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1. Models

Consider N asset classes, Sy, S, ..., Sn. the problem is to determine
allocation weights x,, xa, ..., xa.

We first review the Mean-Variance Approach (see [3]):

Assume the rate of return , R , of asset §; to be a random variable
i, = expected value of R;,
o, = standard deviation of R;,
p;; = correlation between R; and R;
x; = the weight for asset class §;
L,j=1,2,..,N.

Then the return rate of the portfolio is

R, = i‘r‘R,
1=

The expected return of the portfolio s
N

R, =2 M,

i=1
The variance of the portfolio 1s
N

N N
R LTED 3 NART I

1 =1 -l
Allocation weights x;, xa ..., ay. are determined by quadratic programming

techniques.
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Method 1:

Fix the expected portfolio return , to a certain desired level [t then

determine the allocation weights x;, x,, ..., xy which minimize the risk level

o ,, of the portfolio for this fixed p.

Min o, :ix;cpﬁ:ﬁx,xjo,o,p” (1.1)
P perem
Subject to
Zu —u (12)
.
Sx =1 (1.3)
I <x Su 1=1,2,..,N (1.4)

Where /; and u; are the lower bound and the upper bound on funds allocation

to the ith asset class,1=1, 2, ..., N.

Method 2:

Fix the risk level 6, of the portfolio to a tolerable level 6, then determine the
allocation weights x;, xz, ..., xy which maximize the expected portfolio

return j, for this fixed 6.

Max |, = Z.x,u, 2.1

r=1

Subject to

465



N

2,\‘35;‘ +‘Z~"i,\'l.\'v'0r0,p” = (22)

el [

[ <y <u 1=1.2,.,N 2.4
The above two methods are equivalent under the general assumption that
asset with higher return rate has higher risk. They are conventionally called
Mean-Variance Approach.

According to the portfolio theory, when the rate of return is considered
having a probability distribution, we also consider maximizing skewness
while consider maximizing mean return or minimizing variance (see [2])

If we take skewness into consideration, then Model (1) then becomes a

multiple objective programming model (3):

Min o, = i.\-fo ! +ii,\].r,o,01p” 3.0

. e |
Max  E(R -pn)']/o] (3.2)

Subjecr to

N

PR (3.3)
2,\" =1 (3.4)
I < v <u 1=1,2 N (3.5)
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And Model (2) becomes model (4):

Max — w, =3 xn, (4.1)
=1

Max  E(R,-p,)'l/c),

Subject 1o

i +22x,x,c.c,p = (4.2)

i= =1 j=

Tx <l 3)

I <x <u, i=1,2,...N (4.4)

Note that

E[(RI,—u/,)‘]/G 2”’0 +32\1 wo,, +6 Zu W, W, G
ig=t k=1
ixj iz jzk

where o is central co-moment. Obviously, models (3) and (4) are

complicated multiple objective non-linear programming.

We now present the Possibilistic Linear Programming Approach to the

model problem.

2. Possibilistic Distribution
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For each asset §;.i=1, 2, ..., N, we describe the imprecise rate of return by

2l

F=(r".r"r"), where

r”. = the most pessimistic value for R;
r" = the most possible value for R;
r" = the most optimistic value for R;,

L

We further assume that the imprecise rate of return 7 = (»”,r",r") can be
modeled by the possibility theory (see [10]) and has the triangular

possibilistic distributionn , () as in Figure 1.

0 o7 o v

Figure 1. The triangular possibility distribution of 7 .

The capital asset location problem can be modeled as a possibilistic linear

programming problem (5):

N N
Max YoEx =Yy (5.1

el [

Subjecr to
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M=
-
il
N
i
[\o}
p—

[ <x <Su i=12...,N (5.3)

Notice that the objective function is
N N

N N N
T~ R S Ny .
DA NULNANAS P WIS IAS WA BELO WAS B WAS N WASD

=

-t 1=l i=] i=l i=l
therefore, the objective function is an imprecise rate of return for the

portfolio ¥ =(r",r",r"), where

N

N N
b r. mo_ mo / o _ o
rf=)r'x,, r"=>r"x and ¥"=)r'x.,
(=i

(=1 =1

with a triangular possibility distribution x, () in Figure 2.

-

G
A

h | an

0 v r . r

Figure 2. The triangular possibility distribution of 7

3. Method
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In this paper, we suggest to use an auxiliary multiple-objective linear

programming model (6) proposed by Lai and Hwang (see "Possibilistic

linear progranuming for managing interest rare risk”, 1992) with our two

additional control constraints.

Max :z r’x,

N

Min 29 =Y (" ~r")x,
7;\'

Max 2,( - 2 (rI” — r"")x‘
i1

Subject to

N

L
r'x < B,
|

IN

B,

N
o
Y <Y M- x, <y,
=1

>

¢

-

A,:l

[<x <u i=12,.. N

6.1
(6.2)

(6.3)

(6.4)
(6.5)
(6.6)

(6.7)

By selecting parameters 3;and 3, constraint (6.3) restricts the most possible

rate of return of the portfolio to a desirable level. If weset By =, = tobe

aconstant, v, = min {#"—r"tand v, = max {#" - »"}, then objective (6.1)
el N LN

and constraint (6.5) both become inactive. In this case, model (6) becomes

(6
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N
Max M= z (r" =",

It is interesting to note that model (6') is analogous to model (3).

By selecting parameters vy, and v, constraint (6.5) restricts the risk to a

tolerable interval. If we set y,=v,,=7Y to be a constant, B, = min {~"}and
=12 N

B, = max {r"}, then objective (6.2) and constrain (6.4) become inactive. In
=12, N

this case, model (6) becomes (6"):
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Model (6") is analogous to model (4). The selection of parameters f;, B, v

and vy, 1s based on the asset manager's experience and managerial judgment.

Multiple-objective linear programming (6) is then solve by using

Zimmermann's fuzzy programming method with a normalization process as

follows:
Let

IR p
<me = MaAx z Lx
xe X =

N
L . [ )
o) = min E (r" =rl)x,
x€ X =

N
0 o my
Zm = max Y, (n"—r")x,
re X =

Sy
Smax T

Smax

)
I =
Smax

N
min Y, "%,

xe X i=

N
= max Z (r" —r"x,

xeX=

&
min 2 (r"=r")x,
xe X i=

where X denotes the set of feasible solutions satisfying all the constraints in

programming model (6). The linear membership function of these objective

functions can now be computed (see Figure 3) as:

1

Hoo =G =z /(20 — )
0
1

How =4l =270 1zl — o)
0

Detinition of yt . 18 similar o 1 _,,, .

(S (0
Z 2 "'!"A(
_th St i
"'"\"l < ~ < A"H\A\)(
L < N
- = “min
L2} o
= Smm
i) ) A
Lmin <z < S
L2 (2
T2 L
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Koy

1
0 2
) Iy
Zmin zmnx
T
1
0 > Z(Z)
{2) L)
Ziin “amax

Figure 3 The linear membership function of objective functions (6.1) and
(6.2)

Finally, the problem is solve by Zimmerman's equivalent single-objective
linear programming model (7):

max A

s.t. pz‘.,(x)zk

Moo (x) 2 h
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Bz A
xe X
It is noted that model (7) actually uses Max-min principle which is

max { min (p, (0, Jo (), 1o ()]
re X - “ v

The optimal solution of model (7) provides a satistying solution under the
strategy of minimizing the risk of lower rate of return, and maximizing the
most possible value and the possibility of higher rate of return.

4. Numerical Example

Now We consider a numerical example by using six asset classes with mean, ,, and
standard deviation, o, Weset v =, —20,, r" =p,,and r" =y +30,.i=1,2,.., 6,

with some small adjustment. The numerical data of our example 1s given in Table 1.

i S ,p rm r rm_ ';r P rm
Stock 1 0.17 0.2 -0.23 0.17 0.8 0.4 0.63
Stock 2 015 0.185 -0.22 0.15 0.75 0.37 0.6
Bound 1 0.12 0.055 (101 012 0.27 Q.01 015
Bound 2 0.08 0.05 -0.02 0.0% 0.2 0.1 012
Cush (1.06 0.008 0.05 0.06 .09 0.1 0.03
T.-bill Q.05 9,994 0.042 0.08 0.075 0.008 Q.08

Table | Numerical data of example

We first solved the example by fixing the most possible rate of return of the portfolio
at 22 different values while making constrain (6.4) inactive. The computational results
] P

are summarized in Table 2.

Ne B B v T Optima! solution X Fae(r” "o

I (0.055.0.055.0.008, 0.4)  x=0.5, x,=0.5 (L0406, 0.055, 0.0825)
20 (0,060, 0.060, 0.008 0.4 x,=0.0454, x,=0.0152, 1.=0.4394, x,=0.5 (0.0331, 0.6, 0.1152)

30 00.065,0.065,. 0,008, 0.4)  x,=0L0713, x,=0.0597. x:=0.3690, x,=0.5 ((1.0244, 0.065, 0.1403)
4 (0.070,0.070, 0.008. 0.4)  x:=0.0935, x:=0.1098, x:=0.2967, x,=0.5 (0.0164, 0.07.0.164)
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5 (0.075, 0.075, 0.008, 0.4)
6 (0.080, 0.080, 0.008, 0.4)
7 (0.085, 0.085, 0.008, 0.4)
8 (0.090,0.090, 0.008, 0.4)
Y (0.095, 0.095,0.008, 0.4)

10 (0.100, 0,100, 0.008, 0.4)

11 (0.105,0.105, 0.008, 0.4)

2 (0.110,0.110,0.008, 0.4)
13 (0.115,0.115, 0.008, 0.4)
14 (0.120,0.120,0.008, 0.4)
15 (0.125,0.125, 0.008, 0.4)
16 (0.130,0.130, 0.008, 0.4)
17 (0.135, 0.135, 0.008, 0.4)
18 (0.140, 0.140, 0.008, 0.4)
19 (0.145, 0.145, 0.008, 0.4)

200 (0.150, 0.150, 0.008, 0.4)

21 (0.155.0.155.0.008, 0.4)

22 (0.160, 0.160, 0.008, 0.4)

X2=0.1157, x1=0.1598, x:=0.2245, x4=0.5
x;=0.1381, x3=0.2096, x,=0.1524, x,=0.5
x;=0.1605, x3=0.2593, x,=0.0802, x,=0.5
x3=0.1829, x3=0.3089, x;=0.0081, x,=0.5

x:=0.2310, x3=0.3128, x,=0.4562
x2=0.2801, x,;=0.5142, x,=0.4057
%=0.3250, x3=0.3214, x,=0.3536
%,=0.3701, x,=0.3284, x,=0.3015
x:=0.4150, x5=0.3357, x,=0.2493
X;=0.4601, x3=0.3428, x,=0.1972

x,=0.0092, x,=0.5, x3=0.3415, x,=0.1494
X1=0.0504, x2=0.5, x:=0.3421, x4=0.1074
x1=0.0956, x;=0.5, x3=03361, x,=0.0683
x=0.1410, x2=0.5, x3=0.3296, x,=0.0293

x=0.2204, x,=0.4660, x;=0.3136
x=0.3137, x,=0.4771, x,=0.2092
x=0.4067, x,=0.4888, x:=0.1045
x;=0.5, x,=0.5

(0.0003, 0.08, 0.2113)

(-0.0414, 0.1, 0.3253)

(-0.0534,0.105, 0.357)
(-0.0655,0.11, 0.3889)
(-0.0775, 0.115, 0.4206)
(-0.0895,0.12, 0.4524)
(-0.1024, 0.125, 0.4858)
(-0.1137,0.13,0.5157)
{-0.1258,0.135, 0.5473)

(-0.1379,0.14, 0.579)

{-0.1501, 0.145, 0.6105)

(-0.175, 0.15, 0.6653)
(-0.2,0.155,0.7202)
(-0.225,0.16, 0.775)

Table 2

and

Solutions for different fixed the most possible return from portfolio

No. r rr-r e 85% 95%
1 0.055 (4.0090 0.0275 (00537, 0.0591)  (0.0546, 0.0564)
20060 0.0269  0.0552  (0.0560, 0.0683)  (0.0587,0.0628)
3 0.065 0.0406 0.0753  (0.0590, 0.0763)  (0.0630, 0.0688)
4 0070 0.0536 0.0940  (0.0620,0.0841)  (0.0673,0.0747)
5 0.075 (1.06606 L1126 (0.0650,0.0919)  (0.0717,0.0806)
6 0.080 0.0797 01313 (0.0680, 0.0997)  (0.0760, 0.08066)
7 0085 0.0927 0.1501  (0.0711,0.1075)  (0.0804, 0.0925)
8 0.090 0.1057 0.1688  (0.0741, 0.1153)  (0.0847,0.0984)
9 (.095 0.1235 0.1969 (0.0765, 0.1245)  (0.0888, 0.1048)
10 0,100 0.1414 02353 (0.0788, 0.1338)  (0.0929,0.1113)
11 0.105 0.1584 0.2520  (0.0812,0.1433)  (0.0971,0.1176)
12 0.110 0.1755 1.2789  (0.0837,0.1518) (0.1012,0.1239)
13 0115 0.1925 03056 (0.0861,0.1608)  (0.1054, 0.1303)
14 0.120 0.2095 (.3324 (0.0886. 0.1699)  (0.1095, 0.1366)
15 0.125 0.2274 03608 (0.0909,0.1791)  (0.1136,0.1430)
16 0130 0.2437 03857 (00934, 0.1879)  (0.1178,0.1493)
17 0.135 0.2608 0.4123 (0.0959, 0.1968)  (0.1220,0.1556)
I8 (1140 0.2779 04390 (0.0983,0.2059)  (0.1286,0.1620)
19 0.145 00.2951 0.4655 (0.1007, 0.2148)  (0.1302, 0.1683)
20 0.150 0.3250 3.5153 (0.1013,0.2273)  (0.1338,0.1758)
21 0.155 0.3550 0.5647  (0.1018.0.2397y  (0.1323,0.1832)
22 0.160 0.3850 0.6150  (0.1023,0.2523)  (0.1408, 0.1908)
Table 3 Solutions for different fixed the most possible return from portfolio
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(0.0084, 0.075, 0.1876)

(-0.0077, 0.085, 0.2351)
(-0.0157, 0.09, 0.2588)
(-0.0285, 0.095, 0.2919)



1 (005,017,
2 (005,017,
3005, 0.17.
4 (005,017,
S (0.05,0.17,
o (0.05,0.17,
7 0.05,0.17,
% (0.05,0.17,
9 (0.05,0.17,
(0.05,0.17,
11 (0.05,0.17,

12 (005,017,
13 (0.050.17,
14 (0.05,0.17,

15 (0.05,0.17,
(0.05,0.17,
(0.05,0.17,
18 (005,017,
(0.05,0.17,
(0.05,0.17,
21 (005, 0.17,
(0.05,0.17,

(ﬁ/‘ | Bu" Yior Yu)

Optimal solution X

0.009, 0.009)

0.0269, 0.0269)
0.0406, 0.04006)
1.0536. 0.0536)
0.0666, 0.0666)
0.0797, 0.0797)
0.0927, 0.0927)
0.1057,0.1057)
0.1235,0.1235)
0.1414,0.1414)
0.1584, 0.1584)
0.1755, 0.1755)
0.1925,0.1925)
0.2095, 0.2095)
0.2274,0.2274)
0.2437,(0.2437)
0.2608, 0.2608)
0.2779,0.2779)
0.2951,0.2951)
0.325, 0.325)

(.355, 1.355)

0.385, 0.385)

x;=0.0359, x;
x2=0.0506, x,
x,=0.0746, x;

x=0.5, %,=0.5 ,
X>=0.0202, x1=0.1038, x5=0.5, x,=0.376

=0.1824, x5=0.5, x,=0.2817
=0.2577, xs=0.5, x,=0.1917
=0.3001, x5=0.5, x,=0.1253
x2=0.1001, x;=0.3167, x5=0.5, x,=0.0773
x,=0.1382, x;=0.3301, x=0.5, x,=0.0317
x;=0.1704, x;=0.3
x2=0.2189, x3=0.3469, x,=0.4342
x,;=0.2074, x;=0.3
x2=0.3139,
x2=0.3610, x4=0.3
x,=0.4071, x;=0.3
x,=0.4511,
x,=().4975,
x,=0.0411,
x;=0.0911,
x =0 1476,
x;=0.2042,
xy=0.3025,
x=0.4013,
x,=0.5, x,=0.5

x3=0.3

x3=0.3

1,=0.5

x2=0.5,
x,=0.5,
x2=0.5,
x2=0.5,
x:=0.5,

435, x5=0.4861

514, x.=0.3812
538, x=0.3322
552, x5=0.2837
596, x=0.2333
710, x-=0.1779

x,=0.3831, x;=0.1194
, %3=00.3765, x5=0.0823
x3=0.3529, x=0.0561
x5=0.049

x5=0.0412
xs=0.0272
x5=0.0139

x3=00.3034,
x3=0.2546,
x3=0.1703,
x3=(0.0848,

F:(r",r'",r“)

(0.046, 0.055, 0.0825)

(0.0408, 0.0643, 0.1164)
(0.0308,0.0714, 0.1423)
(0.0245, 0.0781, 0.1669)
(0.0169, 0.0835, 0.1914)
(0.0081, 0.0878, 0.2159)
(-0.0008, 0.0919, 0.2402)

(-0.0097, 0.0959, 0.2643)
(-0.0230, 0.1005, 0.2969)
(-0.0363, 0.1052, 0.3297)
(-0.0489, 0.1095. 0.3608)
(-0.0617, 0.1138, 0.3922)
(-0.0743, 0.1182, 0.4234)
(-0.0867, 0.1229, 0.4545)
(-0.0996, 1.1278, 0.4873)

(-0.1116, 0.1321, 0.5169)
(-0.1246, 0.1362, 0.5482)

(-0.1385,0.1394,0.5794)

(-0.225,0.16, 0.775)

(-0.1524, 0.1427, 0.6108)
(-0.1765, 0.1485, (.6654)
(-0.2008, (.1542. 0.7202)

and

10
B!
12

{3

15

16

Table 4 Solutions for different fixed the risk for portfolio
" N 85% 95%
0.0550 0.0090 .0275 (0.0537,0.0541) (0.0500, 0.0564)
0.0643 0.0235 0.0521 (0.0608, 0.0721) (0.0631, 0.0669)
00714  0.0406 00709 (0.0653,0.0820)  (0.0694, 0.0749)
0.0781) 0.0536 0.0888 (0.0701, 0.0914) (0.0754, 0.0825)
0.0835 0.0666 0.1079 (0.0735, 0.0997) (0.0802, 0.08%9)
0.0878 0.0797 0.1281 (0.0758, 0.1070) (0.0838, (.11942)
00919 0.0927  0.1483  (0.0780,0.1142)  (0.0873,0.0993)
0.0959 0.1056 0.1684 (0.0801,0.1212) (0.0906, 0.1043)
0.1005 0.1235 0.1964 (0.0820, 0.1300 (0.0943,0.1103)
01052 01414 02245 (0.0840,0.1389)  (0.0981.0.1164)
0.1095 01581 02513 (0.0857,0.1472)  (0.1016,0.1221)
01138 01755 02784 (0.0875.0.1556)  (0.1050,0.1277)
0.1182 0.1925 (13052 (0.0893,0.1640) (0.1086, 0.1335)
01229 02006 03316 {0.0915,0.1726)  (0.1124,0.1395)
01278 02274 03595 (0.0937.0.1817)  (0.1165, 0.1458)
0.1321 1.2437 0.3848 (0.0958, 0. 18981 (0.1199,0.1513)
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Fifth column in Table 3 gives all the most possible rates of return of the portfolio
whose degree of occurrence is at least 0.85. This interval is called the acceptable event
with degree of occurrence at least 0.85. Similarly, the last column in Table 3 gives the
acceptable event with degree of occurrence at least 0.95. We observed that both risk (¢ -
) and skewness (# - ") increase as 7" increases, which is consistent with the fact that as
r" is pushed higher, more weight should be allocated to higher risk assets. We also
observed that when " increases gradually, the weights are adjusted gradually, which

shows our numerical results are stable.

0.8 . , i l _

+

+
! + n

L+
+-
+
0.4t L |
4
-
4+
0.2} P |
£++ U
or *****%*K* 4
9&*****
BK;K*

0.2 » .
* -

0.4 . ) B
¢ 5 10 15 PP -

Figure 4

Secondly, we solved the example by fixing the risk (#7 - /") of the portfolio at 22
different values while making constrain (6.3) inactive. The computational results are

summarized in Table (4) and (5).
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i7 0.1362 0.2608 04120 (0.0971, 0.1980) (0.1232,0.1568)
18 0.1394 0.2779 0.4400 {0.0977, 0.2054) (0.1255,0.1614)
19 0.1427 0.2951 0.4681 (0.0984, 0.2129) (0.1279,0.1661)
20 0.1485 0.3250 05169  (0.0998, 0.2260) (0.1323,0.1743)
21 0.1542 0.3550 0.5660  (0.1100, 0.2391) (0.1365, 0.1825)
22 0.160 0.3450 0.6150 _ ¢0.1023,0.2523)  (0.1408,0.1908)
Table 5 Solutions for different fixed the risk for portfolio
0.8 .
T +
+
0.6 | *
7 ]
4+
0.4} + *
Lt 1
+ 7+
4+
0.2 } 4+
*
ol o o y MM e g
M e » w 7
M 3 ¥ e
6.2 | L I
- g
0.4 . . . .
0 5 10 15 20 ‘2]5
Figure 5

4. Conclusion

Unlike vur approach, traditional mean-variance method does not take skewness of the

random rate of return into consideration. It only considers minimum variance for a given

acceptable rate of return, which limited the probability of obtaining higher rate of return.

N
If the skewness. s', of return of return for the portfolio, R, = > w R, , is incorporated
P P R, p

ot

- ~ .. 2 . . N
into mode! of traditional approach, say s >k, then the resulting non-linear programming
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model is not computational efficient since s° - which certainly is complicated, On the
other hand, possibilistic programming provides more efficient techniques to solve the
imprecision nature of rate of return and also preserves the original linecar model. Besides,
possibilistic distributions provide more flexible and meaningful representation of
imprecisionfuncertainty. Some problems still remain to be solved in the future research.
In this study, we first obtained the most pessimistic value, the most probable value and
lhe most optimistic value for the rate of return from mean and standard deviation. -
Secondly, we assume that possibility distributions are triangular. However, in practice,
we should generate the most pessimistic value, the most probable value, the most
optimistic value and the possibility distributions from decision makers' experience and

managerial judgment and historical resources.
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