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ABSTRACT OF THE ABSTRACT

In Mr. Gary G. Venter's paper on Crecdibility in Foundations Of Casualty
Actuarial Sclence he suggeted that "estimating the variance of the estimated
[least squares credibility]l Z would help provide an understanding of the
accuracy of the calculation...” A usual estimator for the complement of the
least squares credibility is ﬁif'

My paper studies in some detail his Example 5.2 (pp. 433-434), which involves

9 risks each subject to its own Gamma distribution:

(1) Bivariate and trivariate numerical generalized convolutions are used to

obtain distributions of EgT for n=6,12 and 18, given the distributicns te

which each risk is subject;

(2) Operational bootstrapping is used to generate a bootstrap distribution of

S_ for n=18, given Mr. Venter's 18 years of random-number-generated

n'T

experience for each of the 9 risks;

(3) A special algorithm is described (sketched) for using bivariate numerical
generallzed convolutions to sample and resample from a Gamma distribution, the
sampling and resampling is handled implicitly and without random numbers. An
n-1

n
blas-correction factor Is suggested (and confirmed by Mr. Charles S. Fuhrer,

FSA, of Washinton National) for use where the bootstrapping is for variance.

KEYWORDS: Least squares credibility, operational bootstrapping,
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bivariate and trivariate numerical genzralized
convolutions, sampling and resampling ‘vithout random
numbers, efficiency of the bootstrap.
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ABSTRACT

We look at least squares credibility from three viewpoints:

(1) Distributions of The Least Squares CUredibility Given A Distribution For
Each Risk. Glven that each of N risks is subject each year for n years to
its own known (discretized) distribution use generalized bivariate numerical
convolutions to find the bivariate distribution of

( Xg_ , Sq. } for the gth risk (g=1,2,...,N); use generalized trivariate

numerical convolutions to find the trivariate distribution of
N N
(s...x, T 0=0¥s w.,x ., VY& -x en),
g . qg. ..
g=1 g=1

restrict attention to the bivariate marginal distribution of

(s ., T, ), and transform this bivarjate distribution into the univariate

S S

T .; and calculate the expected values E[n_T.'

distribution of ]. It may

be noteworthy that, since S and T are not necessarily independent random

s ElS_ )

‘] s not necessarily equal to ET T

variables, E[n-T.

(2) Operational Bootstrapping For Least Squares Credibility. Given that N
risks (each subject to its own unknown distributions) have been observed each

year for n years use generalized numerical convelutions to generate for each
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» [ 2
g (g=1,2,...,N), the bivariate distribution of ( Xg‘ y Sg_ ), i.e. resample

means and resample variances from resamples of size n taken from the observed
» -
samples (experience) of size n, form the distribution of (S , X , 0 ), use

generalized numerical convolutions to generate the trivariate distribution of
N R
- - ~ - L
(s, 0, T d=CFs a,x , V& X )¥0)),
.. .. qn .. l q- e

-

g=1 g=1

focus on the marginal bivariate distribution of

and transform this distribution into the univariate distribution of

-

S

+1. This procedure is
nT |

from which we can calculate the expected value E[

referred to as operational bootstrapping for least squares credibllity.
»
s, . &2
Comparing E[———] from (2) with
nT s"4n-t

shows how well the operational

bootstrapping for least squares worked with the glven observed data to

estimate the complement (1-Z) of the least squares credibility,
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(3) Efficiency of operational bootstrapping for the least squares
credibility. Given that each of N risks is subject each year for n years to

its own known distribution we use generalized numerical convolutions to

generate for each g (g=1,2,...,N) the distribution of

where each of these pairs conslsts of a mean and varlance of a possible
resample of size n taken from a possible sample of size n taken from the
known distribution for Risk g. This step requires a rather complicated
algorithm to handle (implicity and without random numbers) the required
sampling and resampling. The rest of the procedure is identical to (2)
above, having replaced

L

* - -
(X , S ) with ( X , S ).
g 9 g 9°

The statistical efficlency of operational bootstrapping for the least squares

credibility can be determined by comparing

"
S.. &2
E{—=z] from (3) with ————.
nT | s +n-t
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Section 1. BACKGROUND MATERIAL

Our baslc source material comes from the section on Least Squares Credibility
in the chapter on Credibllity in the book The Foundations of Casualty
Actuarial Science, which was published by the Casualty Actuarial Society in
1990. My sincere appreciation to Gary Venter and the Casualty Actuarial
Society for permission to reproduce (with minor changes) some of his material

in this sectlion of my paper.

It is supposed that the loss for N risks are observed for a period of n years.

The pure premium (losses divided by exposures) of the gth risk in year u is
denoted as Xqu. The gth risk is assumed to be subject to some probability
distribution fX . The pure premium, say qu, for a future time period

9

h

(referenced as time 0) iIs to be estimated for the gt risk, using the formula

qu =2-xq_+(1—2)-x__; where Xg_ is the average observed pure premium for risk
g over the n years, X is the grand average of all the risks for those n
years, and Z is a least squares credibility factor chosen so as to minimize

E[X -{2-X +(1-Z2)-X_}]
g0 - ..

In formulas,

X = Z X /n, and
. qu

u

X, .= X N
g
It turns out that
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s0 12 = —=—,
(s"+n:t%)
where s° is the average variance of an individual risk over time, and tz is

the variance across the risks of the jndividual risk means.

One approach is to estimate s® and t° by first calculating the statistics

s = Z (X -X )%/(n-1)
g gu g°*

u

s.. =] s,. /N and
9
T, =} (xq.—xu)z/(n—x).

9
Then, since

S.. is an unbiased estimator of s°,

n'T _ is an unbiased estimator of sz+n-t2,

T, -S, . /n is an unbiased estlmator of t%, and

&2
12 =-5—
(s“+n-t%)

s.-
we could use o7 @S an estimator for

2
12 = =
Is“+n-t%)
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I have embellished Mr. Venter's symbols Sq. S and T to be Sq., S, and T ,

respectively.
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Section 2. INTRODUCTION

One objective of this paper 1s to study a particular hypothetical portfolio of

S

risks to determine how well 57%;_ can be expected to do as an estimator of

1-2Z. The hypothetical portfollio of risks will be that described in Example

5.2 on pages 433-434 of Venter (1990); namely, nine risks each subject to 1its

own Gamma distribution:

L9575
. 1999
.5083

.1395]1.0911]1.0447
.0153| .2030} .0406
L9320 .4737| .2408
.5797| .3880

Risk b r b'r b r
1 .6159(1.0476] .6452| .3974
2 .8001[0.9063| .7251| .5802
3 .6098|0.9654] .5887| .3590
4 .2391/0.9219} .2204) .0527
5 .520611.0184} .5302| .2760
6 .6768(1.0937| .7402| .5010
7 1

8 1

9 9

From thls table we can calculate s°=.3880 and t°=.0747 (dividing by N-1=8),

and find that

s +n-t2

.464
.302
.224

Although I could have used approximate integration to obtain a representation

of the Gamma distribution for each of the 9 risks, I used the package @RISK
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from Palisades to generate 4096 outcomes from each of the 9 Gamma
distributions. In order to produce correct means and variances for the

representations of each of the Gamma distributions, I adjusted the outcomes

by

(a) multiplying by the square root of the ratio of the

population variance to the variance of the sample, and

(b) adding the excess of the population mean over the mean

of the adjusted sample.

Replacing any resulting negative amounts with zero did not materlally affect

the resulting distributions.
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Section 3. DISTRIBUTION OF LEAST SQUARES CREDIBILITY

In this section we are assuming that we know the differing distributions to
which each of N risks are subject, and we are not using random-number-

generated experience like that generated in Venter (1990).

A method for performing generalizec bivariate numerical convolutions is
described in ref [2] and is avallable in the computer package COocoNUT™ from
MathWare. The procedure using generalized numerical convolutions to
generate the distribution of the least squares credibilitles is as follows:

Let f denote what 1s, in effect, the discretized representation of the

X

9
distribution for Risk g. Transform each of these univariate distributions
into the corresponding blvariate distribution fx %2 replacing each x 1in fx
g'"g ° g
by the number pair ( xq . x: ). Convolute together n bivariate

distributions
£y o fx e oKy
gl gc gn

where each f (u=1,2,...,n) is inderendently and identically distributed as

X
gu

fx , to obtain the bivariate distribution of
9

n

(X, .S )=0(x , Jx-X 12 ta-1) ).
0 S, 5 X

u=1
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Thls can be accomplished by performing n-1 generalized convolutions, to

obtain recursively the bivariate distributions of
1
( ngu/l ,0)

u=l
2 2 2
2
( nguxz , Z (Xqu ZXgu/a) /7(2-1) )
u=1 u=1 u=1

3

3 3
2
( ngu/a ) Z(Xgu ngu/a) 7¢(3-1) )
u=1 u=1 u=1

( ng“/n . Z(xgu-zxqu/n) /e ) = (X LS )
u=1 u=1

u=1

Thus we obtain the distribution of ( Xq. , Sq_ ) for each g=1,2,...,N.

For each g=1,2,...,N ve transform the distributlion of

(X , Sq ) into the distribution of
a- .

Next we obtain the distribution of
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N N

N N
( Is,.m, [x m, T& =[x m¥%@1))
g=1

g=1 g=1 g=1

by transforming the bivariate distribution of ( Xl., 51- ) into

(sl',x vo)u

1

recursively performing N-1 trivariate generalized numerical convolutions to

obtain the trivariate distributions of

2 2 2 2
2
( XSG-/z , ng./z , Z(Xq.-zxg'/z) s(2-1) )

g=1 g=1 g=1 g=1

N N N N
2
( ZSq./N , ng'/n .Z(XgA-ZXg./N) sw-0 ) = (S, X ,T )

g=1 g=1 g=1 g=1

transforming this trivariate distribution into the bivariate distribution of

(s, ,T..)

and this distribution Into the univariate distribution of

ii :
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Xg‘ and Sq_ are not in general Independent, so we cannot expect S and T |

s ElS, ]

to be independent; thus, E[n~T ‘] is not in general equal to m—r

The algorithm for the generalized trivariate numerical convelutions is a
natural extension of the algorithm described in Bailey (1993) for generalized
bivariate numerical convolutions. It is available in the computer package

COCONUT™ from MathWare.
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cum n= n=12 n=18
.000001| .05 .05 .05
.00001;, .06 .07 .06

.0001‘ .09 .08 .07

.001| .11 .10 .09

.01y .18 .13 .11

L0251 .19 .15 .12

.05 .23 .17 .13

.1 25 .20 15

.2 31 .23 18

3] .37 .25 19

4 44 .28 21

.5 50 .31 23

6] .55 .35 .24

.7 66 .39 28

.8 .73 .45 31

.91 .96 .53 36

.9511.09 .57 41

975(1.34 .62 45

.9911.34 .13 47
.995]1.49 77 .48
,9999(2.16 [1.04 .68
.99999(2.20 (1.09 .75
.999999(3.26 [1.12 .82
(1) |EIS/(n-T)] .555( .340 .246
Var{S/(n-T)]| .079| .017 .007
(2)|E[S)/n-E[T] .464( .302 .224
(1)/(2) 1.207(1.126 (1.098

s--
n'T |

The last row in this table gives the degree of bilas inherent in using as

an estimator for 1-2, at least for the hypothesized portfolio. The row

2

identifled with a (2) is also equal to 3
s +n-t
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Section 4. OPERATIONAL BOOTSTRAPPING FOR LEAST SQUARES

CREDIBILITY

The procedure using generalized numerical convolutions to generate the
bootstrap distribution of the least squares credibilities is similar to that
described above in the Section Distributlons of Least Squares Credibllity,

except that for each g=1,2,...,N we let f be the empirical distribution of

X

]
losses implied by random-number-generated experience of Risk g with n=18.

Portions of the following random-number-generated "experience” not available

on page 433 in Venter (1990} were obtained directly from Gary Venter.
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3 Random-Number-Generated Trials of 6 Years

Combined Into One Trial of 18 Years

Risk
Year #1 #2 #3 #4 #5 #6 #7 #8 #9
1 430| .247} .661} .182| .311| .301| .219| .002| .796
2 375]1.587] .237| .351| .664| .253|1.186] .058] .260
3 34111.939| 063} .011(1.002| .044| .431} .235| .932
4 1751 .712| .250| .022| .038] .109]/1.405} .018| .857
S 0tl6! .Q054; .602| .019] .370(2.105| .241] .713| .129
6 466| .261| .700] .252|2.3502| .891]| .804) .208| .349
7 215| .643| .121} .156] .141[1.255(1.993| .182] .089
8 111| .405( .723| .008} .486(1.900| .286| .077| .484
9 287 .234| .660] .410| .031| .51712.261| .226| .432
10 824(1.188(1.493| .226{1.109| .243| .897| .001| .S46
11 34012.030] .220| .292|1.002)1.229] .955} .600| .185
12 237 .726] .066| .555| .6851.215| .427| .286(1.413
13 884} .190( .276| .169| .587] .819|1.515] .145| .254
14 878( .135| .0S1| .153| .245] .055| .230( .111{ .341
15 159 .010} .539{ .024|2.150] .049{2.099| .111| .296
16 054 .092| .554] .075] .293] .313] .242| .16S| .155
17 4701 .619| .039) .209] .478] .908y2.261| .47¢6| .031
18 147| .027| .152f .322| .359| .872|2.384( .188| .214
‘- 578 617| .412| .191| .692] .727[1.102{ .211] .431
; .309| .401} .129| .023( .431| .375 618 .037| .122
T, =.07
S = .272
S-o
= .213 where n=18
nT, |
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nT |
cum n=18
.000001}.03
.00001 .04
.0001 .05
001 06
01 .08
.025 09
.05 10
.1 11
.2 13
.3 .14
.4 .15
.5 17
.6 .18
.7 .19
.8 .22
.9 .24
.95 27
. 975 30
99 34
. 999 .40
. 9999 .45
.99999 |.50
.999999( .55
mean . 173
var .003

Thus, usling the random-number-generated experience for n=18 from ref [1] and

Mr. Venter directly, operational bootstrapping ylelds an expected least
-
S--

squares credibility complement E[————) of .173. An adjustment described
18-T

after Section 5 will suggest that we multiply the .173 by %, producing .183;

2
whereas — > = .224.

s +n-t
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Section 5. A METHOD TO TEST 1HE STATISTICAL EFFICIENCY OF THE
(OPERATIONAL) BOOTSTRAP FOR THE LEAST SQUARES

CREDIBILITY.

Even having a good algorithm to do generalized numerical convolutions, we
still need an algorithm to handle implicitly and without random numbers the
required sampling and resampling. 1 will now sketch how such an algorithm

was (and can be) constructed.

Let fx denote what is, 1n effect, the discretized representation of the
9

distribution to which Risk g (g=1,2,...,N) 1is subject. Let fx be
g

represented in element notation as

x1 pl
[ ) ’]J=1.2.--..J
9

where Jq is the number of lines in fX
]

Let n be the number of (possiblly duplicate) items ultimately to be included

in each of the samples and the resamples.

The calculational process will possess a Markov property, if we structure it

as follows.
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For any fixed Risk g process each of the x1J in order by (j=l,2,....Jq).
referring to value of j as a "stage" in the process. At stage j we shall

use

JX .y ,v,v/

to represent the 4-dimensional probability distribution of

- L]

-
(X ,Y ,V,V’) vhere

t 2 ]
X 1s the resample mean where the resamgle is of size V/,

-
Y is the resample variance where the resample of of size V',
V is the number of items included in the sample, and

V’ 1s the number of items included in the resample,

If \A and A (with v1<=v2<=n) are two values of V and if v; and v; (with
v;<=v;<=n) are two values of V’/, then we can speak of
the transition from the Jjoint state (v1,v;) at stage j to the joint state

(vz,v;) at stage J+1 where

VoY, is the number of duplicate items being added to the

sample between stage j and stage j+1, and

v;-v; is the number of duplicate items being added to the

resample between stage J and stage j+l.

The calculational process involves using the 4-dimensional distribution
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£ ==

5¥x v 'y yr» Which we might relabel as

j(resample mean, resample variance} o
Y s
1

and

Bt
the amount XIJ*l and probability plJH on the j+1  line of fxg

in a generalized numerical convolution to obtain the bivariate distribution

¥ ’

f"
X LY vV

Actually, since the state (vz,v;) at stage J+1 can be arrived at from various

states [vl,v;) at stage J, the complete distribution

LRl 2e
¥y Ly ,vz,v;

is obtained by generating and merging together each of the resulting relevant

partial bivariate distributions.

We eventually will have generated
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where V2 runs from 1 to n;
and we merge such distributions together to obtain the 3-dimensional marginal

distribution

Computer Note: Although X and Y are real random variables, V2 and V; take on

only the nonnegative positive integers from 0 to n. Rather than record the

distributions as 4-dimersional distributions we can (and do)

f L3 ] »
VI S SR 4
record for each jfoint state (vz,v;) the part of the 2-~dimensional marginal

distribution w® ** which is associated with that joint state. The

f
X ,Y
Jq
number of such joint states does not exceed n-(n+1)/2, so this procedure is

practical for n less than (say) 50. A separate disk file is created for the

distribution associated with each joint state.

Here are some hints on how the algorithm was (and can be) constructed.
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te o]
[
=]
s
[

Consider the first line of the distribution fx ,hamely, )(11 p11' We wish
]

to enumerate the possible contributicns of this line to the resample means
and resample variances, where both samples and resamples willl eventually be

of size n.

The contribution of this line to the mean of a resample that will be adding
exactly v; duplicates of such items will be simply v;-xll. And the
probability that both the sample will be adding exactly v, duplicates of such

items and the resample will include exactly v; of such items can be

calculated as

b (n;p1 )b, (n;v_sn)
v 1 v 2
2 2

where b indicates a binomial distribution defined by the two parameters inside

the parentheses.

o]
e
)
=
IS

Suppose we are about to process line j of fx , namely,
g

(le le). We wish to enumerate the possible contributions of this line to

the resample means and resample variances. The probability that both the



sample will be adding exactly vz—v1 of <such duplicate items and the resample

will include exactly v;—v; of such duplicate items can be calculated as

b"a"’l (n-w1 ;p]J/il-pl l-—plz—' *.-pi _\—1) )

bv'a-v; (n-v;; (vz-vllf(n-vl) )

where

v,y is is number of duplicates of such items being added

to the sample,

n=v, is the number of duplicates of such items which could

be added to the sample,

plj/n-pll-pla-".-plj_i) is a conditional probability

for the Jth line of fX given that the previous

9

J-1 lines of fx have already been completely
9

processed,

’

v2-v; is the number of duplicates of such items being added

to the resample,

mw; is the number of duplicates of such iesm which could

added to the resample,
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and b is as defined above.

==}
-
=]
e+
I

When we process the last line of fx , the number of xt 's about to be

g g

included in the resample must be ejual to n-v’ since the resample must
finally contain exactly n items. Thus, in thls situation the probability

associated with that event is 1.

[
(=
e
&

If at any stage in the calculational process the sample already contains n
items, then the item currently being considered cannot contribute to the

resample and the related probabllity would be zero.

o=
e
=4
[

At any stage in the calculational process an item cannot contribute to the

resample if none of such items is being included in the sample.

==
o
o]
P
3
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As you begin to process a new line of fx , some computer time can be saved by

1]

letting the computer determine some of the bivarlate distributions which

would produce zero or negligible total probabllity at the next stage.
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Continuing The Numerical Example

Even for n as low as 18 the voluwne of calculations required, using the
algorithm described in Sectlon 5 to -determine the bivarliate distribution of (
Xg, , ng )} for even one value of g is unusually high. Calculating the
distributions which yilelded the statistics in this Section were performed on
a Hewlitt Packard 720 computer at Vashington National using a C-language
equivalent of the above-sketched algorithm in the command-and-convolute
package COCONUT™ available from MathWare. The run for one Risk took a full

e T
week to complete, even on such a fast computer. E[Xr] and Var[Sl.] turned

out to be .6452 and .3749, respectively. The .6452 agrees exactly with E[Xd

"%
Var[Sl ]
and the .3749 compares with Var[Sll = .3974. So, —75?[5_1]_ = .944, indicating
»e
that Var[Sl'] is understating Var(S,.]
*N
Var[Si_]
Assume for the moment that Vé—;-[—s-r]— for each 1=2,3,...,9 was also .944. Then
e
E[S ] 2
would could also conclude that ————5— will be .944 times > >
n-E[T ] s“n-t

-
var(s, ]

.

To get an ldea of how stable the ratio
var[S |

is likely to be as we move

from distribution to distribution I calculated such ratios on my Gateway
486/33 (for various positive 1integer values of n) for the unit normal

distribution on the one hand and the xlg distribution on the other hand, with



»-E
var[s ]
the following results: the ratio Varls T for each of these distributions

turned out to be almost exactly Eil, where n is the number of items in each of

the samples and resamples. Note that %% is approximately equal to .944,

which is the value we obtained above for a Gamma distribution with mean .6452

and varlance .3974 and n=18.

In the next section Mr. Charles S. Fuhrer, FSA, of Washington National

L2
var{sS }

. n-1
Insurance Company shows that the ratic VEFT§TTT is indeed always - where

the bootstrap distribution ls being used to estimate the variance.

-

S
Thus, E[————] = .173 (calculated by bootstrapping in Section 4) should be
18T

divided by %%, producing .183, to try to obtain an unbiased estimate of

2

_5
2 2
s +n-t

Of course, the .173 {and hence the .183) is based on Mr. Venter’'s

particular 3 Random-Number-Generated Trials of 6 Years Combined Into One Trial

fo 18 Years,

shown in a table in Section 4. Further runs could be performed to calculate
- L 2]
the distribution of ( Xq.,Sq.) for g=2,3,...,9; and, we could then generate

the trivariate distributions described in Section 3, obtain a distribution of
.

S--

—% nhd draw further conclusions about any further bias inherent in using

n-T

Sv-

T as an estlmator for the complement of the least squares credibility.
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Appendix. DERIVATION OF THE FACTOR "—;—1

(The symbols in this Appendix differ from the symbols used in the body of the

paper. )
Fix x . x, .... X
1 2 n
Let Y1' Yz’ . Y'n be distributed discretely with
4
PY’{YJ=X1) = il (l=1,2,...,n).
Let
n m
.2
Z(YJ-Y) ZY)
2 _ gt v o =t
SY —_— and Y -
n n
—=.2
Z(x1 x) le
Let s2 =L andx = 2L
X n n

It is easy to show that
E[s?) = ("1)s?
Y m Tx

Now let (X‘. Xz, s X“} be iid random variables distributed as X

with
E(X‘]=p and V(X‘]ar{
Then the mean of the resample variances is

2) . 2 = ELLMh)s?) = (ALl 2
E[SY] Ex[EY[SY.X]] Ex[( P JSX] ( o ) o )o©.



Now consider the variance V{Y] of the resample means Y.
viyl] = VX[EY[Y?X]] + Ex[VY[Y:X]]

2
bvs X
VXl + EL— ]

{(n-1) =
nm

0.2
= — 4
n

1 (n~1) 2
=Gt e

n-1

)

o
= (1+

or, if m=n,

_ 2 (2n-1)

=g .
2

n
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