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ABSTRACT OF T ~  ABSTRACT 

In Hr. Gary G. Venter's paper on Credibility in Foundations Of Casualty 

Actuarial Science he suggeted that "estimating the variance of the estimated 

[least squares credibility] Z would help provide an understanding of the 

accuracy of the calculation..." A usua] estimator for the complement of the 

S 
least squares credibility is n.--T" 

My paper studies in some detail his Example 5.2 (pp. 433-434), which involves 

9 risks each subject to its own Gamma distribution: 

(I) Blvariate and trivarlate numerlcal generalized convolutions are used to 

obtain distributions of ~ for n=6,12 and 18, given the distributions to 

which each risk is subject; 

{2) Operational bootstrapping is used to generate a bootstrap distribution of 

S 
n.---T for n=18, given Mr. Venter's 18 years of random-number-generated 

experience for each of the 9 risks; 

(3) A special algorithm is described (sketched) for using blvarlate numerical 

generalized convolutions to sample and resample from a Gamma distribution, the 

sampling and resampling is handled implicitly and without random numbers. An 

n-1 
n 

bias-correction factor is suggested (and confirmed by Mr. Charles S. Fuhrer, 

FSA, of Washinton National) for use where the bootstrapping is for variance. 

KEYWORDS: Least squares credibility, operational bootstrapping, 
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b i v a r i a t e  and  t r t v a r l a t e  n u m e r i c a l  g e n e r a l i z e d  
convolutions, sampling and resampling '~ithout random 
numbers, efficiency of the bootstrap. 
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ABSTRACT 

We look at least squares credibility from three viewpoints: 

(1) Distributions of The Least Squares Credibility Given A Distribution For 

Each Risk. Glven that each of N risks is subject each year for n years to 

its own known (dlscretized) distribution use generalized blvarlate numerical 

convolutions to flnd the bivariate distribution of 

( X , S ) for the gth risk (g=l,2 .... ,N); use generalized trivarlate g. g. 

numerical convolutions to find the trlvarlate distribution of 

( S . . . . . .  , X , T } = ( ~.~Sq.z" , ×.. , ~ (Xq.-X..}2/(,-,)). 

g=l g=l 

restrict attention to the blvarlate marginal distribution of 

( S.. , T.. ), and transform this blvarlate distribution into the univariate 

S S 
. o  

distribution of n.T ; and calculate the expected values E[n.-:~-]. It may 

be noteworthy that, slnce S.. and T.. are not necessarily independent random 

S.. E[S..] 
variables, E[~] Is not necessarily equal to ~ .  

(2) O p e r a t i o n a l  B o o t s t r a p p i n g  For Leas t  Squares  C r e d i b l l i t y .  Given t h a t  N 

risks (each subject to its own unknown distributions) have been observed each 

year for n years use generalized numerical convolutions to generate for each 
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I I 
g (g=I,2 ..... N}, the blvariate distribution of { X , S ), i.e. resample 

g. g. 

means and resample variances from resamples of size n taken from the observed 

samples (experience) of size n, form the distribution of ( S:., X~., 0 ), use 

generalized numerical convolutions to generate the trlvariate distribution of 

s" : ~-cx:-x" )2JcN,~ ~ ( .,v',,. ,=( Is.,,,< ,,. . .. 

g=l g=I 

focus on the marginal bivariate distribution of 

S ° ( , T" ) 

and transform this distribution into the unlvariate distribution of 

S 
m , - " r "  
n . T  

° .  

o 
S 

from which we can calculate the expected value E[ • ]. 
n . T  

. .  

This procedure is 

referred to as operational bootstrappin E for least squares credibility. 

o 

S 
comparing E[ , ] 

n T . .  

2 

from (2) wlth . s shows how well the operational 
2 t 2  s +n. 

bootstrapping for least squares worked with the given observed data to 

estimate the complement (I-Z) of the least squares credibility. 
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(3) Efficiency of operational bootstrapping for the least s q u a r e s  

credibility. Given that e a c h  of N risks is subject each year for n years to 

its own known distribution we use generalized numerical convolutions to 

generate for each g (g=1,2 ..... N) the distribution of 

em el 

(X ,S ) 
g' g- 

where each of these pairs consists of a mean and variance of a possible 

resample of size n taken from a possible sample of size n taken from the 

distribution for Risk g. This step requires a rather complicated 

algorithm to handle (Implictty and without random numbers) the required 

sampling and resampllng. The rest of the procedure is identical to {2) 

above, having replaced 

( X" , S" ) with [ X'" , S'" ). 
g .  g "  g "  g .  

The statistical efficiency of operational bootstrapping for the least squares 

credibllity can be determined by comparing 

o l  
S 2 

E{ ",,] from (3) wlth s t ------~" 
n • T.. s2+n • 

232 



TABLE OF CONTENTS 

Section I. BACKGROUND MATERIAL 

Section 2. INTRODUCTION 

Section 3. DISTRIBUTION OF LEAST SQUARES CREDIBILITY 

Section 4. OPERATIONAL BOOTSTRAPPING FOR LEAST SQUARES 
CREDIBILITY 

Section 5. A METHOD TO TEST THE STATISTICAL EFFICIENCY OF THE 
[OPERATIONAL) BOOTSTRAP FOR THE LEAST SQUARES 
CREDIBILITY 

Appendix. DERIVATION OF THE FACTOR n--1 
n 

233 



S e c t i o n  1. BACKGROUND MATERIAL 

Our basic source material comes from the section on Least Squares Credlblllty 

in the chapter on Credibility In the book The Foundations of Casualty 

Actuarial Science, which was publlshed by the Casualty Actuarial Society In 

1990. My sincere appreciation to Gary Venter and the Casualty Actuarial 

Society for permission to reproduce (with minor chanEes) some of his material 

In thls sectlon of my paper. 

It Is supposed that the loss for N risks are observed for a period of n years. 

The pure premium (losses dlvided by exposures) of the gth risk in year u is 

th 
denoted as Xg . The g risk is assumed to be subject to some probability 

dJstrlbutlon fX " The pure premium, say Cg0, for a future time period 
g 

(referenced as time O) Is to be estlmated for the gth risk, using the formula 

Cg ° =Z-Xg.+(I-Z).X..; where Xg. is the averase observed pure premium for risk 

g over the n years, X is the grand average of all the risks for those n 

years, and Z is a least squares credibility factor chosen so as to minlmlze 

Z[Xgo-(Z-Xg.  + (1 -Z ) .X  . .  ) ]  

In formulas, 

Xg.= [ Xgu/n, and 

u 

X .=[ X I ./N. 

g 

It turns out that 
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n 
Z - p 

2 

(. + ~} 

2 
s 

so 1-Z- - -  
(s2+n.t2) ' 

where s 2 Is the average variance of an indlvldual risk over tlme, 

t h e  v a r i a n c e  a c r o s s  t h e  r i s k s  o f  t h e  i n d i v i d u a l  r i s k  m e a n s .  

and t 2 is 

One approach is to estimate s 2 and t 2 by first calculating the statistics 

S = Z (X -X }2/(n-l)  
q' gu g" 

u 

S.. = [ S , /N and 

g 

Then, since 

T = Z {X -X }2/(N-I). • . g. .. 

g 

2 
S i s  an  u n b l a s e d  e s t i m a t o r  o f  s , 

n . T  I s  an u n b i a s e d  e s t i m a t o r  o f  s 2 + n . t  2, 

T -S /n is an unbla,.:ed estimator of t 2, and 

2 
s 

I-Z- 
( s2+n • t 2)' 

S 

we could use ~ a s  an estimator for 

2 
i - Z -  s 

2 2 
Is +n.t ) 
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I have embellished Mr. Venter's symbols S , S and T to be S , S and T.., q q" .. 

respect ive ly .  
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Section 2. INTRODUCTION 

One objective of this paper is to study a partlcular hypothetical portfolio of 

risks to determine 
S 

,0 

how we i I san be expected to do as an estimator of 

1-Z. The hypothetical portfolio of risks will be t h a t  described in Example 

5.2 on pages 433-434 of Venter (1990); namely, nine risks each subject to its 

own Gamma distribution: 

R i s k  b r b . r  b 2 . r  

1 .6159 1 .0476 .6452  .3974  
2 .8001 0.9063 .7251 .5802 
3 .6098 0.9654 .5887 .3590 
4 .2391 0.9219 .2204 .0527 
5 .5206  1.0184,  .5302  .2760  
6 .6768 1.0937! . 7402  .5010  

i7 .9575 1 .1395  1 .0911  1 .0447  
18 1999 1.0153 .2030 .0406 
9 .5083 9.93201 .4737 .2408 

i .5797 .3880 

From this table we can calculate s2=.3880 and t2=.0747 (dividing by N-I=8), 

and find that 

s2+n.t 2 

l 61 4-~j- 
1121 .3oz 
1L~ .224 

Although I could have used approximate integration to obtain a representation 

of the Gamma distribution for each of the 9 risks, I used the package @RISK 
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from Palisades to  8enerate 4096 outcomes from each  of the 9 Gamma 

distributions. In order to produce correct means and variances for the 

representations of each of the Gamma distributions, I adjusted the outcomes 

by 

(a) multiplylnE by the square root o£ the ratio of the 

population variance to the variance of the sample, and 

(b) addln E the excess of the population mean over the mean 

of the adjusted sample. 

R e p l a c i n g  any  r e s u l t i n g  n e g a t i v e  amounts  w i t h  z e r o  d i d  no t  m a t e r l a l l y  a f f e c t  

the  r e s u l t i n g  d i s t r i b u t i o n s .  
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Section 3. DISTRIBUTION OF LEAST SQUARES CREDIBILITY 

In this section we are assuming that we know the differing distributions to 

which each of N risks are subject, and we are no_tt using random-number- 

generated experience like that generated in Venter {1990). 

A method for performing generalizec bivariate numerical convolutions is 

described in ref [2] and is available in the computer package COCONUT TM from 

MathWare. The procedure using generalized numerical convolutions to 

generate the distribution of the least squares credibilities is as follows: 

Let fx denote what Is, in effect, the dlscretized representation of the 
g 

distribution for Risk g. Transform each of these univariate distributions 

into the c o r r e s p o n d i n g  b i v a r t a t e  d i s t r i b u t i o n  fX ,X 2 r e p l a c i n g  e a c h  x~ In  f x  
q g g 

2 
by t h e  number  p a i r  ( x x ). C o n v o l u t e  t o g e t h e r  n b i v a r i a t e  

q q 

d l s t r i b u t i o n s  

fx ' fx ' "" 'fx 
g! g~ gn 

where each fx (u=l,2 ..... n) is indeFendently and identically 
qu 

fx ' to obtain the bivariate distribution of 
g 

distributed as 

n 

( X , S ) = ( X , ~ (× - X  )2 / (n-1~ }. 
g '  g"  g '  gu g" 

u= l  
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This can be accomplished by performln 8 n-1 Eenerallzed 

obtain recurslvely the bivarlate distributions of 

I 

( [ Xgu/1 , 0 ) 

u",~l 
2 2 2 

( [ XgU/2 , [ (Xg u- [ Xgu/2)2/(2-1) ) 

~'-1 ~r=l u=l 

3 3 3 

[ Xgu/3 ' ~ (Xgu- [ Xgu/3)2/(3-') ) 
u=l u=l tl=-! 

convolutions, tO 

n n n 

( [xolo , [ ~x0o-[xolo,~1,o-. ~ = ~ x , s g' q° 

U=I u=-1 u=1 

Thus we obtain the distribution of ( X , S ) for each g=l,2 ..... N. g. g° 

For each 8=1,2 ..... N we transform the distribution of 

( X , S ) into the distribution of g° g. 

(S , X ,0). go g- 

Next we obtain the distribution of 
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N N N N 

(~Sg. IN, ~Xg. IN, ~ (Xg. - ~ Xg./,}2/(N-I) } 

q=l g=l g=1 g=1 

by transforming the blvarlate distribution of ( XI., S,. ) into 

C $1., Xl. , 0 ), 

recursively performing N-1 trlvariate generalized numerical convolutions to 

obtain the trlvariate distributions of 

2 2 2 2 

q=1 g=l g=l q=l 

N N N N 

~Sg./N , ~Xg./N, ~ (Xg.-~X /,)2/(N-1) )= (S..,X..,T..} 

g=l q=l g=l g=l 

transforming this trivariate distribution into the bivariate distribution of 

(S.. ,T.. ) 

and this distribution into the univartate distribution of 

S ° °  

n.T ° .  
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X and E a r e  n o t  i n  g e n e r a l  i n d e p e n d e n t ,  so we c a n n o t  e x p e c t  S and T q. ~ . . . . .  

s E [ S . . ]  
t o  be  i n d e p e n d e n t ;  t h u s ,  E[n--:~L-] i s  not  i n  g e n e r a l  e q u a l  t o  

The a l g o r i t h m  f o r  t h e  g e n e r a l i z e d  t r i v a r i a t e  n u m e r i c a l  c o n v o l u t i o n s  i s  a 

n a t u r a l  e x t e n s i o n  o f  t h e  a l g o r i t h m  d e s c r i b e d  i n  B a i l e y  (1993)  f o r  g e n e r a l i z e d  

b i v a r l a t e  n u r a e r l c a l  c o n v o l u t i o n s .  I t  i s  a v a i l a b l e  i n  t h e  c o m p u t e r  p a c k a g e  

COCONUT T" from MathWare.  

242 



(1) 

(2) 

S 

n.T 

cum n=6 n=12 n=18 

• 0 0 0 0 0 1  0 5  . 0 5  .05 
• 00001 06 .07 . 0 6  

.0001 09 .08 .07 
. 0 0 1  11 . 1 0  . 0 9  

. 0 1  18 . 1 3  . 1 1  
• 0 2 5  19 . 1 5  . 1 2  

• 0 5  2 3  . 1 7  . 1 3  

. 1  2 5  . 2 0  . 1 5  

. 2  31 . 2 3  . 1 8  
• 3 3 7  . 2 5  . 1 9  

.4 44 .28 .21 
• 5 5 0  . 3 1  . 2 3  

. 6  55 . 3 5  . 2 4  
• 7 6 6  . 3 9  . 2 8  

.8 . 7 3  .45 . 3 1  

.9 .96 .53 .36 
. 9 5  1 . 0 9  . 5 7  . 4 1  

.975 1.34 .62 .45 
. 9 9  1 . 3 4  . 7 3  . 4 7  

• 995 1.49 .77 .48 
.9999 2.16 1 . 0 4  .68 

• 99999 2.20 I. 09 .75 
.999999 3.26 1.12 .82 

E[S/(n.T) ] .555 .340 .246 
Vat [S/(n.T) ] .079 .017 .007 
E[S]/n.E[T] •464 .302 .224 

(I)/(2) 1.207 1.126 1.098 

S 
The last row in thls table Elves the deEree of bias inherent in usin8 ~ as 

an estimator for I-Z, at least for the hypothesized portfolio. The row 

identified with a (2) is also equal to - -  
2 

S 

s2+n  . t 2 
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S e c t i o n  4. OPERATIONAL BOOTSTRAPPING FOR LEAST SQUARES 

CREDIBILITY 

The procedure using generalized numerical convolutions to generate the 

bootstrap distribution of the least squares credibilities is similar to that 

described above in the Section Distributions of Least Squares Credibility, 

except that for each E=I,2,.,.,N we let fx be the empirical distribution of 
g 

losses implied by random-number-generated experience of Risk g with n=18. 

Portions of the following random-number-generated "experience" not available 

on page 433 in Venter (1990) were obtained directly from Gary Venter. 
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Y e a r  I 

3 R a n d o m - N ~ m b e r - G e n e r a t e d  T r i a l s  o £  6 Y e a r s  

Combined Into One Tr ia l  of  18 Years 

R i s k  

#1 #2 #3 #4 #5 #6 #7 #8 #9 

1 .430 .247 .661 .182 .311 .301 .219 .002 .796 
2 .37511 .587  .237 .351 .664 .253 1.186 .058 .260 
3 2 . 3 4 1 i l . 9 3 9  063 .011 1.002 .044 .431 .235 .932 

[ 

4 175 . 7 1 2  250 .022 .038 .109 1.405 .018 .857 
5 11016 054[ .602 . 0 1 9  .370 2 .105  .241 .713 .129 
6 .466 261 .700 .252 2 .502  .891 .804 .208 .349 
7 .215 643 .121 .1561 .141 1.255 1.993 .182 .089 
8 .111 4 0 5 . . 7 2 3  .008 .486 1.900 .286 .077 .484 
9 ' .287 234 660 410 .031 .517 2.261 .226 .432 

10 .824 1 188 1 493 226 1 .109 .243 .897 .001 .546 
11 t l . 3 4 0  2 .030  220 292 1.002 1.229 .955 .600 .185 
12 .237 .726 .066 555 .685 1.215 .427 .286 1 .413 
13 .884 .190 .276 169 .5871 819 1.515 .145 .254 
14 .878 .135 .051 153 .245i 055 .230 i .111 .341 
15 .159 .010 .539i 024 2 .150  049 2.0991 .111 .296 
16 .054 .092 .554 075 .293 313 .2421 .165 .155 
17 .470i .619 .0391 209 .478 908 2.261 .476 .031 
18 147] .027 .1521 322 .359 872 2 .384  .188 .214 

Xl. .578 .617 .412 .191 .692 .727 1.102 .211 .431 

S l .309 . 4 0 1  .129 .023 .431 .375 618 .037 .122 

T = .071 
. °  

S = .272 
o .  

S 
. •  

- .213 
n ,T  

where  n=18 
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e 

s 

n.T* 

i cum =18 

1.000001 .03 
.00001 .04 
.0001 .05 
.001 .06 
.01 08 

i . oz5  09 
.05 10 
.1 11 
.2 13 
.3 14 
. 4  15 
5 I7 
6 18 
7 19 
8 .22 
9 .24 
95 .27 
975 .30 
99 .34 
999 ,40 
9999 .45 
99999 .50 
999999 .55 

mean .173 
va r  ,003 

Thus, u s i n g  the  random-number-generated e x p e r i e n c e  f o r  n=18 f rom r e f  [ I ]  and 

Hr. Venter directly, operational boot~trapplng yields an expected least 

S * 
. o  

s q u a r e s  c r e d i b i l i t y  complement E[ . ] of  .173. An a d j u s t m e n t  d e s c r i b e d  
18"T 

° °  

18 
after Section 5 will suggest that we multiply the .173 by ~-~, producin 8 .183; 

2 
s 

whereas - -  = .224. 
s2+n. t 2 
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S e c t i o n  5.  A HETHOD TO TEST I~E STATISTICAL EFFICIENCY OF THE 

(OPERATIONAL) BOOTSTRAP ~OR THE LEAST SQUARES 

CREDIBILITY. 

Even  h a v i n g  a good a l g o r i t h m  t o  do g e n e r a l i z e d  n u m e r i c a l  c o n v o l u t i o n s ,  we 

s t i l l  need  an  a l g o r i t h m  t o  h a n d l e  i m p l i c i t l y  and  w i t h o u t  random n u m b e r s  t h e  

r e q u i r e d  s a m p l i n g  and  r e s a m p l t n g .  I w i l l  now s k e t c h  how s u c h  an  a l g o r i t h m  

was (and can  be} c o n s t r u c t e d .  

L e t  f x  d e n o t e  wha t  i s ,  i n  e f f e c t ,  t h e  d i s c r e t l z e d  r e p r e s e n t a t i o n  o f  t h e  
q 

d i s t r i b u t i o n  t o  w h i c h  R i s k  g ( g = l , 2  . . . .  ,N) I s  . s u b j e c t "  Le t  fX be  
g 

r e p r e s e n t e d  i n  e l e m e n t  n o t a t i o n  a s  

[ x l j  P l J ] j = , , a  , .  
. . , j  

g 

where  jq i s  t h e  number  o f  l i n e s  i n  £X " 
g 

L e t  n be t h e  number  o f  { p o s s l b l l y  d u p l i c a t e ]  i t e m s  u l t i m a t e l y  t o  be  i n c l u d e d  

i n  e a c h  o f  t h e  s a m p l e s  and  t h e  r e s a m p l e s .  

The c a l c u l a t i o n a l  p r o c e s s  w i l l  p o s s e s s  a Markov p r o p e r t y ,  i f  we s t r u c t u r e  i t  

a s  f o l l o w s .  
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For  any  f i x e d  R i s k  g p r o c e s s  e a c h  of  the  xt 
J 

r e f e r r i n g  t o  v a l u e  o f  J a s  a " s t a E e "  i n  t he  

u s e  

i n  o r d e r  by j { j = 1 , 2  . . . . .  J ), 

p r o c e s s .  At s t a g e  j we s h a l l  

Jfx",Y",V,V' 

to represent the 4-dimensional probability distribution of 

e e  e o  

(X ,Y ,V,V')  where 

om 

X is the resample mean where the resam~le is of size V', 

Y is the resample variance where the resample of of size V', 

V is the number of items included in the sample, and 

V' is the number of items included in the resample, 

If v and v (with v <=v <=n) are two values of V and if v' and v' (with 
1 2 1 2 1 2 

v'<=v'<=n) are two values of V', then we can speak of 
t 2 

the transition from the Joint state (vl,v ~) at stage J to the joint state 

W 
(v2,v 2) at stage J+l where 

v -v is the number of duplicate items being added to the 
2 I 

sample between stage J and stage J+l, and 

v'-v' is the number of duplicate items being added to the 
21 

resample between stage J and stage j+l.  

The calculational process involves using the 4-dimensional distribution 
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jfX*°,y°°,V,V ,, which we might relabel as 

j(resample mean,r,)sample variance) 
Vl,V ~ 

and 

the amount xlj+ I and p r o b a b i J i t y  plj÷, on the j+1 "t l i n e  of fxg 

in a generalized numerical convolution to obtain the blvarlate distribution 

ee  i 
J+lfX*' ,Y ,Vz,V 2 

A c t u a l l y ,  s ince  the s t a t e  (v2,v ~) a t  s tage J+t can be a r r i v e d  a t  from va r ious  

s t a t e s  (v l ,v  ~) a t  s tage J, the complete d i s t r i b u t i o n  

eo t 

J + l f X t I , Y  ,V2,V 2 

is obtained by generating and merging together each of the resulting relevant 

partial bivariate distributions. 

We eventually will have generated 

jlfX**,y",Vz,n 
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where V runs from I to n; 
2 

and we merge such d i s t r i b u t i o n s  t oge the r  to obtain the 3-dimenslonal marginal  

distribution 

J fx'',Y'',.,n' 
g 

Computer Note:  A l though  X and Y are  r e a l  random v a r i a b l e s ,  V and V'  t ake  on 
2 2 

on l y  t h e  n o n n e g a t l v e  p o s i t i v e  I n t e g e r s  fzom 0 to n. R a t h e r  than r e c o r d  the  

l e  d i s t r i b u t i o n s  J q f X ' ' , Y  ,V2,V~ as 4 - d i m e r s t o n a l  d i s t r i b u t i o n s  we can (and do) 

r e c o r d  f o r  each j o i n t  s t a t e  (v2, v ~) the  par t  o f  the 2 - d i m e n s i o n a l  marginal  

distribution J fX'*,Y'" which is associated with that joint state. The 
q 

number of such joint states does not exceed n.(n+1)/2, so this procedure is 

practical for n less than (say) 50. A separate disk file is created for the 

distribution associated with each Joint state. 

Here a r e  some hints on how the algorithm was (and can be) constructed. 
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Hlnt #1 

Consider the first llne of the distr)bution fx ,namely, xl, pl I. We wish 
q 

to enumerate the possible contributions of this line to the resample means 

and resample variances, where both samples and resamples wlll eventually be 

of slze n. 

The contribution of this llne to the mean of a resample that will be adding 

exactly v'2 duplicates of such items will be simply v~.xl I. And the 

probability that both the sample will be addin E exactly v 2 duplicates of such 

items and the resample will include exactly v' of such items can be 
2 

calculated as 

b v (n;pl I ) "b v/ (n; v2/n) 
2 2 

where b indicates a binomial distribution defined by the two parameters inside 

the parentheses. 

Hint #2 

Suppose we are about to process llne J of fx ' namely, 
g 

(xlj plj). We wish to enumerate the possible contributions of this llne to 

the resample means and resample variances. The probability that both the 
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sample will be adding exactly v-v of -ouch duplicate items and the resample 
2 I 

will include exactly v'-v' of such dupli,~'ate items can be calculated as 
2 i 

by -v (n-v1 ;p I j , / { l -p l  L-p]2-" " . -p l j_  1 ) ) 
2 1 

bv,_v, (n-v'1; (v2-v%)/(n-v I)) 
2 % 

where 

v -v is is number of duplicates of such items being added 
21 

to the sample, 

n-v is the number of duplicates of such items which could 
z 

be added to the sample, 

plj/(1-pl,-p*2-...-pl]_ I) is a conditional probability 

for the jth llne of fx given that the previous 
q 

J-1 l i n e s  of fx have aiready been completely 
g 

processed, 

v'-v' is the number of duplicates of such items being added 
2 I 

to the resample, 

n-v~ is the number of duplicates of such iesm which could 

added to the resample, 
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and b i s  as defined above. 

Hint #3 

When we p r o c e s s  t he  l a s t  l i n e  of  fX ' the  number o f  x l )  ' s  abou t  t o  be 
g g 

i n c l u d e d  in  the  r e s a m p l e  must be e~ual  to  n - v '  s i n c e  the  r e s a m p l e  must  

finally contain exactly n items, thus, in this situation the probability 

a s s o c i a t e d  w i t h  t h a t  e v e n t  i s  1. 

Hint #4 

I f  a t  any s t a g e  in  t h e  c a l c u l a t i o n a l  p r o c e s s  t h e  sample  a l r e a d y  c o n t a i n s  n 

i t e m s ,  then  the  i t em c u r r e n t l y  be ing  c o n s i d e r e d  canno t  c o n t r i b u t e  t o  t h e  

r e s a m p l e  and the  r e l a t e d  p r o b a b i l i t y  would be z e r o .  

Hint #5 

At any stage in the calculational process an item cannot contribute to the 

resample If none of such items is being included in the sample. 

Hint #6 
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As you begin to process a new line of fx ' some computer time can be saved by 

lettin E the computer determine some of the bivariate distributions which 

would produce zero or negligible total probability at the next stage. 
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Continuing The Numerical Example 

Even for n as low as 18 the vol~,e of calculations required, using the 

algorithm described in Section 5 to determine the bivariate distribution of ( 

X , S ) for even one value of g is unusually high. Calculating the q. q. 

distributions which yielded the statistics in this Section were performed on 

a Hewlitt Packard 720 computer at ~rashington National using a C-language 

equivalent of the above-sketched alRorithm in the command-and-convolute 

package COCONUT TM available from MathWare. The run for one Risk took a full 

em mo 

week to complete, even on such a fast computer. E[X ] and Var[S ] turned 
I- I. 

out to be .6452 and .3749, respectively. The .6452 agrees exactly with E[X I] 

oe 

Var[S I ] 
and the .3749 compares with Var[S I] = .3974. So, ~ = .944, indicating 

mm 

that Var[St.] is understating Var[S1.J 

IO 

VarlSi.] 
Assume for the moment that ~ for each i=2,3 ..... 9 was also .944. 

would could also conclude that 
E[S~] S2 

,= will be .944 times 
n.E[T.. ] s2+n • t 2 

T h e n  

Var[S~] 
To g e t  a n  I d e a  o f  how s t a b l e  t h e  r a t i o  ~ I s  l i k e l y  t o  b e  a s  we move 

from distribution to distribution I calculated such ratios on my Gateway 

486/33 (for various positive integer values of n) for the unit normal 

distribution on the one hand and the ~19 distribution on the other hand, with 
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Var [~3"" ] 
the followln E results: the ratio Va--~.--~. for each of these distributions 

turned out to be almost exactly ~, where n is the number of items in each of 

17 
the samples and resamples. Note that ~ is approximately equal to •944, 

which is the value we obtained above for a Gamma distribution with mean •6452 

and variance .3974 and n=18. 

In the next section Mr. Charles S. Fuhrer, FSA, of Washington National 

Insurance Company 
Var [S~'] n-1 

shows that the ratio ~ is indeed always ~ where 

the bootstrap distribution is beln E used to estimate the variance. 

< 
Thus, E[- . ] 

18"T 

]7 
divided by ~-~, 

2 

= .173 (calculated by bootstrappln R in Section 4) should be 

producinE ,183, to try to obtain an unbiased estimate of 

s 
Of course, the .173 (and hence the .183) Is based on Mr. Venter's 

s2+n.t 2 

particular 3 Random-Number-Generated Trials of 6 Years Comblned Into One Trlal 

fo 18 Years, 

shown in a table In Section 4. Further runs could be performed to calculate 

mm oe 

the dlstrlbutlon of ( X ,S ) for E=2,3,...,9; and, we could then senerate g- g. 

the trlvarlate distributions described In Section 3, obtain a dlstrlbutlon of 

me 

s 
• o nd draw further conclusions about any further blas inherent in using 

n.T 

S 
n-~ as an estlmator for the complement of the least squares credlbllity. 
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Appendix. DERIVATION OF THE FACTOR n-__[ 
n 

(The symbols in this Appendix differ from the symbols used in the body of the 
paper.) 

Fix x I, x 2, ..., Xn. 

Let YI' Y2 ..... Ym be distributed discretely with 

! 
Pr{Yj=x i} = ~{ (I=I,2 ..... n). 

Let 

m m 

Sy2 J=t m and Y = j=*m 

n 

Let S 2 - t=1 and x - ~=i 
X n n 

It is easy to show that 

E[S¢] = (m-1)S2 
m X" 

Now let {X,. X 2 .... , Xn } be ild random variables distributed as X 

with 

E[XI]= g and V[XI]=-o'2. 

Then the mean of the resample variances is 
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Now consider the variance V[Y] of the resample means Y. 

v[y] = Vx[Ey[Y:x]} + Ex[Vv[Y:x]] 

S 2 

= Vx[X] + EX[-- ~ ] 

2 
(n-l) 2 

= -- + , .0" 
n rim 

= (1 + (n~I)).02 

n lira 

2 
- o" { 1 + [ ~ .  ) - --.~. 

or, I f  m=n, 

2 (2n-I) 
2 

n 
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