z is ~n indicator function 

<_ E(e -ix) + E(e ~x) = 2e~=O~l =. 

T h u s ~  

E[e=p( ,~ , t~ l ,~-_ , l ) ]  
1 

= E E [ ~ = p ( 6 , t ~ . l ¢ r - , I ) l ¢ ~ . _ = ]  <_ E[2exP{-~6~,t~(,~o + 6, f~'-=l)}] 
1 3 4  

= 2e ' ° '? ' ; /2E lexp( : ,S ,  t r ]eT_=l) l  < C l < oc.),~ 

by a recursive argument,  where 

2 r_ le  x ,260 x L, (~l t r )  (~') 
C1 = P/-~T 2_, 2(2,-,) 

"1  i = 2  

~-~- 2(2~'-,) ] 

(15) 
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Hence~ 

M,_(t) 
T T-  l 

= ~': l , ' :rpt~. t , ( , )]  < ('~'%'*"~/~t~'.'[':,'r,(~ ~ ~,<,)]}'<' 
i= l  i=l 

T - I  

= C2{k:[c,rp(2 E tdi)]} '/~, say 
i=I 

<_ C3 < cx~, for t (E  R , i =  1 . . . , T ,  

by a r e c n r s i v ~  a r g u l l l e l l t ,  w h e r e  

C'3 = C~ 0- ' ' - (  . . . .  >. ezp[2r-2t~(~o + b~<o)l.a 

To prove Theorem 2, we will require the following lemma. 

L e m m a  2 / f  the A R C H  7)lodcl (11) (b) (rod (c) governs th( innovation process {¢,), then for a 

fi~'ed positive integer I '  and as (~l ---' 0 wc h(Lv~ theft 

(i) the jo int  densi ty  o f (  = ( q , . . . , ~ r ) '  is 

f (¢l  . . . . .  ¢w ) 

1 "r "2 ~ . ., 

(iQ the jo in t  densit¢l of  ( ( ,~, . . . , (T)  given q is 

f r o '  . . . . .  ~qq  ) 
] r ~.( 

t/~hcr~ 

T - I  T - I  1 ! 

i=k i ~ k  

~,,,(,> = . ;[%,,(,_)] - ~ ~ q , . + l  + ~ ~ , : ,  ~. -- o, ~ )  
I=k= ~t,[i izk 

P r o o f  o f  L e m m a  2 

T~ylor's series expansion is used to derive the results. From (lie couditionM densities of (11) (b) 

and (c) we have 

~ - ' 1 7 1 - ~  3 L' ff Y(q . . . . .  ~ r ) =  (2rr)-T/2[x't(~" + 6a]q l ) ' - ' / " ' c ' rP( - -2  ~ 6o + 611,, 11 ). (17) 
i=0 z= 

When 6, = O, then f ( (  . . . . . .  (T) = ¢(f)  where 0(£) = ('27r6,,)-'/"(.rP[ - ~ - ,  (~/(26o)]. Fro,,, (17), 

T l 1 
In f = - - ~  111(27r) -- ~ E ]n(~°  ~L (~11(,I) __ 

G ~ l l q - , [ '  + 
i=O 

226 



Differentiating with respect to 61 gives 

1 d f  _ 1 ~  Iq' + 1~-~ e~,,q_l,  

fdS,  2 ,=o '~o + 6*l',------'--t 2,=~ (5,, + 5,1',-~IY" 

Differentiating again on (18) gives 

_(__1 df ~ + i (d~f  ~ _- 1 T-,X_, e~ 
- f2 'dS~ ) f ' d6~ '  2 ~ (5o + 6,1q[) ~ 

Thus, 

d.t" T q l~ , -d  I~,I 

dS~ = = (50 + 5 , [q- , l )  ;~ ,= 5o + 6, 

Also, 

and 

( i s )  

44_, x-" 
(19) 

,,---~l (~0 Ar t~ l l ' , - l [ )  3 '  

o i=o 

(20) 

d2f 1 df ~ l T-, e~ T e2~ , (21) 

T - I  1 T - I  

From Taylor's formula, as 61 ~ 0, 

¢(~-) . . . . .  6(~-)%0(~-) ~ + O(53), f(~, . . . . .  ~T) = ¢(c_) + - -~ -~ ,0~¢) .  6: + 2! • 5, 

so result (i) is proved. 

For f ( e2 , . . . ,  eT[q) in (ii), the derivation is essentially the same as f(et . . . .  , ~r) with replacing 

[-[r=~, and Z~=I by [I~-l' and ~T=2 respectively. The proof of Lemma 2 is completed. 

p r o o f  o f  T h e o r e m  2 

The proof of Theorem 2 is organized as follows. The first step is to write down the Taylor's 

expansion for f(£) with an explicit form for the remainder. The second step is to derive the linear 

and quadratic order expressions (with respect to 51) for' ~}r). The boundedness of the remainder 

term is established in the last step. 

For the first step, we differentiate (19) to give 

~3 ( ~ ) 3  3 d f  d~f + l dff = _ T-t~ 'e"~ + 3 ~ e'~'ei-l'3 
D dS, d6~ ] d - ~  ,=o (60 + 6, MI) z ,= (60 + ~,l¢,-,I) ' '  
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So, by subst i tut ing dfld~l and d'f/d6~ from (50) and (21), we have 

db~ d3f ida ,  d + 5 ? 3  d I d~f 2 ,  d/ ,3 17,3 _ - - f i t - ~ )  +fT3 = fe,(¢_)'(~ ~ + T,T~+T3)  

where 

~-' I~,lq+, ~ - '  1<,1 
7', = ~(6o+'hl<,l)',:o ~7o+~,1 ' ,1 '  

T - 1  T - I  1 q ffq+, 
7', = ~ (6o+,,1~,1)' ,~  ('<>+'~,1',1) ~' 

¢5 3 ' T - I  T-, 1,1',+, I~,? 
Tz = 3 ~  ('%+~'1~'1)',=o ,--~o ('% + 611¢'1) " ~ ' =  

By Taylor's formula with Lagrange form of the remainder, 

where 

R3(¢~1,~_)  = ~ 2 .  d3f ,0 < ~ < I) 1. 

The first step is done. 

For the second step, by using (15) 

T T T 

ill ''> = E{~xp(-  y~  y,)l = ~'~p(- Y~ % ) E [ ~ p ( y ~  ~,<, )l, 

where rq = -~-.,=0 - , ,  < s < 7'. Let e, = q / ~ , 0  < ~ < T; 7:: = . , /~rr , ,1  _< s < T; 

¢(~_) = (27r60) - r / 2  exp [ -  ET1  ~2/(2~,,)1 , ¢0(e__) = (2rr)-T/='cxp( - ~ T  l e~/2), and * is the distribu- 

tion function of a s tandard normal variate, ttence 
T 

s = l  

/ ~ " '7 fl / " 

/ ~L ~fl " /  ~L ~fl = exp ~r:e,)¢o(e dci + ~ exp ~r;c,)TLote ) 4bo(e_ de, 
I : l  i : l  s : l  I : I  

~ f < ~ , (  - , , , )  ,~; ,,=<1-I d,, (2~) + ezp( r :e ,)T, , t , (£)  o o ( £ ) H  de, + 0 J 
= i = l  -- i = 1  

w h e r e  

T - I  T - I  

1 1 r-I  1 1 r-1 
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By viewing e, ~ iidN(O, 1), the first integral of (22 ) i s  [Ir=~ M + ( r : )  = ezp( t~r ,=l  ~r2,) = 

exp(~ ~r~l  (2), by noting (,) = ~'I=0/3,, i.e. r ,  = - @ _ , ,  and after re-indexing. The second 

integral (linear order term with respect to ,~t) is 

T - I  T T - I  T 

- s = l  i = 0  a : l  

For i =  O, 

T ~ T 
• = = ~ ~;/. 

For i = 1 , . . . , T ,  

T T 

El~,p(~ ~;e , ) .  ie,I} -- E(ie, l '  e < " ) .  Ele~.p(y~ ~..'~,)} 

s~ti 

Q r 6o r 
= e(':)'/'q(rr;) ezp(-~ ~r r ] )  = ezp( 7 ~=lTr~,). q(v~o~r,), 

*=1 
s ; t i  

since for X ~ N(0,  1), E([Xie "x) = e~/'q(a) where q(a) = 7g;e + - 

such that  q(v~o~ro) = 1~ol/4go. Then 

T ~0 T 

E[ezp( E rr:eo ). [e,]] = e x p ( -  ~ rr,=) • q( v~0rq ), i = 0, 1 . . . .  , r .  
s = t  2 s = l  

Similar technique is used to find that  

T 

E[exp(Erc;e,) .  [eile~+,l = exp( ~° ~-~ rr=,) . q ( v ~ o r i ) .  (l + 50rr:+,), i = 0, 1 . . . . .  T - 1, 

by using, for X ~ N(0,  1), E(X2e "x) = e"~/2(1 + a2). Hence the second integraJ becomes 

£ T T - t  

V uO s =  1 i = 0  

~O T T - I  

bo a" r-~ 
= ,/g~e~P( 7 ,~ , ){-~,  + ~ q ( v ~ ; ~ , )  ,+11 

-- ~ /00  i = l  

T - 2  

= exp(~  (?)-[[eo{(~-_t + V~o E ( / q ( ~ o ( t + , ) ]  
I=0  I=0 

I=0  

by noting +'t'+ = -@_, ,q(a)  = q(-a),  and re-indexing. The linear order term for V0 (r) is proved. 

For the quadratic order term (the third integral of (22)) tlle derivations are more tedious but  the 
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ideas are the same as for the linear order term. Tha t  proof is ondtted.  The third integral can be 

proved to be equal to cxp(~ ErG ' (}). C~r)(to). The second step is done. 

For the  last  ( remainder)  term in (22), by using calculus, it. is easy to show tha t  there exist 

cons tan t s  a~,a2 such tha t  

I,,l 
< a2, for ( ,  E R,0  < a~,aa < oo. 

((50 + & , l )  - 

{q[ 
_< al ,  and,  

(~o + ~t(,I): 

Therefore,  

1Ta  3 T 7"3 _< 8 I +~T1 2+  
7' 1 2 T 

i = l  i = l  i=1 

T 

i = l  

We claim tha t  

g : =  e=p( rr,+,) . 3 xl  = d~Sl 1+,=~ ,=l  

Because 

T / r 1T a ~ 7 ; H  IR I<  exP(ETr,( , ) f ( ( t_)"  - ~ ; +  TIT2+ d ,q ,  
~ = 1  ' i = 1  

and note  (23), it suffices to prove tha t  for i = 1 , . . . ,  T and all r > 0, 

7' T T 

f I+,V. exp( ~ =,(o )f+(d 1-[ e(, - -  E[Iql" - ,,=p(~~'~ ,~,~, )] < ~ .  
s = l  i = 1  s = l  

It is obviously true since 

T 

E[I+,I r.ezp(~.=,,,)] <- 
s=t 

< 

Result (i) follows. 

The  proof for V(r-~) follows the same steps as for Iv~ r),  by noting tha t  from (16) 

T T T - I  T 

s = 2  s : 2  i : 1  s = 2  

and using L e m m a  2(ii). [] 

(23) 

T 

{Eil, : ,12~}'/~'{E[exp(2ETr,(+)]} '/~, by the l ' [6 Ider  inequahty 

oo, by Lem,na 1. 
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