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ABSTRACT 

In the context of insurance economics, the PH-transform is justified through some 

basic postulates on markct premiums. In this paper the PH-transform is applied to tlic 

present wdue random variable in life insurance and annuities. It t)rovides an alternatiw~ 

to the commonly used 'equivalence principh" in life insurance and anmfities prenfium 

calculatioi,. The new pricing scliemc has interesting implications such as (i) the relatiw; 

loading for s[iort-term [if(', insurance decreases with age; (ii) more of a discount is given 

to hmg-term contracts, which will provide an incentive for loyalty from policy-liold~rs; 

and (iii) the risk-adiusted cash value is less than the net t)remium cash value. 
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T H E  R I S K - A D J U S T E D  P R E M I U M S  FOR 

LIFE I N S U R A N C E  A N D  A N N U I T I E S  

Shmln Wang 

1 INTRODUCTION 

Traditional life contingencies interprets a fife table as a (let(,'rnlinistic survivorship sum- 

lnm'y resembling the negative growth rates in ecology and economics. Naturally tim 

'(!quival(mce t)rinciple ' (i.e., the average loss) is used ill fife insurance pricing. A safety 

margin is imposed implicitly by using conservative interest and mort'Airy rates. For 

instance, a common t)ractie(~ is to add a percentage to the mortality rates. 

Only until recently does life insuraucc matliematies take a t)robabilistic apl)roaeli. 

The mod~rn text of Actuarial Math~wzatic.~ [1] starts with tlie assumption t, hat time- 

until-deatli (T~) is a eontimlons random variable. By recognizing tliat the present value 

of insm'ance benefits, Z, is a function of the time-until-deatli T~ life coneingencies 

become an integral part of risk theory. Witli tliis probabilistie approach, many rich 

ran(lore v~u'iable concepts come into play; for instance, survivor distril)ution, hazard 

rate, expected vahle, alld variaiice. 

It is recognized that tlie present wdue of insurance benefits, Z, is conceptually and 

mathematically the same as the loss variable ill general insurance. Thus, the risk-h)ading 

can be imposed in the same fashion as in casualty insurance. 

Recently, WANG [4] proposed a new premiuln eah'ulation principle based on 1)ropor - 

tional hazard translbrms, whicll (:all. ])e at)plied to any loss distribution regardless of 

whether it is for casualty insurance or for life insuraltce and annuities. 

This paper applies tile proportional hazm'd transform method to the pricing of life 

insurance and annuities. It has the f()llowing practicM implications: 

1. Under today's pricing schelne, short-ternl insurance for younger ages m'e under- 
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priced, but overpriced for older ages. 

2. Wi th  the  ncw pricing theory, the risk-adjusted cash value is less than the net 

I)remium cash value. Thus the insurer and the continuing policies can be t te r  be 

guarded from losses in cases of massive withdrawals. 

3. The new pricing theory gives more of a discount to long-term insurance contracts  

which, in turn,  will provide an incentive for long-term commitment  (loyalty) fi'om 

policy-liolders. 

The n o t a t i o n s  

l ,  

T ~ = T  

t P .  = 1 - tq~ 

,I)(A) 

will be n,ostly the same as in Actuarial Math.treaties [1}. 

The number  of surviw)rs at age x 

T h e  t ime-unti l-death for a person of age x 

Pr{T~ > t,} 

the risk-adjusted premium for a life insurance contract  A 

2 

Consider tim following short- term insurance contracts: 

policy age x at issue term mortali ty rate q, 

1 35 1 year 0.0016 

2 70 1 yem' 0.0320 

DETERMINISTIC VERSUS STOCHASTIC LIFE CONTINGENCIES 

benefit 

100,000 

5,000 

1 =1).  For simplicity, we ignore tim interest rate discounting factor (i.e. v = i77 

2.1 D e t e r m i n i s t i c  life c o n t i n g e n c i e s  

As a result of the deterministic view of life table, the ~equivalence principle'  is used in 

premium calculatim,. The net premiums for bo th  policies 1 and 2 are tile same at 

100,000 × 0.0016 = 5,000 × 0.032 = 160. 
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If. as in cotmnon practice, s~ffety margins are impose.d by adding a percentage" (s~y 15%) 

to the mortal i ty rates, botl, contracts will haw~ the same risk-adjusted premimn at 184. 

2 . 2  S t o c h a s t i c  l i f e  c o n t i n g e n c i e s  

The standm'd deviations of losses for two contracts are 

a(Z~) - 100,000V/(0.00t6)(0.9984 ) = 3996.8, 

rr(Z=) = 5,000V/(0.032)(0.968) = 88O. 

If risk-loading is based on the s tandard deviation principl(; 

42(Z) - E ( Z )  + ( trr(Z) ,  say ,t - 0.01, (1) 

the risk-loaded prC'lllillll[ for t)olicy 1 is 

,~(Z~) - 160 + 3996.8(0.01) = 200; 

and the risk-loaded premium for policy 2 is 

'I'(Z2) = 160 + 880(0.01) -- 168.8. 

2 . 3  A g e n e r a l  c o m p a r i s o n  

Consider a general one-year term insurance for (x) with face amount, b payable at, t, hc 

end of the year of death. Assume that  the mortali ty rat(,' is q, and tim effective interest 

is i. The t)r(;seltt value of the insurance loss is 

Z = {  b/( l+i ) ,  it'T~ < 1. 

O, it' ~/!~ > 1. 

The s tandard deviation principle gives a risk-loading of 
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Since 

da(Z) b 1 - 2q= 

dq= 1 + i V/~(1 ~ q~ ~ 

the risk-loading increases with age provided ~hat q= _~ 0.5 as in most practica |  cases. 

Tile relative risk loading 
c~a(Z) _ / l - q =  
E(Z)  ~ V  q* 

is a dec, rc, asing function of q=. This lint)lies tha t  the relative risk loading should decrease 

with age. 

Now let us re-exanline the traditional I)rcmium calculation method. An increase of 

15% in the mortal i ty rates results lit a relative risk loading of 15%. This does not reflect 

the relative varial)ility of the insurance contracts at different ages. 

Based on the above analysis, the traditional 'equivale, nce principle' undert)rices short- 

t,c'rm contracts  for younger ages, but  overt)rices for older ages. In other words, younger 

ages are subsidized while old ages m'e penalized. 

3 A DEFINITION FOR A HIGHER RISK 

We define a risk Z as a non-negative loss random variable. It is determined by its 

distri tmtion fllnction Fz(t)  = Pr{Z _< t} or survivor function Sz(t)  = Pr{Z > t}. For 

convenience, we do not distinguish between risk Z and its distribution fimction Fz(.).  

As a basic requirement,  an equitable pricing scheme should assign a higher premium 

for a higher risk. What. is the definition for a higher risk then ? Fortunately,  there is a 

gencrally agreed upon definition for higher risks (e.g. ROTHSCHILD and STIGLITZ [3]). 

D e f i n i t i o n  1 Ri,~k Z1 is less risky than Z= (notation Zl 4< Z=) i f  and only i f  any of the 

followin.q equivM~:7~t conditions hold 

1. For all increasing concave utility function.~ u, 

E[ , , ( -Z , ) ]  > < . . ( - Z ~ ) ]  

i.e., aT~ ordering shared by all risk-averters. 

449 



2, The nrt ,~top-los,~ pr~ Tmums so~sf, q the h~eq'uoli~y 

"(:/ ~)dFz,{~) 5 (~,/ ~,)dFz~(yl, / o , .  ,,~z , > o. 

By assuming that all prudent insm'ers are risk-aw~rse, an equitable pricing should 

preserw'~ this natural ordering of riskim'ss. 

R e m a r k :  It is noted thai the standard deviat.ion t)rincil)le does not preserve 

tl, e natural ordering of risks and its such is not equitable. For examI)l(~, 

considc'r an ~'t-y,!a.r t, e r l n  illsurallcc with an incrc'asing })(merit 

b t = {  0( l+i) t '  u<h0<t<n" 

The present value of insurance benefits, Z, has a Bernoulli distribution with 

Pr{Z I}  = n'l=. 

The risk-adjusted prcntimn based on tit(', standard deviation l,rinciple is 

~I~(Z) = q + ¢tv/q(1 - q), where q = ,,%. 

One can <:asily wa'ify that 

d,I,(Z) __ 1 + 't ~ ( 1  - 2q) 
dq 2 ~/q(1 - q) 

Since u~(z2 dq q=o.,5 -- 1 and lira,/-+1 aez~ = dq - o o .  after some point in time 

the risk-adjusted preluiunt decreases as the term of tim contract, increases. 

Obviously the undexlying risk incl'ease8 as the term n increases. Thus the 

natural ordering of risks is violated by the. standard deviation principh:. 

4 AN EQUITABLE RISK/REWARD RELATIONSHIP 

Def in i t i on  2 The p r o p o r t i o n a l  haza rd  (PH)  traT~,@.'m ilU'~t, 't:ltde:r p ~ i is d¢!/z)led 

as a, "mappi*l 9 

H,, : Z ~ I L ( Z  ) 
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I 

& : ) ( t )  = s z (~ )~  (p _> 1). (2) 

When Z is continuous, the PH transfornl (2) is equivalent to a proportional decrease 

in the hazard rat(.' #z(t)  - 3  log Sz(t): 

#iI/Z)(t) 1-#z(t), t >_ 0, g > 1. 
P 

In terms of density flmcfions 

1 ~ 1 
fno(z)(t ) = [ -Sz( t )~-  ] I z ( ~ ) ,  

P 

where the increasing weight fimction }Sz(t)~, -1 gives more weight to lm'ger losses. The 

expe(:ted value of the transformed vaa'iable He(Z ) contains a risk-premium. 

Defini t ion 3 For a given risk Z, g~.e r i sk -ad jus ted  p r e m i u m  is deflated as fl~.c cz- 

pected value of the transformed va,'iable ilp(Z): 

f,," ' fro(Z) = E[II, ,(Z)] = Sz(t);dt, :, > 1. (3) 

It is shown in WANG [4] that rr:(Z) (p _> 1) has the following dc'sirablc properties: 

1. E(Z) <_ 7rp(Z) <_ max(Z). 

2. ~ o ( a z + b ) = ~ . ( z ) + &  a > o .  

7rp(aZ) ano(Z ) (scale' inwu'iant or positive homogeneous); 

r6,(Z + b) %(Z)  + b (transbdion invariant); 

~rp(b) b (no unjustified loading). 

3. Sub-additivity: for any two risks Z1 and Z2, be they in<tependen~ or not, 

~ ( Z t  + Z~) < ~,(Z,) + ~,(Z=). 

(Otherwise one can tmrchasc separate insnrmtcc for risks Z1 and Z>) 
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T h e o r e m  1 T/.~ PH-b~an.~f.rn~ t.'incipie (,~]) i,~ cqttitable in tar! .~!~*m: dmt it pvf!,<e~'ves 

the 7~atm'al orderlnfl of rI'i.~k.~: 

Z~ -~ Z2 = ~  ~rp(Z~) < ~,,(Z2). 

Proof:  S(:(: WANG [5]. 

A func t ion  g is w,~akly in(:r(~asing if :l is n(,n-(l(!,!r~asing l)ut non-c(mstant .  

L e m m a  1 l f  g i,s weakly mcr~:a,~i~fl, th.c~ fl i.~ coz~tb~I~o.lz.~ on t]~: u,hol~ raTtgc e x c e p t  . t  

~ost~ c o u n t a b l y  ~,,t. .!/(e.c.) point.s. 

L e m m a  2 For any *m~l,-negative rando'm variable Z, 

E ( Z )  = ~' Sz( t )d~.  

Fu'rthermore. if Sz,  - Sz., except at most  coan&~bI!/ .~,any point.,~, then E(Z~)  = E(Z2) .  

T h e o r e m  2 I f  Z - h(T)  and h i,~ a ~eakly dcceasi~g flm.~tim~, the~ 

% ( Z )  = E[h(T' )] ,  wht'r,: F~.(t)  --[FT(t)] ,  ~. 

P r o o f :  Sin(~(, Z -- h(T)  and h is weakly (t(!c.r(!asing, w[: haw'~ 

S,,(T)(t) = P r { h ( T )  > t }  - P r { T  < h t ( t ) }  - FT(h-l(t)), e . c .  

~rp(Z) = S~,(T)(t)]~dt = FT(!I)T"dh(!I), wi~h t h(y). 

Similarly, 

E ( h ( r ' / t  = ~r.(!~tdh(:~/ 

I 

Thus,  when FT.( t )  = FT(t);  w(~ hay,: 7rp(Z) = E ( h ( T ' ) ) .  [] 
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5 L E V E L  B E N E F I T  I N S U R A N C E  

We assume tha t  the force of interest  ~(t) is determinist ic ,  and th(" discount ing fimcti(m 

is v, = ( , .xp[-fla(.s)d.s] .  In the special case of constant  force of  iutcrest  8(t) = a" and 

¢!t ~ ( ? - ( i t .  

An insurance contract  is defined by the b(~'ncfit funct ion bT. The  loss wu'iablc, as a 

funct ion of  the t ime-unt i l -dea th  T,  can be expressed as 

Z = b r  Yr. 

W h c n  the insurance benefit  is fixed at a cons tan t  level, we (:all it level benefi t  insur- 

ance, which is a comnton form of  life insuranc(." contracts .  

L e m m a  3 For a level benefit, n-year' te'rrn (o7" n-!tear endowment )  inmtrr~*ZCC, the los,~ 

variable Z is a dccreasinfl f~mctioT~ of  the t ime-unt i l -death variable T .  

R e m a r k :  

• A whole life insurance can be" viewed as a si)ecial 71-year t e rm insurance  wi th  

71 - w - x (the l imiting r('.maining fiature lifetime). 

• The  Lenmla  holds r(~gar(lless wh(.'ther the paymen t  is ma(l(~" at the  m o m e n t  of d(!ath, 

or at the  end of  th(" p(.'riod in which dea th  occurs.  

T h e o r e m  3 For a [eve.[ bm~.e.fit n - W a r  term. (or n -year  e,~do.l~mle~.t) i~lsurm~cc, the rish- 

a.d.j.~tsted prc?nilm~ ~*~#.h. 'index p > 1 is 

(#(Z)  - E (b r .VT . ) ,  ,,itt~. FT. ( t )  = [Fr( t ) ]~ ' .  

lit o the r  words, for a level })eltelq.t n-year  tel'ill (or  /.,,-year (:n(lowntc'nt) insurance ,  th('. 

r i sk-adjus ted  p r e mium is still the  exp(;cted loss but  nnd(.'r an adjust('.d t imc-unt i l -d( :a th  

variable T*. This me thod  of pricing is equitable.  
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R e m a r k :  W h e n  ca lcu la t ing  tt~,~ risk-wt.justc,t p r e m i u m  'P(Z) fi~r a level benefi t  

u-yem" t e r m  (or ~-y~ar  ,~udowm(m~) ivsuranc(, .  ~,hc ad.jus~ed t ime-un t i l  d e a t h  wmal , l c  

T" does  not  (lop(rod (tit t im de te rmin i s t i c  int.crcst ra tes .  It is no ted  t ha t  the  st~-lndard 

( | (wiation 1)rinciplc lacks this nlc(~ prolmrty.  

5.1 Terin Insurance  

For a.n 7~-ycar t(:rm insuranc(~ payable  at  the  end  of the  year  of  ([(~ath, 

i p~:+l 

,~-=0 
r*-  1 

E ,i~'+ir = , > + , q =  ~.q~] (4) 
k . - o  

b-1 

T h e  r i sk - ad ju s t ed  l ) r emimn  for an  '~t-ycar tm'm in su rance  can  t . :  ca]cn[atc(l as 

n--i 

k=O 
n- l 

= ~(i ~, ~, (~q~o +,,,"(,,q:~)~,. 
/,'=1 

P r o m  (5) we can get  a recurs ivc  m,~'thod to ewdua t c  A~:,, I as follows: 

• Firs t ly ,  

(I,(A'~j) ,,(q~)a _ . , , ( 1 -  

• For k fi 'om 2 to apply  the  following r(~cm'sion: 

,I, IA~. j )  ,~ , (A~.~j )+, ,~[ (1-  C ' (1 ~ '1. (G) 

5.2 E n d o w i n e n t  insurance 

For au  n - y e a r  c m | o w m c n t  insurance payable  at, the  ~tt(] of  the  year  of  ,tcadl, 

n 1 

= ~ ~,.p. q~+k- + I 'n ,,p~- 
k=0 
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= ~ ( 1  - v)v~',,q. + v" 
k = l  

T h e  r i sk -ad jns ted  t ) rent ium for an n-year  endowmen t  insurance, is 

n - 1  

(I)(A,:<) - ~ ( 1  - v )v  k (kq,)} + v n. 
£'=1 

R e m a r k :  W h e n  calcula t ing the  r i sk-adjus ted  p re ln imn,  it is easier to work wi th  

the  life tab le  f lmct ion l ,  t han  the  mor ta l i ty  ra tes  q= (not ing  t ha t  t.% - 1 - l~+~./l,). If  

the  benefi t  is payable  at  the  m o m e n t  of dea th ,  effective apl ) roximat ions  can be done  by 

ref ining the  life ta})le in t e rms  of a smaller  t ime  uni t .  For  ins tance ,  (me can in t e rpo l a t e  

the  life table, func t ions  for ages at  every m o n t h  or ew:ry week. 

6 AN EXAMPLE 

Collsider  a person  of age 50. Assmne  tha t  the  mor ta l i ty  ra tes  are as given by the  

I lh l s t ra t ive  Lift'. Table in Actl~avial Matherrlatics [1] which is based on the  M a k e h a m  law 

for ages 13-110: 

1000#= = 0.7 + 0.05(10°°4) =. 

A s s u m e  tha t  the  f:ace a m o u n t  is 1,000 and  the  annua l  effective in teres t  rat,(: is a cons t an t  

a t  6%. Use p = 1/0.95. 

By  using recurs ion (6) one can easily cah:ulate  the  r i sk -ad jus ted  singh: p r emiums .  Ta- 

bh'. 1 gives the. r i sk -ad jus ted  single p r emiums  for L:-year t e r m  i n s m a n c e  (/,: = 1 , 2 , - - - ,  5). 

F i rs t  assume tha t  the  person (50) chooses to buy  1-yeaa" t e r m  insurance  and  to renew 

every year.  T h e  1-year t e r m  premiums  for subsequen t  years are given in Table  2. 

F rom Table  2 one can see tha t  the  1-year [m'm p remiun l  goes 11 I) wi th  age every  year.  

T h e  expected, pres(:tl.t wdu(: of toted (fur(ire) p r e m i m u  payn ten t s  is 

~-ps~v ~(As0+~,:71 ) = 37.(1708, 
k=O 
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Table 1: RISK-ADJUSTED PREMIUMS FOR A PERSON OF AGE 50 

Term Single prenfiunl 

1 year 4'(A~5o:il) = 7.2176 

2-year 4~(Atso&) = 14.0,522 

3-year 4~(Also:gl) = 20.8152 

4-year ~I~(A15o:~1) = 27.5698 

5-year ¢I~(A~o:gl) - 34.3458 

Table' 2: RISK-ADJUSTED PREMIUMS FOR ONE-YEAR TERM INSURANCE 

P, 'emimn 

Asg0 e q'(A~o:rL)~- 7~2176 

51 '~(Alsl ~1 ) = 7.7981 

q'(A~2:~l) = 8.4316 

5523 ¢I,( A'53 ~)) = 9.1230 

5 4  (I'(A'4 TA) ) 9.8774 
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which is approximately 7.93% higher than the single premimn (1)(Als0:gl) = 34.3458 for a 

5-year term insurance. 

R e m a r k :  The risk-adjusted premium provides a discount to multi-year contracts. This 

is reasonable since a person can only die once. Thus, the losses in each policy year are 

negative[}, correlated. By contrast, the traditional equivalence principle does not provide a 

discount to multi-year contracts. 

6 . 1  L e v e l  p r e m i u m s  b y  a n n u i t y  c e r t a i n  

If the risk-adjusted single premium ,I,(A~o:,~) for an n-year term insurance is paid through 

n level instalhnent payments comnlencing at the t)eginning of each policy year, then t)y 

assuming annuity certain, the annual lew:l premium payment is 

1 

¢(Aso:<) /i~l 

Some values of ¢(A~o:~l) are listed in Table 3. 

Table 3: RISK-ADJUSTED LEVEL-CERTAIN PREMIUMS FOR A PERSION AT AGE 50 

Term Level certain premium 

1-year = 7 . 2 1 r 6  

2-year ¢(A~0:$1) = 7.2308 

a-year ¢(A~o:gl) = 7.3464 

4-year ¢(A~o:,I)- 7.5060 

5-year ¢(AI,~o:sl ) = 7.6920 

7 THE RISK-ADJUSTED CASH VALUE 

Consider tit(', same person of age 50, denote.d by (50). Assume that (50) bought a 5-yem" 

1 term insurance and is paying a level t)renliunl ~b(A~0:~[) = 7.6920 at the beginning of 
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e~tch policy year. It is noted that  0(A~0:~l)is highc'r than  M1 ~b(Ats0:~,j ) for /,' - 1,2.3, 4. 

Ill the k-th policy year (k < 5) (50) can stop paying premiums and declare his policy as 

a k-year t(~rm ra ther  than  a 5-year term. (50) is allowed to do so without  owing mox,ey 

to the insurance company since he has been paying prenliulns higher than any k-year 

term level premiums (k < 5). In t~ct, (50) may })e entit led to receiw" some. cash wdue 

by declm'ing a shorter term contract.  

For examt)le, if (50) stops t)aying premiums after the third policy yem', the cash-value 

at the end of the third yem" is the accumulated balance: 

[¢ (A~, , :~ )  - , / , (A~, ,:~,)](1.06 ~ + 1.tJ6 "~ + 1.()6) = 1.166,~.  

It is very interest ing to compare this risk-adjusted cash value to the net premium 

cash value. One can easily check that  the net level premiums are 

P~o:51 = 6.0171, P~o:~l = 6.4780. 

As s .ch,  the net premium cash-vahle is 

[P~(,:gt- P~o:51 ](1'063 + 1"06~ ÷ 1.06) = 1.5555. 

Remark:  We have seen that the risk-adjusted cash-value isiessthan the net premium 

cash value. Thus the insurer and the continuing policies can better be guarded from losses 

in cases of massive withdrawals. 

R e m a r k :  Note that  the exposure is e~u'ned gra(lually as a time-ew)hltion t)rocess. 

In practice, tbr long-term contracts,  premiums ~u'(~ usuMly collected periodicMly as an 

ammity. Since the mortal i ty rate generally increases with age, by ~:ollecti~lg h.wel pve- 

miunts, tit(." insurer earns prcmiulns ntore quickly than eXl)Osur(:. Thus no extra  risk 

is assumed by dividing a single premium into hwel periodic prenfiums. This argument 

suggests that an annuity-certain should be used in dividing a single risk-adjusted premium 

into level periodic premiums. 

R e m a r k :  The allocatiott of exl,eltses a.n(l the associated modified reserves (:all b(} 

done accordingly as in Actuarial Mathematics [1]. 
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8 D E F E R R E D I N S U R A N C E  

Now consider an m-year dethrred n-ye~u" term insurance. 

The present wdue of insurance benefit is 

0 i f O <  T(x)<m, 

Z= = v "rI=), i f  m < T ( x )  < m + n 

O, if m + n < T ( z ) .  

One can verify that 

where 

From the equation 

z .  = (v'", , ,p.)  z.+,,, 

we have  

I vTl=+m)' i f 0 < T ( x + m )  < n  

( 0, if 7~ < T(x + m). 

Pr{Z= > y }  = ,,,p;~ Pr{Z=+. ,  > y/v"} 

1_ 1 ~,(,,,iA'.:~r) --:'(,np.)'¢'(A=+,,,:~.), 

9 INSURANCE PRICING: A GENERAL MODEL 

Now we consider a more general insurance contract in which 

1. The benefit varies with time of death and may depend on other factors (e.g. cause 

of death, place of death, etc). 

2. The interest rates vary with time and folh)w some stochastic process. 

It is well-known that interest rate is an important factor in t)ricing long-term con- 

tracts. Nevertheless, one can always use Monte Cm'lo simulation to generate various 

scenarios. Once the sample loss distribution is obtained by simulation, one can ap- 

ply the PH-transform to this sample distribution to arrive at a price fi)r the insurance 

contract. 
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1 0  ANNUITIES 

General ly ,  unlike life ittsuranc(~ cont rac t s ,  annui t ies  arc in(:reasing func t ions  of the  futur('~ 

lif(~time variabh~. 

T h e o r e m  4 I f  Y = 9(T)  ~md 9 is wcah:ly i~crca,~iTz 9 f lmction, then 

, . , , (v)  = eI.q(n,,(J'))l,  e > 0. 

Proof:  

(i) Firstly 

S v ( t )  --  Pr{ .q(T)  > t }  = S T ( . q - ' ( t ) ) ,  e.c. 

(ii) Secondly 

S,  tn,(Tl~(t)  -- P r { U , , ( T )  > .q ~ ( t ) }  -- [ST(,./ ~(t)))~', e.c. 

( i i i )  There fore ,  [Sr-(t)}~' = S , (n , ( r l ) ( t )  e.c.  Ft,, , , ,  L c m m a  2 wc know tha~ 

~ , , ( Y )  - E { 9 ( r t , , ( T ) ) ] .  p > O. 

T h e o r e m  5 For a .~l)~gb pT'~.mil~v~ a.unuity, tt~c risk-,dj,,~tcd prc~r~ilt'm ca.zt b~ c~lculotcd 

as the ea:pectcd ,ost ,,,t,lcr ,,,~ ,,dj'ust,~d f,~turc lif, time variable T* - IIt,(T ) (t' > 1), i.,~., 

the propoI'timml ba.zard trm~sform of T .  

For example ,  the  n(,t single I>r(~mium for an 'm.-ycar dcfi~rrcd life annuit, y is 

a J  x - i  

,,lii~, = ~ ,  v k ~p=. 
k = m  

Given  an  index p. tit,! risk-a(l.iust~,d singh: 1)remium is 

w - a : - I  

,I,(,,,la~ ) = ~ ,k (~.p~)~. 
/¢~rr l  

Annui t i e s  witJ~ mul t ip le  d~cretnen~s can bc  adjust~'d similarly by a [n'~portional de- 

crease ill each single associa ted  haza rd  rate .  
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11 CONCLUSIONS AND FUTURE RESERACH 

In insurance pricing, equity is demonstrated through tile risk/reward relationship: higher 

premium for higher risk. Tile new pricing theory of this paper has an inherent merit of 

equity. 

The practical implications are rather interesting and need more discussion froln prac- 

ticing actuaries. Many pe.ople believe that insurance prices shouht be market driven. 

However, in today's life ins~lranee market, the relative low prices for short-term con- 

tracts and the high premiums for long-term contracts are rooted in the actuarial 'equiv- 

alence principle'. As a result, many policy-holders are moving away ti"om the overpriced 

long-term contracts to the underpriced short-term polices. 

An individual, who may enjoy the low prices for short-term life insurance at younger 

ages, will probably pay back more when he/she gets older. 

If  some insurers take the lead to give' more of a diseount to long term contracts, policy- 

holders would re'aJizc the benefit of hmg-term commitment and thus choose long-term 

contracts. The loyalty from policy-holders, in return, will further reduce the transaction 

costs and commissions. 

In Actuarial Mathematics [1], life contingencies is thought as an integral part of 

risk theory (a part of non-life insurance mathematics). KLING's [2] doctoral thesis also 

applied non-life techniques to life insurance problems. In WANG [4]), the PH-transform 

was firstly proposed to price casualty insurance layers based on considerations such as 

layer-additivity and increased relative loading at upper layers. The present paper shows 

that the PH-transform provides a unified approach to risk loads in both life and non-life 

insurance. 

It is noted that insurance and investment have a dual relationship. It is possible to 

apply the PH transform to the pricing of bond default risk. However, one sliouht be 

aware of the complications of diversifiable/non-diversifiable risks. 
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