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ABSTRACT
Consider a portolio of » statistically independent insurance risks. The total loss S associated
with the portolio is given by S = X, + X,--- X, where X, represents the loss associated with
the i-th risk, i =12,---,n. The Laplace transform of S is the product of the Laplace
transforms of X,. In the present paper, we propose and investigate a numerical method of
computing the probability distribution of S.

1. THE DISTRIBUTION OF THE TOTAL LOSS
Consider a portfolio of » independent insurance risks. Let X, be the loss associated with
the ithrisk, i =1,2,---.n. The total loss S, its expected value and variance, are given by
S = X, +X,+-+X,,

E(S) ’};E(X‘),
Var(S) = iVar(X

Since the X,'s are independent the moment generating function of §'is
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2. THE CONTINUOUS CASE
In the continuous case, we can think of the moment generating function as a special case
of the Laplace transtform,

L(z)= E(e"‘”).
with z =~ because S is non-negative. In this case, we can invert Ly(z) = M(r) to obtain the
probability density function.
If the X,'s are not identically distributed. we have to use numerical methods to
approximate the probability density function of §in most cases. Even ifthe X 's are identically
distributed we may have to use numerical methods.

The inversion of the Laplace transform leads to a Fredholm equation of the first kind:
I'ind f'such that

_["‘e *F(0)d = g(2).

where ¢ is known.

3. THE DISCRETE CASE
In the discrete case,

M) =TT M. (f)-

where "
%,
M, (1= Z c““'p,(x“‘ )
j=0

Without loss of generality, we may assume that
k,=Nandx =0fori=12.---.n

and
x, —x, =lforj=12-- Ni=12--.n.
Then
n N °
11’[>\([) = Z[Z(’”p‘(j)].
=1\ g=0
Since
nyN
“W.\‘(’): Z L‘Mp‘(/f),
k=0

we can equate coefficients of ¢, k =0.1.--,nN to obtain the probability density function of .
The following example taken from Insurance Risk Models by Panjer and Willmot (pp.
131-132) illustrates the above result.

Probability Distribution of the Losses X, X,, X

i x=0 x=1 x=2 x=3
I 3 2 4 .1
2 .6 A 3 0
3 4 2 0 4
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The moment generating function of the sum S'is:
My(1)= (3+2¢' +4e” +.1e")
(6+1e'+3e% +0).
(4+2¢" +0+.4e")

M(r)= 072+.096e'+170e™ +
206" +.144¢" +.178¢% +
070e" +.052¢" +.012e™ +
Oe‘)(

The Probability Distribution of .5 is
X 0 1 2 3 4 5 6 7 8 9
R(x) 072 096 170 206 .144 178 070 052 .012 0

This is exactly the same table given in Insurance Risk Models.

4. NUMERICAL METHODS

In the continuous case, where the Laplace transform cannot be inverted analytically, there
are several methods available for numerical approximation.

Davies and Martin (Journal of Computational Physics, vol 33, 1979; pp. 1-32) compared
some of these methods. The method of Stehfest (Communications of ACM, vol 13, 1970; pp.
47-49 Algorithm # 368) was found to give good accuracy on a fairly wide range of functions.

Furthermore, Stehfest's algorithm was easier to implement than some of the comparable
algorithms. In this paper, we have used Stehfest's alporithm for approximating the probability
distribution function of S, given the individual probability distribution function's: f, (x).
i=12,-.n.

Our preliminary work tnvolves the sum of two independent (not identical) random
variables. In the two numerical examples presented at the end, we used Monte Carlo simulation
1o test our resuit,

Stehfest's Algorithm
Given L.{z): Laplace transform of S.
If f,(r) is the probability distribution function of S, then

()= ““ZV ("‘)21)
where N is even and
s M (N :2) Al “](2/() -
K[M](N/Z—k)!k!(k i — )2k —i)!
2
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5. FURTHER CONSIDERATIONS
In many cases, there is a non-zero probability that a no claim oceurs for one of the risks.
(See: Insurance Risk Models by Panjer and Willmot). For this case, let ¢, = Pr(X, > ()) . Then

1-q,=Pr(X, =0)

[n this case, the probability distribution function of X', is

Fe (x)= (I—q,)ﬂ;’}'ﬂs(x)
where
¥, =x,ix;>0

and /7 is the claim size disteibution. Then

L\J (:) = (1 - q/)+c111‘_\‘ (:)
and

"

L =TT +a.1, ()

i=1

where p =1-~g,.

For this situation. the discrete case is easy to handle, and the case where the ¥'s are
continuous, requires numerical methods.

If the claims distribution is not known, then the probability distribution function of each
X, may be estimated by using a non paramelric density estimator. Then each A, (1) is
estimated and the product M (1) of these is numerically inverted to obtain the probability
distribution function of S.

6. NUMERICAL EXAMPLES

(a) [.et X, have a chi-squared distribution with 1 degree of freedom and let X, have an
exponential distribution with parameter 6 =1. The distribution of the sum §= X, + X,
cannot be obtained analytically.

(b) Let X, have an exponential distribution with 0 = 1and let .Y, have a gamma distribution
with o =2, 8 =2, Then the sum S = X, +.¥, has a gamma distribution with
a=30=2.

In both cases, we used Monte Carlo simulation with N =100,000 and Stehfest's
algorithm for the numerical inversion of the Laplace transform, and then computed the mean and
variance using 2 numerical quadrature. The following table gives the comparisons between the
different methods.

Comparisons of Mean and Variance

Example Mean Variance
True MCS NILT § True MCS NILT
(a) 2 1.9965 1.9759 3 3.0135 3.1145
(h) 6 6.0104 59918 12 12.0147  11.8602

MCS: Monte Carlo Simulation

NILT: Numerical Inversion of the Laplace Transform

484




The following table shows the accuracy of the method when compared with the true
probability distribution of the sum in Example (b).

Comparison of the True Density and the Approximated Density

5 f(s) F(s)

1 0.037908 0.037908
2 0.091970 0.091970
3 0.125510 0.125511
4 0.135336 0.135335
5 0.128258 0.128258
6 0.112020 0.112021
7 0.092481 0.092479
8 0.073266 0.073263
9 0.056238 0.056239
10 0.042115 0.042112
11 0.030904 0.030906
12 0.022305 0.022309
13 0.015889 0.015880
14 0.011166 0.011171
15 0.007772 0.007778
16 0.005366 0.005367
17 0.003683 0.003675
18 0.002489 0.002499
19 0.001687 0.001689
20 0.001135 0.001135
21 0.000751 0.000759
22 0.000503 0.000505
23 0.000327 0.000335
24 0.000215 0.000221
25 0.000130 0.000146

F(s,}: Probability density function of §
F(s,): Probability density function of S approximated by numerically
inverting the Laplace transform

7. CONCLUSIONS

Inversion of the Laplace transform (moment generating funciton) is shown to be a better
approach than the existing recursive method for find the distribution of sum of several
independent random variables. In the continuous case, in many situations, numerical inversion
needs to be used to compute the probability distribution function of the sum. We have shown by
computer simulation that the numerical inversion formula of Stehfest gives good accuracy.
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