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ABSTRACT

In the context of insurance economics, the PH-transform is justified through some
basic postulates on market premiums. In this paper the PH-transform is applied to the
present value random variable in life insurance and annuities. It provides an alternative
to the commonly used ‘cquivalence principle’ in life insurance and annuitics premium
calculation. The new pricing scheme has interesting implications such as (i) the relative
loading for short-term lifc insurance decreases with age; (i) more of a discount is given
to long-term contracts, which will provide an incentive for loyalty from policy-holders;

and (iii) the risk-adjusted cash value is less than the net premium cash valuc.
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THE RISK-ADJUSTED PREMIUMS FOR
LIFE INSURANCE AND ANNUITIES

Shaun Wang

1 INTRODUCTION

Traditional life contingencics interprets a life table as a deterministic survivorship sum-
mary rescmbling the negative growth rates in ecology and economics. Naturally the
‘equivalence prineiple’ {i.e., the average loss) is used in life insurance pricing. A safety
margin is imposed implicitly by using conservative interest and mortality rates. For
instance, a common practice is to add a percentage to the mortality rates.

Ouly until recently does life insurance mathematics take a probabilistic approach.
The modern text of Actuarial Matheniatics [1] starts with the asswmption that time-
until-death (T) is a continuous random variable, By recognizing that the present value
of insurance benefits, Z, is a function of the time-until-death T, life contingencies
become an integral part of risk theory. With this probabilistic approach, many rich
random variable concepts come into play; for instance, survivor distribution, hazard
rate, expected value, and variance.

It is recognized that the present value of insurance benefits, Z, is conceptunally and
mathematically the same as the loss variable in general insurance. Thus, the risk-loading
can be imposed in the same fashion as in casualty insurance.

Recently, WANG [4] proposced a new premium caleulation principle based on propor-
tional hazard transforms, which can be applied to any loss distribution regardless of
whether it is for casualty msurance or for life insurance and annuitics.

This paper applies the proportional hazard transform method to the pricing of life

insurance and anunuities. It has the following practical implications:

1. Under today’s pricing scheme, short-term msurance for younger ages are under-
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priced, but overpriced for older ages.

2. With the new pricing theory, the risk-adjusted cash value is less than the net
premium cash value. Thus the insurer and the continuing policies can better be

guarded from losses in cases of massive withdrawals.

3. The new pricing theory gives more of a discount to long-term insurance contracts
which, in turn, will provide an incentive for long-term commitment (loyalty) from

policy-holders.

The notations will be mostly the same as in Actuarial Mathematics [1].

I The number of survivors at age =
T, =T The time-until-death for a person of age x
e =1 — g Pr{T. >t}
B(A) the risk-adjusted premium for a life insurance contract A

2 DETERMINISTIC VERSUS STOCHASTIC LIFE CONTINGENCIES

Consider the following short-term insurance contracts:

policy | age = at issuc | term | mortality rate ¢, | bencfit

1 35 1 year 0.0016 100,000

2 70 1 yecar 0.0320 5,000

For simplicity, we ignore the interest rate discounting factor (ic. v = &5 = 1).

2.1 Deterministic life contingencies

As a result of the deterministic view of life table, the ‘equivalence principle’ is used in

premium calculation. The net premiums for both policies 1 and 2 are the same at

100,000 x 0.0016 = 5,000 x 0.032 = 160.
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If. as in common practice. safety margins are imposed by adding a percentage {say 15%)

to the mortality rates, both contracts will have the same risk-adjusted preminm at 184,

2.2 Stochastic life contingencies
The standard deviations of losses for two contracts are

o(Z1) = 100, 000,/(0.0016){0.9984) = 39968,
7(2,) = 5.000,/(0.032)(0.968) = 880.

If risk-loading is based on the standard deviation principle
®(Z) = E(Z)+ ac(Z), say a =001, (1)
the risk-loaded premium for policy 1 is
B(Z,) = 160 + 3996.8(0.01) = 200;
and the risk-loaded premium for policy 2 is

$(Z,) = 160 + 880(0.01) = 168.8.

2.3 A general comparison

Consider a general one-year term insurance for () with face amount b payable at the
end of the year of death. Assume that the mortality rate is ¢, and the effective interest

is 4. The present value of the insurance loss is
b/(14), T, <1,
0, Wi > 1.

The standard deviation principle gives a risk-loading of

b S—
ao(Z) = llli\/(;(l — qz).
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Since
do(Z) b 1—2¢,
dq, 14+ Vm’

the risk-loading increases with age provided that ¢, < 0.5 as in most practical cases.

The relative risk loading
ac(Z) 1-4q,
=
E(Z) o

is a decreasing function of g;. This implics that the relative risk loading should decrcasc

with age.

Now lct us re-examine the traditional premium calculation method. An increase of
15% in the mortality rates results in a relative risk loading of 15%. This does not reflect
the relative variability of the insurance contracts at different ages.

Based on the above analysis, the traditional ‘equivalence principle” underprices short-
tern contracts for younger ages, but overprices for older ages. In other words, younger

ages are subsidized while old ages are penalized.

3 A DEFINITION FOR A HIGHER RISK

We define a risk Z as a non-negative loss random variable. It is determined by its
distribution function Fz(t) = Pr{Z < t} or survivor function Sz(t) = Pr{Z > t}. For
convenience, we do not distinguish between risk Z and its distribution function Fgz(.).
As a basic requirement, an equitable pricing scheme should assign a higher premium
for a higher risk. What is the definition for a higher risk then 7 Fortunately, thereis a
generally agreed upon definition for higher risks (e.g. ROTHSCHILD and STIGLITZ [3)).
Definition 1 Risk Z; is less risky than Z, (notation Zy < Z») if and only if any of the

Jollowing equivalent conditions hold
1. For all increasing concave utility functions w,
Blu(~22)] > Rlu(~2y)]

i.e., an ordering shared by oll risk-averters.
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2. The net stop-loss prewwms setisfy the inequality
/ (y —&)dFz {y) < / (y — e)dFz,(y}.  forallz >0

By assuming that all prudent insurers are risk-averse, an equitable pricing should

yreserve this natural ordering of riskiness.
I )

Remark: It is noted that the standard deviation principle does not preserve
the natural ordering of risks and as such is not equitable. For example,
consider an n-year term insurance with an increasing benefit

T+ 0<t<m,

by =

0 n <t
The present value of insurance benefits, Z, has a Bernonlli distribution with
Pr{Z =1} = .q..

The risk-adjusted preminm based on the standard deviation principle is
B(Z)=qg+ (x\ﬂ](l -9} where ¢ = ,,q¢..

One can casily verify that

d®(Z a (1-2
(7) |, a2
dq 2 \Jall—q)
Since 4‘;‘;)@|q:u.s = 1 and himgy, d@% = —oo, after some point in time

the risk-adjusted premium decreases as the term of the contract increases.
Obviously the underlying risk increases as the term n increases. Thus the

natural ordering of risks is violated by the standard deviation principle.

4 AN EQUITABLE RISK/REWARD RELATIONSHIP

Definition 2 The proportional hazard (PH) transform with index p > 1 s defined
as a mapping

I,:Zw— I,(2)
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such that

1
Sz (t) = Sz(t)e  (p 2 1), (2)
When Z is continuons, the PH transform (2) is equivalent to a proportioual decreasc
in the hazard rate pz(t) = /%l()g Sz(t):

1
p,(z)(t) = ;“Z(t)' t20,p21

In terms of density functions

fr(b) = [%Szm‘r‘i f2(0),

1
. . . . 1.4 . .
wherc the increasing weight function %Sz(t)ﬂ gives more weight to larger losses. The

expected value of the transformed variable I1,(Z) contains a risk-premium.

Definition 3 For a given risk Z. the risk-adjusted premium is defined as the co-

pected value of the transformed variable 11,(Z):

m(2) = BL(Z)] = [~ Sa(t)5de,  p>1 (3)

0

It is shown in WANG [4] that n,(Z) (p > 1) has the following desirable propertics:

1. B(Z) <w(Z) <max(Z).

2. wlaZ +b)=am,(Z)+b, a>0.
wy(aZ) = am,(Z) {scale invariant or positive homogencous);
7,(Z + b) = w,(Z) + b (trauslation invariant);

m,(b) = b (no unjustified loading).

3. Sub-additivity: for any two risks Z;, and Z,, be they independent or not,
ﬂp(Zl + Zg) S Trp(Zl) + Wp(Zz).

{Otherwise one can purchase separate insurance for risks Z; and Z,.)

451



Theorem 1 The PH-transform principle (3} is equitable in the sense that it preserves

the natural ordeving of rishs:
2y < Zy = w,(2y) < wlZs).
Proof: Sce WANG [5].
A function g is weakly increasing if g is non-decrcasing hut non-constant.

Lemma 1 [f g is weakly increasing, then g is continuous on the whole range except at

most countably many (e.c.) points.

Lemma 2 For any non-negative random variable Z.
B2y = [ Szinde.
Furthcrmore, {f Sz, — Sz, cxeept at most countably many points, then E(Z)) = E(Zy).
Theorem 2 [f Z = N(T) and lv is a weakly deceasing function, then
7 (Z) = E[M(T")].  where Fr.(t) = [Fr(t)]s.
Proof: Since Z = h(T) and & is weakly decreasing. we have

Sury(t) = Pr{l(T) > t} = P{T < b7 (1)} = Fr(h™'(t)). e.c.

T (Z) = /. Syt dt = /0"‘FT<y)%dh(y), with ¢ = h(y).
Similarly,
BT = [ Pr(y)dhiy)

Thus, when Fr.(#) = FT(t)i we have 7,(Z) = E(h(T™)). O
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5 LEVEL BENEFIT INSURANCE

We assume that the foree of interest 8(t) is deterministic, and the discounting function
is v = oxpl— [£8(s)ds]. In the special case of constant foree of interest d(t) = 4 and
"= emdt

An insurance contract is defined by the benefit function by, The loss variable, as a

function of the time-until-death T, can be expressed as
Z = I)T V.

When the msurance benefit is fixed at a constant level, we call it level benefit insur-

ance, which 1s a common form of life insurance contracts.

Lemma 3 For a level benefit n-year term (or n-year endowment) insurance, the loss

variable Z is a decreasing function of the time-until-death variable T.

Remark:

o A whole life insurance can be viewed as a special n-year term insurance with

n = w — a (the limiting remaining future lifetime).

e The Lemma holds regardless whether the payment 1s made at the moment of death,

or at the end of the period in which death occurs.

Theorem 3 For a level benefit n-year term {or n-year endowment) msurance, the visk-

adjusted premium with indez p > 1 4s
1
Q(Z) = E(brrvpe), with Fr.(t) = [Fr(t)]#.

In other words, for a level benefit n-year term (or n-year endownment) insurance, the
risk-adjusted premium is still the expected loss but under an adjusted time-nntil-death

variable 7. This method of pricing is cquitable.
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Remark: When calculating the risk-adjusted premium ®(Z) for a level benefit
n-year term (or n-year cndowment) insurance. the adjusted time-until-death variable
T~ docs not depend on the deterministic interest rates. It is noted that the standard

deviation principle lacks this nice property.

5.1 Term Insurance

For an n-year term insurance payable at the end of the year of death,

n—1
k
Ax i — z v + EPr Qet ke

k=0
n-1

= S 0" e — ) (4)
h=0
n—1

= Y- ot g + 0" e

k=1

The risk-adjusted premium for an n-year term insurance can be caleulated as

w1
PlA) = E" [es142) ~ (r92)*) (%)
A=0
n-1 1 \
= Y (1 )oF ega)e + 0" (nga) 7.
k=1

From (5) we can get a recursive method to evaluate Al

S s follows:

o Firstly,

1 l 1
R O e L
e For k from 2 to n apply the following recursion:
Loy 1 [T
BALE) = Bl )+ (1= S - (%)

5.2 Endowment insurance

For an ni-year cudowtuent msurance payable at the cud of the year of death,

—

“]

41 . ;
Arzﬁl v kP Qet k + " nPr

>
Il
(=3
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1
= (-t gt
k=1

n

The risk-adjusted premium for an n-year endowment insurance is
n-1
B(Aem) = S (L= 0¥ (q.)F + 0™
k=1
Remark: When calculating the risk-adjusted preminm, it is casier to work with
the life table function I than the mortality rates q, (noting that rq, = 1 — Lyr /1), If
the benefit is payable at the moment of death, cffective approximations can be done by

refining the life table in terms of a smaller time unit. For instance, one can interpolate

the life table functions for ages at cvery month or every weck.

6 AN EXAMPLE

Consider a person of age 50. Assume that the mortality rates are as given by the
Hlustrative Life Table in Actuarial Mathematics {1] which is based on the Makeham law
for ages 13-110:

10004, = 0.7 + 0.05(10%9%)".

Assume that the face amount is 1,000 and the annual effective interest rate is a constant
at 6%. Use p = 1/0.95.
By using recursion (6) onc can casily calculate the risk-adjusted single premiums. Ta-

ble 1 gives the risk-adjusted single premiums for k-year term insurance (k=1,2,-.. 5}

First assume that the person (50) chooses to buy 1-year term insurance and to renew

every year. The l-year term premiums for subsequent years are given in Table 2.

From Table 2 one can sce that the 1-year termn premium goes up with age every year.
The cxpected present value of total (future) premiwmn payments is
4

3 kpsov*®(AL, 7)) = 37.0708,

k=0
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Table 1: RISK-ADJUSTED PREMIUMS FOR A PERSON OF AGE 50

Terin Single premium

1 year (I)(A}.n-ﬂ) = 7.2176
2-year | (A} 5 ) = 14.0522
3-year <I>(A;U 5) = 20.8152
4-year | B(A ,0 4| = 27.5698
b-year | B(A] - } = 34.3458

Table 2: RISK-ADJUSTED PREMIUMS FOR ONE-YEAR TERM INSURANCE

Age Premium

50 (I’(Aéu:ﬂ) = T7.2176
51 (I)(Aél:ﬂ) = 7.7981
52 q)(AéZ:TI) = 8.4316
53 (I)(Aé&ﬂ) = 9.1230
54 | D(AL,g) = 98774
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which is approximately 7.93% higher than the single premium q)(Aéu:E]) = 34.3458 for a
G-year term insurance.

Remark: The risk-adjusted premium provides a discount to multi-year contracts. This
is reasonable since a person can only die once. Thus, the losses in each policy year are

negatively correlated. By contrast, the traditional equivalence principle does not provide a

discount to multi-year contracts.

6.1 Level premiums by annuity certain

If the risk-adjusted single premium ®( Az ) for an #-ycar term insurance is paid through
n level installment payments commencing at the beginning of each policy year, then by
assuining annuity certain, the annual level premium payment is

Q(Aé :ﬁ)
$Abpm) = — 2

a’_1|

Some valnes of ¢( AL, ) are listed in Table 3.

50:71)

Table 3: RISK-ADJUSTED LEVEL-CERTAIN PREMIUMS FOR A PERSION AT AGE 50

Term | Level certain premiumT
1-ycar ¢(Aé0;ﬂ) =7.2176
2year | (Alyz) = T7.2308
3-year d)(A;Oﬁ') = 7.3464
4-ycar ¢(Aéo;i[) = 7.5060
5-year ¢(A;o;§1) = 7.6920

7  THE RISK-ADJUSTED CASH VALUE

Consider the same person of age 50, denoted by (50). Assune that (50) bonght a 5-year

term insurance and is paying a level premium qb(AéU:g’) = 7.6920 at the beginning of
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cach policy year. It is noted that ¢(A;0:§1) is higher than all (*b(Aéu,EJ) for k =1.2.3.4.
In the A-th policy year (A < §) (50} can stop paying premiums and deelare his policy as
a k-year term rather than a d-year term. (50) is allowed to do so without owing moncy
to the insurance company since he has been paying premiums higher than any k-year
terin level premiums (K < 5). In fact, (50) may be entitled to reccive some cash value
by declaring a shorter term contract.

For exaple, if (50) stops paying premiums after the third policy year, the cash-value

at the end of the third year 1s the accummlated balance:

[p(AL =) — AL =)](1.06% + 1.06 + 1.06) = 1.1665.

505 50:3]
It is very interesting to compare this risk-adjusted cash value to the net premium

cash value. One can casily check that the net level premims are

Pjyg = 6.017L, P = 6.4780.

50:3]
As such, the net premium cash-value is

(P} Pl oSJ(1.06% 4+ 1.06% 4+ 1.06) = 1.5555.

505] 1 50:3

Remark: We have seen that the risk-adjusted cash-value is less than the net premium
cash value. Thus the insurer and the continuing policies can better be guarded from losses
in cases of massive withdrawals,

Remark: Note that the exposure is carned gradually as a time-evolution process.
In practice, for loug-term contracts, premiums are usually collected periodically as an
annuity. Since the wortality rate generally increases with age, by collecting level pre-
miums, the insurcer carns prewins more quickly than exposure. Thus no extra risk
is assurued by dividing a single premium into level periodie premiums. This argument
suggests that an annuity-certain should be used in dividing a single risk-adjusted premium
into level periodic premiums.

Remark: The allocation of expenses and the associated modified reserves can be

done accordingly as i Actuarial Mathematies [1].
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8  DEFERRED INSURANCE

Now consider an m-year deferred n-year term insurance.
The present value of insurance benefit is
0, if0 < T(x) <m,
Ze=13 2T ifm <T(x)<m+n
g, ifm+n < T{z).
One can verify that

Z: = (T'm me) Za:+m

where

Tt 0 < Tz +m) < n
ZJH—m =

0, if n < T(z+m).

From the equation
Pr{Z: >y} = mpe Pr{Zeym > y/o™}

we have

1
(P( m?A;]::ﬁ[) = ’Um( mpx) F(P(A;+vvt:ﬁ])'

9  INSURANCE PRICING: A GENERAL MODEL

Now we consider a more general insurance contract in which

1. The benefit varies with timme of death and may depend on other factors (c.g. cause

of death, place of death, etc).

2. The interest rates vary with time and follow some stochastic process.

It is well-known that interest rate is an important factor in pricing long-term con-

tracts. Nevertheless, one can always use Monte Carlo simulation to generate various

scenarios. Omnce the sample loss distribution is obtained by simulation, onc can ap-

ply the PH-transform to this sample distribution to arrive at a price for the insurance

contract.
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10 ANNUITIES

Generally, uulike life insurance contracts, annuitics are increasing functions of the future

lifetime variable,
Theorem 4 IfY = y(T') and g is weakly tmicreasing function, then
7,(Y) = E[g{IT,(TH]. p>0.

Proof:
(3) Firstly
Sy(t) = Pr{g(T) > t} = Sr(g7'(t}). e.c.

(i1) Secondly
Symrnlt) = PHIL(T) > g7} (1)} = [Szly 7' (1)]7. e.c.
(ii1) Thercfore, [SY'U)]% = Sym,ir){t) e.c.  From Lemma 2 we know that
7 (YY) = EgIl(T)}]. p>0. O

Theorem 5 For o single premaum annuity, the risk-adjusted premium. can be calewlated
as the expected cost wunder an adjusted future lifetime varviable T* = TL(T) {p > 1), i.c..

the proportional hazard transform of T

For example. the net single premium for an me-year deferred life annuity is

w—r-1
P *
mffle = Z " klz

k=1
Given an index p. the risk-adjusted single preminm is

~1
O yiie) = vk Lape)r.

W

L3

£
il
3

Annuities with multiple decrements can be adjusted shmilarly by a proportional de-

crease in cach single associated hazard rate.
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11 CONCLUSIONS AND FUTURE RESERACH

In insurance pricing, equity is demonstrated through the risk/reward relationship: higher
premium for higher risk. The new pricing theory of this paper has an inherent merit of
equity.

The practical implications are rather interesting and need more discussion from prac-
ticing actuarics. Many pcople belicve that insurance prices should be market driven.
However, in today's life insurance market, the rclative low prices for short-term con-
tracts and the high premiums for long-term contracts are rooted in the actuarial ‘equiv-
alence principle’. As a result, many policy-holders are moving away from the overpriced
long-term contracts to the underpriced short-term polices.

An individual, who may enjoy the low prices for short-term lifc insurance at younger
ages, will probably pay back more when he/she gets older.

If some insurers take the lead to give more of a discount to long term contracts, policy-
holders would realize the benefit of long-term commitment and thus choose long-term
contracts. The loyalty from policy-holders, in return, will further reduce the transaction
costs and commissions.

In Actuarial Mathematics [1], life contingencies is thought as an integral part of
risk theory (a part of non-life insurance mathematics). KLING's [2] doctoral thesis also
applied non-lifc techniques to life insurance problems. In WANG [4]), the PH-transform
was firstly proposed to price casualty insurance layers based on considerations such as
layer-additivity and increased relative loading at upper layers. The present paper shows
that the PH-transform provides a unified approach to risk loads in both life and non-life
msurance.

It is noted that insurance and investment have a dual relationship. It is possible to
apply the PH transform to the pricing of bond default risk. However, one should be

aware of the complications of diversifiable/non-diversifiable risks.
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