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Abstract 
 
 When projecting future mortality trends, researchers may first develop models 
that fit observed historical data, and then use these models to project future mortality 
by estimating future model parameters or modifying the model assumptions. In this 
paper, four mortality models are examined: the Heligman-Pollard Model, the Mixed 
Weibull Model, the Lee-Carter Model and a simulation model. Using the Japan Life 
Table as input, this paper compares characteristics of each model, determines the model 
parameters and attempts to project future mortality. The strengths and limitations of 
each model are discussed. The usefulness of the Mixed Weibull Model and the 
simulation model is emphasized in comparison with other models. 
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1. Introduction 
 
(1-1) Introduction 
 
 Mortality modeling is an old subject. One of the first and most widely known 
models, the Gompertz Law, was proposed in 1825. This law asserts that the force of 
mortality increases as an exponential function of age. A mortality model that describes 
the entire life table was first proposed by Thiele in 1872 (Higgins (2003)). Several other 
models have also been developed in the last several decades. In this paper, the author 
picked four mortality models that describe the entire mortality curve, examined their 
properties and tried to use them to project future mortality. Major focus is given to the 
Mixed Weibull Model and the simulation model. 
 
(1-2) Japan Life Table  
 
 Before proceeding, some basic information on the Japan Life Tables should be 
provided. The Japan Life Table was first developed around 1900, using data from 1891 
to 1898. Currently, the Ministry of Health, Labour and Welfare of Japan develops this 
table every five years. Data are obtained from the national census. The latest table (the 
Japan Life Table 19, or JLT19) is based on the census data in 2000. It should be noted 
that there are only 18 tables, since JLT07 was not developed due to World War II. Also, 
note that there are two JLT18 tables; one includes deaths caused by the Hanshin-Kobe 
earthquake on January 17, 1995, and the other excludes them. In this paper, the latter 
table is used. In addition, only male mortality tables are used and applied to each model. 
  
2. Mortality Models 
 
(2-1) Heligman-Pollard Model 
(2-1-1) Model Description 
 
 Heligman and Pollard (1980) proposed the following mortality model, which 
describes the entire lifetime. They applied the model to fit the Australian Life Table. 
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 The three components of the formula represent early childhood mortality, 
accidental mortality and senescent mortality, respectively. The third component, GHx, is 
interpreted as a discrete version of the Gompertz Law.  
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(2-1-2) Applying Heligman-Pollard to Japan 
 
 When applying the model to the Japan Life Table, parameters are determined by 
minimizing the square sum,  
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where qx represents the fitted mortality, while q~x represents the observed mortality. For 
JLT19, X=112. The results are shown in Table 1. Graph 1a is the graphical presentation 
of the results. To explain the level of fit, Graph 1b shows the ratio between observed 
and fitted data. The relative difference of q(x) is as much as 10 percent, except in the 
early ages, where the relative difference may be up to 20 percent. 
 
 For ages 50 and over, more than 99.9 percent of the mortality is explained by the 
third component in equation (1) above. The first and second components are negligible. 
Therefore, the author applied a “simplified” Heligman-Pollard Model to the mortality 
of ages 50 and over,  
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x0 = - lnG/lnH represents the age where qx=0.5. It is a measure of the longest possible life 
span. Using this simplified model, the author estimated parameters for all JLT tables, 
which are shown in Table 2, Graph 2a and Graph 2b. In these calculations, ages 50 to 
100 are used to calculate the least square sum. Mortality data after age 100 was not 
included because the last survivor age (omega) differs by table. Two things are worth 
mentioning. First, as shown in Graph 2a, the graph of H consists of three distinct 
segments, with the curve leveling off after 1965. Second, x0  has been increasing since 
1965.  
 
 In order to project the future mortality trends for elderly people, the author used 
the simplified Heligman-Pollard Model. It assumes that H is constant from 1965 and 
thereafter, and that x0 will follow the current trend. To find the current trend of x0, the 
following square sum is minimized.  
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 Table 3 shows the result: H equals 1.10704 and x0 increases from 98.337 to 105.997. 
Graph 3 shows the trend of x0. Linear regression between observation year (dependent 
variable, X) and x0 (independent variable, Y) is performed to project x0 for year 2025 (see 
Table 4). 
 
 In projecting the mortality table for the year 2025, we need to estimate the 
parameters A to F. Since our concern is elderly people and, also, in order to avoid the 
correlation problem among parameters, the parameters for year 2000 are used for the 
year 2025. In other words, it is assumed that no mortality improvement will occur for 
early childhood or for accidental death. Parameters A to F in the year 2000 are 
reestimated using G and H in Table 3. Final parameters for the year 2025 are 
summarized in Table 5. The result will be compared in a later section.  
 
(2-2) Mixed Weibull Model 
(2-2-1) Model Description 
 
 The Weibull Model is widely used in the area of reliability engineering for 
analyzing the lifetime of manufacturing products and parts. Let S(t) be the probability 
that a manufacturing product (such as bulbs, auto parts, etc.) is in operating condition 
(not failed) at time t. S(t) follows a (regular) Weibull Model if it is described as  
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F(t) = 1-S(t) represents the accumulated probability of failure until t. In actuarial terms, 
S(t) is the survival function. The parameters are interpreted as follows. The position 
parameter represents the period in which there is no failure. Since S(t0 + gamma ) = exp ( -
1) = 0.368, the scale parameter represents the time period in which the surviving 
products are about one-third of all products. t0 + gamma can be used as a measure of 
expected lifetime for the products. The shape parameter defines patterns of failure. 
Failure can be categorized either as 
 
 (a) m<1, early failure type 
 (b) m=1, accidental failure type, or 
 (c) m>1, worn-out failure type. 
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 Since the force of mortality for the Weibull Model is written as  
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 it is a decreasing, constant or increasing function when m<1, m=1, or m>1, 
respectively.   
 
 A Mixed Weibull Model consists of two or more Weibull components combined 
in some fixed proportion. Kao proposed this type of distribution in his study of the 
lifetime of vacuum bulbs and discovered that the failure of bulbs is described as a mix 
of early failure and worn-out failure. Furukawa (1996) applied the Mixed Weibull 
Model with four components to the Japan Life Table and estimated its parameters. 
Furukawa also applied the Mixed Weibull Model to an ancient human (Jomon man, 
Japanese who lived several thousand years ago), an eighteenth-century Viennese person 
and some mammals and birds.  
 
 The Mixed Weibull Model with four components is described as follows: 
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 This is a model with sixteen parameters and fifteen degrees of freedom.  
 
(2-2-2) Parameter Estimation  
 
 The Weibull plotting paper is a useful tool that helps determine Weibull 
parameters. The Weibull plotting paper uses X=ln(t-gamma) for its horizontal axis and 
Y=1/ln(ln(S(t))) for its vertical axis. If S(t) follows equation (5) above,  
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 For the Mixed Weibull Models, a similar approach can be taken. After plotting 
the observed data on plotting paper, one can estimate the parameters for the first 
component by focusing on the first linear part on the paper. After determining the first 
component, the residual value is again plotted on the plotting paper, and then one 
determines the second component, and so on. These values would be used for the 
candidate values for the Weibull parameters. 
 
 Once the candidate values are obtained, one determines the Weibull parameters 
using the least square sum approach for S(x). This is not a simple step, and parameters 
are determined after a long trial-and-error process. Due to the redundant number of 
parameters in the model, there is no unique solution. Parameters are correlated, 
especially t’s and gamma’s, as well as p3 and p4 being correlated.  
 
(2-2-3) Applying the Mixed Weibull Model to Japan 
 
 In this section, the Mixed Weibull Model is applied to JLT19. To estimate the 
Weibull parameters, assumptions are made a priori that m1<1 and gamma1=0. This 
assumption is made so that the first component represents premature death. Using 
plotting paper (Graph 5a), m1 is determined to be somewhere around 0.3. In addition, by 
examining the line in Graph 5a, it is estimated that gamma2 would be around 15.  
 
 Using the above estimate, Weibull parameters are estimated using the least 
square sum approach. First, parameters for the first component were estimated by 
minimizing the square sum of the S(x) ratios for ages 1 to 15. Then, parameters for the 
second component were estimated by minimizing the square sum for ages 16 to 30. 
Finally, all parameters (including those for the first and the second components) were 
estimated using the least square sum for ages 1 to 100. In this process, S(x), d(x), q(x), 
ln(q(x)), as well as Weibull plottings, were monitored carefully, so that the final result 
would not deviate from the data to be fitted.  
 
 Although there are many possible solutions that fit equally well with the original 
data, Table 6 summarizes one result. To verify the fit, the results were presented in 
Graphs 4a to 4e. Also, Weibull plottings are given in Graphs 5a to 5d. For S(x) after age 
90, an adjustment needed to be made. The Mixed Weibull Model in its original form 
does not fit well for q(x) in very old ages, because the first component of S(x) changes 
very gradually compared to the other components in very old ages. In order to adjust 
this problem, the first component of S(x) is smoothed at age 90 and thereafter, so that 
the S(x+1) /S(x) of the first component is the same as that of the fourth component. The 
same adjustment is made for the second component of S(x) at age 100 and thereafter. 
With these adjustments, fit improved significantly. Since the first and second 
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components are small enough, their impact on S(x) is negligible. For reference, Graph 4f 
shows the q(x) before adjustment.  
 
 There are some important observations concerning the results. First, the fit of 
q(x), shown in Graph 4e, is very good. The relative difference between the observed 
curve and the fitted curve is within 5 percent for age 40 and thereafter. Before age 40, 
the relative difference can be as much as 20 percent. Fit in the early ages is more 
difficult than in the older ages, probably due to the smaller number of actual 
observations and the existence of the hump portion.  
 
 Decomposition of death into components figures as one interesting property of 
the Mixed Weibull Model. As shown in Table 6 and Graph 4d, the first component 
represents early, premature death as m1=0.285. The second component, whose m2 is 2.01, 
represents accidental death in adolescence. Since m2 is higher than 1, this component 
has some aspects of the worn-out type of failure. The third and fourth components 
represent mortality in the elderly period. The third component accounts for 37 percent 
of the deaths and corresponds to deaths at age 40 and later (see Graph 4d). The fourth 
component accounts for 61 percent of the deaths and corresponds to the deaths at age 
70 and later.  
 
(2-2-4) Projection of Future Mortality 
 
 To observe the recent mortality trends of the Japan Life Table, the author 
determined the Weibull parameter for JLT15 (1980), JLT17 (1990) and JLT19 (2000) 
simultaneously, using the following bold assumptions. The three tables have the same 
t’s and m’s, which implies that they share components of the same shape. Only the mix 
of components (p’s) and trigger age (gamma’s) differ. Using the least square sum, the 
parameters are determined in Table 7. The parameter set in Table 7 for JLT19 is different 
from that of Table 6; however, the set is also valid for describing JLT19, although the fit 
is somewhat less than that in Table 6.  
 
 For the year 2025, only gamma3 and gamma4 are projected by extrapolating 
linearly from 1980 to 2000. Other parameters are left equal to those of the year 2000. The 
estimated parameters are also found in Table 7. 
 
(2-3) Lee-Carter Model 
(2-3-1) Model Description 
 
 The Lee-Carter Model is a typical relational model introduced by Carter and Lee 
in 1992. This model assumes that if we eliminate random factor et, the logarithm of the 
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central death rate, or mt, can formulate a family of curves with parameter kt. By 
evaluating and forecasting the trend of kt, the model can be applied to project future 
mortality. The model equation is as follows: 
 

termerrore
ttimeatmortalityoflevelk

profileagefromdeviationsofpatternb
profileagetheofshapeaveragea

ttimeatxageofratedeathcentralm
where

NxTtebkam

tx

t

x

x

tx

txxtxtx

:
:
:
:

:

)1,...,1,0,1,...,1,0(log

,

,

,,

　
−=−=+⋅+=

 … (9) 

 
 Parameters a, b, k are determined by minimizing the square sum of ex,t. In 
practice, with the following conditions, one can determine these parameters uniquely, 
using the singular value decomposition technique in linear algebra. More precisely, if 
one assumes that the norms (square root of square sum of each element) of b and k are 1, 
and the sum of all elements of k is 0, the above parameters can be determined in the 
following way: 
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 Lee and Carter applied this model to U.S. mortality data and discovered that kt 
has been changing linearly.  
 
 As an extension of the model, one may want to include the second or third 
components of the singular value decomposition. In this case, equation (9) above is 
reexpressed as follows: 
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where, for example, 2k denotes T-dimensional singular vector that corresponds to the 
second component of M’. 
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(2-3-2) Applying Lee-Carter Model to Japan 
 
 Singular value decomposition was applied to the Japan Life Table, and 
parameters were estimated. Since the final ages differ by table, the author used the data 
from ages 0 to 100 and analyzed the mortality matrix M’ (instead of the central death 
rate matrix) with 101 by 18 elements.  
 
 The applied result of the Lee-Carter Model to JLT19 is shown in Graphs 6a to 6c. 
Singular value decomposition gives a fairly good approximation of JLT19 if one 
includes the principal, second and third components. The relative difference between 
fitted and observed q(x) is within 10 percent for ages 20 to 100. In the early ages, the fit 
is less good. The estimated parameters are shown in Graphs 7a and 7b. Graph 7a shows 
the shape of the deviation vectors 1b, 2b and 3b. All elements in the first (principal) 
deviation vector, or 1b, have the same sign, which implies that mortality improves in all 
ages. Mortality improvement is more significant in the early ages and decreases as age 
increases. The second deviation vector, or 2b, is positive for ages 50 and above. This fact, 
combined with the fact that 2k has decreased in the last 40 years, implies that mortality 
improvement in elderly ages has accelerated in recent years. Graph 7b shows the k 
parameters of the first three components. It is worth noting that 1k consists of two lines 
connected at year 1950. This implies that the mortality improvement trend has changed 
significantly before and after World War II. The improvement trend is steady and 
prominent after the end of the World War II. Even though the effect is less significant, 2k 
has also been decreasing for the last 40 years.  
 
(2-3-3) Projection of Future Mortality 
 
 Table 8 is a tabular expression of Graph 7b. In order to project the mortality in 
year 2025, 1kt is determined using linear regression. Parameters 2kt and 3kt are assumed 
to remain at the level of year 2000. The projected result is examined in a later section.  
  
(2-4) A Simulation Model  
(2-4-1) Model Description 
 
 Furukawa (1996) proposed a Monte Carlo type simulation model that is based on 
the “Vitality” concept. He applied the model to the Japan Life Table and determined its 
parameters. The author has developed his own simulation model based upon 
Furukawa’s model and ideas. 
 
 Regarding the aging process, there are two types of widely known theories (Held 
(2002)). One type is called an evolutionary theory, while the other is called a wear and 
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tear theory. The latter theory states that aging is the result of mechanical or biochemical 
wear and tear on the human body and its organs, tissues and cells. The following model 
was developed in accordance with the wear and tear theory. 
 
 To develop a simulation model, the following set of assumptions was established. 
First, each life has its own vitality. Vitality is a measure of capacity of the human body 
in which various kinds of hazard factors occur. Vitality increases in the early ages, 
reaches its peak and levels off at the beginning of adolescence, then starts to decrease at 
the beginning of middle age. This assumption is based on the general observation that 
the functional capacity of the human organs, including respiratory system, heart, renal 
function and basal metabolism, decreases as time progresses once men reach their 
maturation stage. For example, the lung function of a healthy 70-year-old is about 50 
percent that of a 30-year-old (Goldman and Ausiello (2004)). For simplicity, the increase 
and decrease of vitality are assumed to occur linearly. On the other hand, vitality is 
subject to hazard factors, which arise randomly. Hazard factors accumulate in the body 
as time goes by, with death occurring when all vitality is impacted by hazard factors.  
 
 The vitality functions and the hazard factor functions are described as follows. 
Let V(t) denote the vitality function at time t. V(t) is equal to u at t=0 and is equal to v at 
t=1, then increases linearly to 100 at t=15, levels off between t=15 and t=30, and then 
decreases linearly to 0 at t=130. Linear increase and decrease of vitality is assumed for 
simplicity. In addition, vitality function is assumed to be the same for all individuals; 
the model assumes there is no genetic or environmental difference among newborn 
babies. Heterogeneity might be introduced in a more sophisticated model; however, it is 
the subject of future research. Graphical representation of vitality is shown in Graph 8. 
U and v are parameters that have been introduced to create better fit for the early age 
mortality.  
 
 The hazard factor function, on the other hand, has a more complicated 
expression. Let H(t) denote the hazard factor function. Also, let X1(t), X2(t), and X3(t) 
denote the three hazard factors that occur at time t. These functions follow a stochastic 
process defined in the following recurring equation, 
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where I denotes the impact parameter for the first hazard factor, and  
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 In the above expression, Ber(p) denotes a Bernoulli distribution with parameter p, 
and Exp(k) denotes exponential distribution with parameter k (note that the expected 
value of exponential distribution is 1/k). Exponential functions are used because they 
are easy to handle and because they have tails. Death occurs when H(t) > V(t) for the 
first time. The last term in equation (11) above describes recovery from the first hazard 
factor, if an individual endures the impact of the first hazard factor caused at t-1. 
 
 In equation (11), the first hazard factor expresses the effect of diseases and 
accidents that would arise in the course of an ordinary lifetime. It occurs fairly 
frequently (once every several years), and it threatens human life expectancy. The 
parameter p1 refers to probability of occurrence. The hazard (or stress) caused by this 
incidence is I* S1, where I is the impact parameter and S1 is the size of the hazard. In the 
next year, the hazard is decreased by (I-1)* S1 due to the recovery, and S1 remains in the 
body. The second hazard function represents more severe damage to the body. It occurs 
much less frequently (probability p2) than the first factor, and once it happens, all the 
damage remains in the body and no recovery is expected. The second hazard is 
assumed to occur at ages 15 and thereafter. The third hazard function expresses 
accidental death.  
 
 Graphs 9a to 9d give graphical explanation of how H(t) develops and when 
death occurs in this model. There are four patterns of death. Graph 9a shows a death 
from caducity. Even though no hazard factor occurred in the last several years, death 
occurred because vitality decreased gradually and finally went below H(t). Graph 9b 
shows a death from the first hazard factor in the elderly period. This is the typical death 
pattern in this model. Graph 9c shows a death from the second hazard factor (serious 
disease or accident). Graph 9d shows a death caused by the third factor, which 
represents accidental death.  
 
 In summary, the obtained model has eight parameters, u, v, I, p1, p2, p3, k1 and k2. 
By simulating V(t) and H(t) and counting the number of deaths at each age, one can 
create a distribution of death d(x), and other mortality functions. 
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(2-4-2) Applying the Model to Japan 
 
 The above model is applied to JLT19, and parameters are determined so as to 
minimize the square sum of d(t). Also, the author considered other indicators, such as 
e(0) (expected lifetime), the shape of s(t), d(t), q(t) and log(q(t)), to produce a good fit. 
The result was obtained after long trial-and-error processes and, therefore, it may not be 
the best solution. However, the author believes that this solution can help to understand 
and assess the validity of the model.  
 
 To determine the parameters, at least 50,000 lives are simulated for each run. The 
author used the following approach to determine the parameters. The value of u is set 
so that expected d(0) is equal to the observed d(0). More specifically,  
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where the tilde symbol implies the observation data. Similarly, the value of v can be set 
so that expected d(1) is equal to the observed d(1), or  
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 The value of k3 is set equal to the minimum q(x) of the observed data. The impact 
parameter is set equal to I=5, after trial-and-error process for JLT19. 
 
 There is a weak relation among some parameters, which helps determine those 
parameters. On average, death occurs when V(t) = E[H(t)]. It is expected that the 
solution of this equation (denoted by T) is close to other indicators such as expected 
lifetime or mode of d(x). For JLT19, e(0) =77.73 and the mode of d(x) = 84. Since T = 77.96, 
T happens to be close to expected life expectancy at birth. Detailed calculation of E[H(t)] 
and T is found in Appendix A.  
 
 Table 9 summarizes the parameters for JLT19, and Graphs 10a to 10e give 
graphical expressions. A total of 2,500,000 lives were simulated to determine the final 
distribution. The ratio of q(x), shown in Graph 10e, implies that the relative difference is 
less than 10 percent for ages 50 and above. For younger ages, the fit is not as good. 
However, judging from the shape of s(x), d(x) and log(q(x)), the fit is acceptable. 
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(2-4-3) Projection of Future Mortality 
 
 To project future mortality using this simulation model, the parameters for JLT15 
(1980) and JLT17 (1990) are also determined with some conditions. For JLT15 and JLT17, 
k2 and p2 are assumed to be the same as those of JLT19. This assumption is made for two 
reasons. The first is to focus our attention to either k1 or p1, since our concern is the 
mortality improvement in elder ages and such improvement is observed in the 
improvement of either k1 or p1. The second reason is to reduce the number of 
parameters to an estimate to simplify the calculation. I is set equal to that of JLT19. The 
value of p3 is set equal to the minimum q(x). U and v are determined using equations 
(13-1) and (13-2) above.  
 
 Table 10 is the result of this parameter estimation. For projecting the parameters 
for year 2025, p1 and k1 are projected by extrapolating the trend between JLT15 and 
JLT19. Other parameters, u, v, I, p2, k2 and p3, are set equal to those of JLT19. 
 
3. Comparison of the Models 
 
(3-1) Projection Result  
(3-1-1) Simple Projection 
 
 Projected mortality tables for year 2025 are shown in Table 11a. The projection is 
based upon the mortality improvement of each model q(x) between year 2000 and 2025. 
Model q(x) is shown in Table 11b. Also in Table 11a, life expectancies at some selected 
ages (x=0, 50, 70 and 80) are given for comparison. 
 
 Please note that the projection result is obtained by assuming that the current 
trend of key model parameters will continue into the near future. No additional 
consideration was given for any future change of the current trend.  
 
 In Table 11a, two additional projections are given for comparison. These 
projections are based on a simple method. For each age, it is assumed that mortality 
improvement in the last T years will continue for the next 25 years. In mathematical 
terms, it is described as 
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 In this paper, the mortality tables developed in this manner refer to simple 
projections. Simple projection “a” (SP-a) uses T=25, while simple projection “b” (SP-b) 
uses T=10. These two tables are used as benchmarks. 
 
 Graphs 11a and 11b compare the JLT19 (2000) with the two simple projections. 
Notably, for ages 80 and above, SP-b produces lower mortality than SP-a. Further, the 
difference seems to widen as the age increases. This implies that, in this age range, the 
mortality improvement of the last 10 years is more significant than that of the last 25 
years. Further research will be necessary if such rapid improvement in mortality at the 
very old ages continues in the future. 
 
 However, from age 20 to 50, SP-b doesn’t show much mortality improvement. At 
age 32, for example, mortality worsened from year 1990 (q(32)= 0.00083) to year 2000 
(q(32)= 0.00088). Further research is indicated to find whether this is a temporary 
phenomenon or not.  
 
(3-1-2) Heligman-Pollard Model 
 
 Graphs 11c and 11d compare the Heligman-Pollard (HP) Model with SP-a and 
SP-b. Mortality improvement is significant at age 30 and above. Life expectancies of HP 
found in Table 11a are almost equal to or are higher than any other projections for all 
selected ages. For example, e(50, HP)=35.18, while e(50, SP-a) = 34.28. It might be that 
the projected mortality improvement by HP is excessive. The probable reason for this 
over-estimation of mortality improvement is that parameter x0 is extrapolated using 
linear regression. Even though Graph 2b shows a linear trend, one should be cautious in 
assuming that x0 will continue to grow linearly without any restriction. 
 
(3-1-3) Mixed-Weibull Model 
 
 Graphs 11e and 11f show the projection result of the Mixed Weibull Model. 
Compared to SP-a, mortality improvement is less significant for ages 40 to 70, and more 
significant for age 80 and thereafter.  
 
(3-1-4) Lee-Carter Model 
 
 Graphs 11g and 11h show the projection result of the Lee-Carter Model. At age 
60 and below, mortality improvement is more significant than that of SP-a and less 
significant at age 60 and above. The Lee-Carter model produced the lowest life 
expectancy among all projections for all selected ages. This implies that large 
improvement in mortality at younger ages is less significant than small improvement at 
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older ages. For projected mortality for ages 60 to 90, the Lee-Carter Model produces 
smaller mortality improvement when compared to other methods.  
 
(3-1-5) Simulation Model 
 
 Graphs 11i and 11j show the projection results of the simulation model. 
Interestingly, the simulation model produces very close projection to that of SP-a.  
 
(3-1-6) Comparison of Four Model Result 
 

Graphs 11k and 11l compare the projection results of the four models. Since our 
interest is mainly in the middle to older age mortality projection, comparison is made at 
age 50 and later. 
 
 To compare the mortality level, the relative mortality to SP-a is plotted in Graph 
11m. If this value is larger than one, it implies that the improvement is less significant 
than that of SP-a. This graph clearly demonstrates that the Lee-Carter Model shows 
relatively high mortality compared to other models, the simulation model produced a 
close simulation to SP-a, and the Heligman-Pollard Model shows low relative mortality 
compared to the other models. 
 
(3-2) Model Comparison 
 
 The Heligman-Pollard Model is a typical parameter model that is easily 
understandable for actuaries. It has a Gompertz Law component that actuaries are 
familiar with. Also, the model contains two other components that correspond to early 
age and adolescent age mortality, respectively. The fit seems to be fair. At age 50 and 
above, the relative difference between fitted and observed mortality is below the 10 
percent range.  
 
 The Mixed Weibull Model is also a parameter model; however, it can be applied 
to a wider variety of settings than the Heligman-Pollard Model. This flexibility comes 
from the unlimited number of components that can be included in the model, and that 
each component can represent a different type of distribution by changing the shape 
parameter. They can be either early failure type (m<1), accidental failure type (m=1) or 
worn-out failure type (m>1).   
 
 When the parameters are determined in an appropriate manner, the result has a 
very good fit, as shown in Section (2-2-3). For age 40 and above, the relative difference 
was within the 5 percent range. Parameter determination is somewhat difficult, 
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however, due to the redundant number of parameters and correlation among them. 
There is no unique solution. Different sets of parameters might be valid. For mortality 
projection, some kind of model simplification might be needed. 
 
 The Lee-Carter Model is a popular relational model. One advantage is that it is 
easy to apply for determining parameters. Even though one may need a computer 
program to solve a singular value decomposition problem, it is basically an application 
of linear algebra. However, when applied to the Japan Life Table, the Lee-Carter Model 
produced excessive mortality improvement in the early ages, which may require 
additional consideration.  
 
 A Monte-Carlo simulation model generally refers to a broad range of models that 
incorporate stochastic simulation using random variables. This type of model is very 
flexible and can incorporate various kinds of assumptions. The simulation model has 
the potential power of explaining the dynamics of aging process, while other models 
have limited explanation power. This is the most appealing point of developing 
simulation models.  
 
 In order to develop an appropriate model, however, one needs to have a deep 
understanding of the model subject. In creating a model, one needs to interpret the 
observed phenomenon in terms of the model parameters and setting. Through this 
process, one can find ways to understand and explain the dynamics behind the subject. 
Parameter determination also requires consideration. The author used spreadsheets for 
his analysis; however, it was a long trial-and-error process and not effective. One needs 
to utilize a non-linear least square sum program that incorporates the Monte-Carlo 
simulation process. Least square sum optimization is much more time-consuming for 
the simulation model than for the Heligman-Pollard and the Mixed Weibull Models.  
 
 The model developed by the author contains eight parameters. The author 
intended to make the model as simple as possible and limit the number of parameters 
to as few as those of the Heligman-Pollard model. The fitted result is fair and 
comparable to that of the Heligman-Pollard in elder ages. The relative difference 
between observed and fitted is in the 10 percent range in these ages.  
 
 The simulation model developed in this paper is based on the simple idea of 
decreasing vitality (after age 30) and accumulating hazard factor. The author was 
encouraged by the fact that even such a simple model has a fair fit with observed 
mortality. Vitality and hazard factor concepts seem to be useful for developing a 
simulation model. It goes without mentioning that one may develop different types of 
simulation model from different perspectives. 
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4. Conclusions 
 
 Of the four mortality models discussed, the author believes that the Heligman-
Pollard Model and the Lee-Carter Models are widely known and applied, while the 
Mixed Weibull Model and the simulation model may not be. The Mixed Weibull Model 
is a useful model for its good fit and its applicability. It produces better fit than the 
Heligman-Pollard Model or the simulation model. The Mixed Weibull Model can be 
applied to various subjects by including or reducing the number of components and 
choosing appropriate shape parameters. It will serve as one valid model for mortality 
studies. 
 
 The author developed a simulation model inspired by Furukawa’s early research 
and results. One goal of this paper was to develop a simple model with eight to ten 
parameters that is comparable to other three mortality models. Even though the 
obtained simulation model is based on a set of bold assumptions and still in 
development, it was shown that the simulation model has a fair fit. It will serve as a 
useful mortality model.  
 
 One appealing point of the simulation model is its potential power of explaining 
the human aging process, which strongly encourages us in further research. The 
simulation model can incorporate dynamic processes of how we age and die, while the 
other three models can not. The study of the aging process is a major subject in 
gerontology. By developing a simulation model consistent with medical knowledge, 
one can better understand and explain the dynamics of mortality.  
 
 Following is a list of further research topics regarding the development of the 
simulation model:  
 

(1) Develop a useful nonlinear optimization program that incorporates a Monte 
Carlo simulation process.  

(2) Apply the model to various mortality tables, including sex, nationality and 
time of observation, and verify the validity of the model structure. The 
current model contains three hazard factor functions. It may be appropriate to 
modify these functions so that the same model structure can be applied to 
various tables. 

(3) Develop a deep understanding of the aging process and interpret the 
knowledge in terms of vitality and hazard factors. These two key concepts 
may be redefined so as to be consistent with the medical knowledge.  

(4) Examine the distribution of the hazard factor functions. In this paper, 
exponential distributions are used because of their simplicity. Other 
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distributions, which might be more explainable from medical point of view, 
may substitute for the exponential distributions. 

(5)  Research on the shape of vitality function. Again, this should be undertaken 
with the help of medical knowledge. In addition, different vitality functions 
might be assumed for each individual. Heterogeneity or frailty might be 
introduced.  

(6) Maximum survival age is set equal to 130. This is the age when vitality 
function becomes zero. In the future, this limit may be extended. This is 
another parameter one can incorporate in the model. 

(7) The model should be validated by the cause of death analysis. In the current 
model, there are four patterns of death. The distribution of the patterns 
should be consistent with actual statistics. A more sophisticated simulation 
model can include the hazard factors that represent major causes of death 
(such as cancer, cardiovascular diseases, suicide, etc.).  

(8) If a simulation model is developed appropriately, it can be used not only for 
determining the distribution of mortality, but also for determining the 
distribution of human healthiness. For any t, distribution of H(t) represents 
the distribution of health conditions of the observed group. This direction of 
future research can be incorporated with the study of biological age.  

(9) Find a way to appropriately fit the hump portion of the observed mortality at 
age 20 and 30. In the current model, mortality hump is not modeled 
satisfactorily.  

 
 Finally, since there is no one valid mortality model, researchers should try as 
many approaches as possible, review their strong and weak points, and carefully 
choose the appropriate ones for their purpose. A simulation model, as well as the Mixed 
Weibull model, will be strong approaches that should be utilized for mortality studies. 
This paper is an attempt at the development of such model. 
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Appendix A 
 
The Derivation of E[H(t)] 
 
E[H(t)] is expressed in the following way.  
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This equation is obtained by recursion. 
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On the other hand,  )30(130)( ≥−= tttV   and therefore, E[H(t)]=V(t) is solved as 
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 Using the parameters in Table 10, T is determined as T=77.96. See following 
graph for the idea. 
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Tables and Graphs 
 

(Table 1) Heligm an and Pollard, Sum m ary of Param eters for JLT19
A 0.00068
B 0.15370
C 0.13201
D 0.00045
E 7.65618
F 22.43161
G 0.0000245
H 1.10475

X0＝-lnG /lnH 106.55239
S2 0.59580  

(G raph 1a) Heligm an and Pollard, JLT 19-log(q(x))
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(Table 2) Estim ated Param eters of Sim plified Heligm an and Pollard

table JLT01M JLT02M JLT03M JLT04M JLT05M JLT06M JLT08M JLT09M JLT10M
observation year 1891－98 1899－03 1909－13 1921－25 1926－30 1935－36 1947 1950－52 1955
G 0.000329 0.000220 0.000200 0.000209 0.000224 0.000218 0.000240 0.000122 0.000100
H 1.0822 1.0889 1.0892 1.0917 1.0895 1.0893 1.0863 1.0937 1.0951
x0=-lnG /lnH 101.48 98.93 99.67 96.57 98.02 98.56 100.65 100.65 101.31
S2 0.1526 0.3577 0.3111 0.1745 0.0887 0.1739 0.0193 0.0161 0.0447

table JLT11M JLT12M JLT13M JLT14M JLT15M JLT16M JLT17M JLT18M (e JLT19M
observation year 1960 1965 1970 1975 1980 1985 1990 1995 2000
G 0.000073 0.000050 0.000044 0.000034 0.000028 0.000024 0.000022 0.000022 0.000025
H 1.1005 1.1056 1.1057 1.1070 1.1080 1.1088 1.1086 1.1084 1.1045
x0=-lnG /lnH 99.49 98.70 99.77 101.34 102.12 102.88 103.88 104.35 106.77
S2 0.0627 0.0525 0.0496 0.1355 0.1681 0.3374 0.2086 0.1317 0.1557

(G raph 2a) Trend of H
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(Table 3) Estim ation of H and x0's

H 1.10704
S2 1.3497559  

table JLT12M JLT13M JLT14M JLT15M JLT16M JLT17M JLT18M (ee) JLT19M
observation year 1965 1970 1975 1980 1985 1990 1995 2000
G 0.000045 0.000041 0.000034 0.000030 0.000027 0.000025 0.000024 0.000021
H 1.10704 1.10704 1.10704 1.10704 1.10704 1.10704 1.10704 1.10704
x0=-lnG /lnH 98.337 99.413 101.320 102.391 103.369 104.316 104.735 105.997 
 

      (G raph 3) Linear regression of x0
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(Table 4) Regression Sum m ary

Regression statistics
R 0.9887
R2 0.9775
Adjusted R2 0.9738
Standard error 0.4310
Num ber of obs 8

Analysis of Variance
Freedom Difference Variance Variance ratio F-value

Regression 1 48.4247 48.4247 260.7036 0.0000
Residue 6 1.1145 0.1857
Total 7 49.5392

C oefficient Standard error t P-value low er 95% upper 95%
Intercept -323.2626 26.3685 -12.2594 0.0000 -387.7841 -258.7411
X value 0.2148 0.0133 16.1463 0.0000 0.1822 0.2473  
 
(Table 5) Param eter Sum m ary for 2025

JLT19(2000)* 2025(projected)
A 0.00067 0.00067
B 0.13884 0.13884
C 0.12678 0.12678
D 0.00047 0.00047
E 6.15186 6.15186
F 23.35454 23.35454
G 0.0000208 0.0000118
H 1.10704 1.10704
x0=-lnG /lnH 105.99694 111.61172
S2 0.80993
* Param eter A to F are re-estim ated using G  and H in table 3  
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(G raph 4b) M ixed W eibull M odel-d(x)
forJLT19
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(G raph 4c) M ixed W eibull M odel-log(q(x)) for
JLT19
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(G raph 4e) Fitting of q(x) for JLT19
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(Table 6) M ixed W eibull M odel Param eters for JLT19 

p m t gam m a
1st cm p 0.01016 0.28534 23.20442 0.000010
2nd cm p 0.01247 2.01246 16.78188 12.63157
3rd cm p 0.36521 4.95782 62.23411 12.63157
4th cm p 0.61216 4.95782 37.32033 50.06431

(G raph 4f) M ixed W eibull M odel-log(q(x))
before adjustm ent
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(G raph 5a) W eibull plot- observed data
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(Table 7)  Determ inaton of M ixed W eibull Param eters for Projection
JLT15 JLT17 JLT19 Y2025

YEAR 1980 1990 2000
P1 0.0202 * 0.0126 * 0.0088 * 0.0088
P2 0.0131 * 0.0118 * 0.0107 * 0.0107
P3 0.3956 * 0.2833 * 0.3826 * 0.3826
P4 0.5712  0.6923  0.5979  0.5979
m 1 0.3217 0.3217 0.3217 0.3217 * 0.3217
m 2 2.4152 2.4152 2.4152 2.4152 * 2.4152
m 3 4.9390 4.9390 4.9390 4.9390 * 4.9390
m 4 4.5308 4.5308 4.5308 4.5308 * 4.5308
t1 9.3670 9.3670 9.3670 9.3670 * 9.3670
t2 16.1416 16.1416 16.1416 16.1416 * 16.1416
t3 59.3891 59.3891 59.3891 59.3891 * 59.3891
ｔ4 33.4673 33.4673 33.4673 33.4673 * 33.4673
γ1 0.0000 0.0000 0.0000 0.0000
γ2 11.0722 * 10.7380 * 11.7634 * 11.7634
γ3 12.5527 * 10.7380 * 14.9981 * 18.0549 #
γ4 50.0153 * 51.7264 * 54.2350 * 59.5096 #
* indicate estim ated param eters using LSS.
# projected by linear extrapolation  
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(G raph 6b) Lee-C arter M odel, decom position of JLT19
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(G raph 7b) Singluar Value Decom position- Value of k's
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(Table 8) Singular Value D ecom position - trend of k
 
TABLE Year (average)k-1st cm p k-2nd cm p k-3rd cm p
JLT01 1895 4.2153 -0.2265 -0.1759 JLT01(1891－98)
JLT02 1901 3.9075 -0.1021 0.0317 JLT02(1899－03)
JLT03 1911 3.7832 -0.3169 0.0331 JLT03(1909－13)
JLT04 1923 4.1952 -0.0241 0.3585 JLT04(1921－25)
JLT05 1928 3.7921 -0.0778 0.2416 JLT05(1926－30)
JLT06 1936 3.6572 -0.1477 0.2142 JLT06(1935－36)
JLT08 1947 3.1910 -0.0761 -0.3637 JLT08(1947)
JLT09 1951 1.1878 0.2036 -0.4380 JLT09(1950－52)
JLT10 1955 0.1175 0.2837 -0.3462 JLT10(1955)
JLT11 1960 -0.5455 0.4889 -0.0663 JLT11(1960)
JLT12 1965 -1.4313 0.6412 0.0596 JLT12(1965)
JLT13 1970 -1.8914 0.4141 0.1876 JLT13(1970)
JLT14 1975 -2.7457 0.1941 0.1284 JLT14(1975)
JLT15 1980 -3.4371 0.0836 0.1131 JLT15(1980)
JLT16 1985 -3.9540 -0.1681 0.2103 JLT16(1985)
JLT17 1990 -4.3997 -0.3002 0.0614 JLT17(1990)
JLT18ee 1995 -4.5198 -0.3235 -0.0338 JLT18ee(1995)
JLT19 2000 -5.1223 -0.5460 -0.2155 JLT19(2000)
projected* 2025 -8.6703 -0.5460 -0.2155 projected for 2025 
* Linear regression for first com ponent. Sam e as of year 2000 for second and third com ponents  
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(G raph 8) Vitality Function
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(G raph 9d) M ortality Pattern 4
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ve

(Graph 10a) Simulation model, s(x)-JLT19
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(Graph 10d) Simulation model, log(q(x))-
JLT19

-4.50

-4.00

-3.50

-3.00

-2.50

-2.00

-1.50

-1.00

-0.50

0.00

0 20 40 60 80 100 120

JLT19

RUN11b-ave

(Graph 10b) Simulation model, d(x)-JLT19

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

0 20 40 60 80 100 120

JLT19

RUN11b-ave

(Graph 10e) Simulation model,  ratio of q(x)
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(Table 9) Sim ulation M odel, Sum m ary of Param eters- JLT19

u 33.6417
v 49.5028
p1 0.3320
1/k1 1.4639
I 5.0000
p2 0.0057
1/k2 30.0000
p3 0.00010

e(0) 77.68
JLT19-e(0) 77.73
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(Table 10) Sim ulation M odel- Param eter Estim ation for Year 2025 
 

 JLT15 JLT17 JLT19 Projected
 1980 1990 2000 2025
u 28.70 31.51 33.64 33.64 (set equal to JLT19)
v 46.13 46.85 49.50 49.50 (set equal to JLT19)
p1 0.3700 0.3500 0.3320 0.2899 (trend*)
I 5 5 5 5 (set equal to JLT19)
1/k1 1.5000 1.4700 1.4639 1.4199 (trend*)
p2 0.0057 0.0057 0.0057 0.0057 (set equal to JLT19)
1/k2 30 30 30 30 (set equal to JLT19)
p3 0.00020 0.00014 0.00010 0.00010 (set equal to JLT19)

* calculated as JLT19*(JLT19/JLT15)̂ 1.25  
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(Table 11a) Sum m ary of Projected result -q(x)
 

HP=Heligm an-Pollard SP=Sim ple Projection
M W =M ixed W eibull 　　-(a) last 25 years of im provem ent used
LC = Lee-C arter 　　-(b) last 10 years of im provem ent used
Sim =Sim ulation  
SP=Sim ple Projection

1975 1990 2000
age JLT14 JLT17 JLT19 HP M W LC Sim SP-a SP-b

0 0.01110 0.00495 0.00345 0.00344 0.00242 0.00085 0.00256 0.00107 0.00140
1 0.00140 0.00078 0.00051 0.00050 0.00032 0.00004 0.00040 0.00019 0.00018
2 0.00101 0.00057 0.00038 0.00037 0.00026 0.00003 0.00025 0.00014 0.00014
3 0.00076 0.00042 0.00027 0.00026 0.00018 0.00003 0.00021 0.00010 0.00009
4 0.00062 0.00033 0.00021 0.00020 0.00014 0.00003 0.00016 0.00007 0.00007
5 0.00055 0.00029 0.00018 0.00016 0.00012 0.00003 0.00015 0.00006 0.00005
6 0.00050 0.00025 0.00016 0.00014 0.00011 0.00002 0.00015 0.00005 0.00005
7 0.00044 0.00022 0.00014 0.00012 0.00010 0.00002 0.00012 0.00004 0.00005
8 0.00037 0.00018 0.00012 0.00010 0.00008 0.00002 0.00011 0.00004 0.00004
9 0.00032 0.00015 0.00011 0.00009 0.00008 0.00002 0.00011 0.00004 0.00005
10 0.00028 0.00014 0.00010 0.00007 0.00007 0.00002 0.00010 0.00004 0.00004
11 0.00028 0.00015 0.00011 0.00008 0.00008 0.00002 0.00010 0.00004 0.00005
12 0.00027 0.00016 0.00013 0.00010 0.00010 0.00004 0.00013 0.00006 0.00008
13 0.00029 0.00018 0.00016 0.00013 0.00013 0.00005 0.00016 0.00009 0.00012
14 0.00039 0.00023 0.00021 0.00017 0.00018 0.00008 0.00022 0.00011 0.00017
15 0.00056 0.00034 0.00027 0.00023 0.00023 0.00009 0.00025 0.00013 0.00015
16 0.00075 0.00050 0.00036 0.00031 0.00032 0.00012 0.00035 0.00017 0.00016
17 0.00092 0.00066 0.00046 0.00041 0.00041 0.00016 0.00046 0.00023 0.00019
18 0.00102 0.00078 0.00054 0.00048 0.00048 0.00018 0.00050 0.00029 0.00022
19 0.00105 0.00084 0.00060 0.00054 0.00054 0.00020 0.00056 0.00034 0.00026
20 0.00105 0.00083 0.00063 0.00056 0.00056 0.00021 0.00061 0.00038 0.00032
21 0.00106 0.00081 0.00065 0.00057 0.00057 0.00022 0.00061 0.00040 0.00037
22 0.00107 0.00078 0.00067 0.00059 0.00059 0.00024 0.00061 0.00042 0.00046
23 0.00107 0.00076 0.00069 0.00060 0.00060 0.00026 0.00063 0.00044 0.00054
24 0.00106 0.00075 0.00069 0.00059 0.00060 0.00026 0.00063 0.00045 0.00056
25 0.00105 0.00073 0.00068 0.00056 0.00058 0.00025 0.00061 0.00044 0.00057
26 0.00104 0.00071 0.00066 0.00053 0.00055 0.00024 0.00058 0.00042 0.00055
27 0.00104 0.00071 0.00065 0.00051 0.00053 0.00023 0.00057 0.00041 0.00052
28 0.00106 0.00073 0.00067 0.00051 0.00054 0.00025 0.00059 0.00042 0.00054
29 0.00110 0.00075 0.00071 0.00054 0.00057 0.00028 0.00061 0.00046 0.00062
30 0.00116 0.00078 0.00077 0.00058 0.00062 0.00032 0.00066 0.00051 0.00075
31 0.00122 0.00080 0.00082 0.00061 0.00065 0.00036 0.00072 0.00055 0.00087
32 0.00131 0.00083 0.00088 0.00065 0.00070 0.00040 0.00077 0.00059 0.00102
33 0.00139 0.00087 0.00092 0.00066 0.00071 0.00042 0.00079 0.00061 0.00106
34 0.00147 0.00092 0.00095 0.00066 0.00072 0.00044 0.00084 0.00061 0.00103
35 0.00159 0.00099 0.00099 0.00067 0.00073 0.00045 0.00082 0.00062 0.00099
36 0.00174 0.00107 0.00105 0.00070 0.00076 0.00048 0.00086 0.00063 0.00100
37 0.00192 0.00117 0.00114 0.00075 0.00081 0.00053 0.00096 0.00068 0.00107
38 0.00212 0.00129 0.00125 0.00082 0.00088 0.00060 0.00106 0.00074 0.00116
39 0.00234 0.00140 0.00136 0.00088 0.00094 0.00067 0.00113 0.00079 0.00126
40 0.00259 0.00155 0.00147 0.00094 0.00100 0.00073 0.00122 0.00083 0.00129
41 0.00287 0.00172 0.00159 0.00100 0.00107 0.00079 0.00130 0.00088 0.00131
42 0.00318 0.00188 0.00173 0.00108 0.00115 0.00086 0.00140 0.00094 0.00141
43 0.00349 0.00206 0.00190 0.00118 0.00126 0.00096 0.00159 0.00103 0.00155
44 0.00378 0.00228 0.00210 0.00131 0.00139 0.00108 0.00174 0.00117 0.00171
45 0.00404 0.00254 0.00232 0.00144 0.00154 0.00121 0.00192 0.00133 0.00185
46 0.00431 0.00284 0.00258 0.00161 0.00173 0.00136 0.00212 0.00154 0.00203
47 0.00460 0.00315 0.00287 0.00179 0.00194 0.00154 0.00234 0.00179 0.00227
48 0.00491 0.00344 0.00318 0.00199 0.00217 0.00174 0.00255 0.00206 0.00261
49 0.00529 0.00372 0.00352 0.00220 0.00243 0.00197 0.00285 0.00234 0.00307
50 0.00573 0.00405 0.00392 0.00246 0.00275 0.00224 0.00323 0.00268 0.00361
51 0.00618 0.00446 0.00435 0.00274 0.00309 0.00252 0.00354 0.00306 0.00409
52 0.00667 0.00495 0.00480 0.00302 0.00345 0.00281 0.00399 0.00345 0.00444
53 0.00723 0.00557 0.00527 0.00330 0.00384 0.00312 0.00433 0.00384 0.00459
54 0.00790 0.00630 0.00575 0.00357 0.00424 0.00344 0.00469 0.00419 0.00458
55 0.00872 0.00710 0.00625 0.00383 0.00465 0.00377 0.00500 0.00448 0.00454
56 0.00971 0.00791 0.00678 0.00411 0.00510 0.00411 0.00536 0.00473 0.00461
57 0.01074 0.00873 0.00737 0.00442 0.00560 0.00448 0.00577 0.00506 0.00483
58 0.01174 0.00954 0.00795 0.00468 0.00607 0.00482 0.00606 0.00538 0.00504
59 0.01275 0.01040 0.00854 0.00493 0.00654 0.00518 0.00642 0.00572 0.00522

2025(projected)
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1975 1990 2000
age JLT14 JLT17 JLT19 HP M W LC Sim SP-a SP-b

60 0.01393 0.01132 0.00923 0.00524 0.00706 0.00560 0.00674 0.00612 0.00554
61 0.01534 0.01228 0.01007 0.00566 0.00770 0.00614 0.00739 0.00661 0.00613
62 0.01701 0.01323 0.01106 0.00618 0.00843 0.00681 0.00805 0.00719 0.00707
63 0.01889 0.01424 0.01226 0.00687 0.00931 0.00768 0.00857 0.00796 0.00843
64 0.02098 0.01536 0.01359 0.00764 0.01025 0.00864 0.00944 0.00880 0.01001
65 0.02351 0.01664 0.01498 0.00840 0.01117 0.00965 0.01020 0.00954 0.01152
66 0.02649 0.01805 0.01646 0.00920 0.01210 0.01072 0.01105 0.01023 0.01307
67 0.02975 0.01968 0.01808 0.01006 0.01306 0.01189 0.01194 0.01099 0.01463
68 0.03310 0.02160 0.01988 0.01103 0.01410 0.01320 0.01294 0.01194 0.01616
69 0.03655 0.02382 0.02181 0.01205 0.01514 0.01462 0.01358 0.01301 0.01750
70 0.04024 0.02641 0.02384 0.01308 0.01615 0.01609 0.01456 0.01412 0.01846
71 0.04453 0.02946 0.02605 0.01419 0.01720 0.01770 0.01561 0.01524 0.01915
72 0.04958 0.03292 0.02850 0.01543 0.01834 0.01952 0.01640 0.01638 0.01988
73 0.05507 0.03679 0.03126 0.01686 0.01963 0.02159 0.01780 0.01774 0.02080
74 0.06094 0.04095 0.03437 0.01852 0.02109 0.02398 0.01940 0.01938 0.02218
75 0.06700 0.04542 0.03784 0.02041 0.02273 0.02665 0.02123 0.02137 0.02397
76 0.07365 0.05055 0.04162 0.02245 0.02449 0.02963 0.02318 0.02352 0.02560
77 0.08137 0.05661 0.04606 0.02500 0.02673 0.03317 0.02525 0.02607 0.02750
78 0.09010 0.06367 0.05127 0.02816 0.02954 0.03742 0.02853 0.02917 0.02983
79 0.09980 0.07148 0.05731 0.03196 0.03298 0.04244 0.03216 0.03291 0.03299
80 0.11039 0.08039 0.06401 0.03623 0.03690 0.04811 0.03691 0.03712 0.03621
81 0.12161 0.08997 0.07156 0.04115 0.04148 0.05461 0.04227 0.04211 0.04037
82 0.13272 0.09997 0.07962 0.04637 0.04640 0.06156 0.04714 0.04776 0.04507
83 0.14407 0.11032 0.08813 0.05181 0.05161 0.06893 0.05388 0.05391 0.05027
84 0.15618 0.12106 0.09699 0.05738 0.05702 0.07665 0.05999 0.06023 0.05572
85 0.16957 0.13240 0.10640 0.06326 0.06284 0.08491 0.06717 0.06676 0.06160
86 0.18384 0.14472 0.11678 0.06988 0.06954 0.09395 0.07419 0.07418 0.06831
87 0.19851 0.15847 0.12806 0.07715 0.07704 0.10358 0.08316 0.08261 0.07518
88 0.21345 0.17309 0.14042 0.08526 0.08558 0.11442 0.09372 0.09238 0.08324
89 0.22841 0.18816 0.15378 0.09414 0.09447 0.12592 0.10477 0.10353 0.09286
90 0.24225 0.20323 0.17013 0.10578 0.10680 0.14041 0.11853 0.11948 0.10908
91 0.25905 0.21957 0.18465 0.11539 0.11730 0.15300 0.12980 0.13162 0.11975
92 0.27513 0.23665 0.19968 0.12531 0.12834 0.16565 0.14252 0.14492 0.13059
93 0.29154 0.25449 0.21523 0.13560 0.13995 0.17892 0.15625 0.15889 0.14157
94 0.30829 0.27310 0.23129 0.14628 0.15216 0.19223 0.17064 0.17352 0.15267
95 0.32537 0.29247 0.24787 0.15739 0.16501 0.20622 0.18426 0.18883 0.16390
96 0.34275 0.31259 0.26496 0.16897 0.17854 0.22027 0.19953 0.20483 0.17526
97 0.36042 0.33347 0.28255 0.18107 0.19278 0.23444 0.21613 0.22150 0.18672
98 0.37838 0.35507 0.30065 0.19375 0.20778 0.24915 0.23514 0.23889 0.19835
99 0.39660 0.37738 0.31923 0.20707 0.22357 0.26416 0.25173 0.25695 0.21010

100 0.41505 0.40037 0.33828 0.22107 0.24021 0.27895 0.26779 0.27571 0.22198
101 0.43373 0.42399 0.35778 0.23580 0.25775 0.29502 0.28647 0.29513 0.23403
102 0.45259 0.44821 0.37772 0.25134 0.27628 0.31147 0.30857 0.31524 0.24626
103 0.47163 0.47296 0.39808 0.26773 0.29592 0.32826 0.33277 0.33600 0.25872
104 0.49081 0.49819 0.41881 0.28499 0.31675 0.34535 0.35045 0.35737 0.27138
105 0.51009 0.52381 0.43989 0.30317 0.33897 0.36273 0.36516 0.37935 0.28430
106 0.52946 0.54974 0.46129 0.32228 0.36280 0.38038 0.38229 0.40190 0.29752
107 0.54887 0.57589 0.48297 0.34234 0.38854 0.39826 0.38872 0.42498 0.31108
108 0.56829 0.60215 0.50487 0.36331 0.41652 0.41631 0.43348 0.44853 0.32499
109 1.00000 0.62842 0.52696 0.38518 0.44717 0.43453 0.42112 0.46815 0.33921
110 1.00000 0.54918 0.40790 0.48084 0.45285 0.48116 0.48789 0.35351
111 0.57147 0.43139 0.51774 0.47123 0.48638 0.50770 0.36786
112 0.59378 0.45559 0.55768 0.48963 0.50269 0.52752 0.38222
113 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

* To calculate e(x) for LC , m ortality at age 101 and over are extrapolated by using the ratio q(x+1)/q(x) of JLT19 
Sam e extrapolation is applied for SP-a and SP-b at age 109 and over. 

1975 1990 2000
JLT14 JLT17 JLT19 HP M W LC Sim SP-a SP-b

e(0) 71.73 75.92 77.73 83.33 82.31 82.17 82.00 82.95 82.22
im provem ent* 6.00 5.60 4.58 4.44 4.27 5.23 4.49
e(50) 25.56 28.40 29.91 35.18 34.07 33.13 34.00 34.28 33.98
im provem ent* 4.35 5.26 4.16 3.22 4.09 4.37 4.07
e(70) 10.53 12.66 13.97 18.07 17.66 15.99 17.51 17.47 17.59
im provem ent* 3.44 4.10 3.69 2.02 3.54 3.50 3.62
e(80) 6.09 7.36 8.48 11.58 11.47 9.81 11.05 11.01 11.59
im provem ent* 2.39 3.11 2.99 1.33 2.57 2.53 3.11

* The difference between year 2025 and year 2000 (or betw een 2000 and year 1975 for JLT19)

2025(projected)

2025(projected)
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(Table 11b) Sum m ary of M odel Result-q(x)

 
HP
M W
LC
Sim

M odel result, year 2000 M odel result, year 2025 
age HP M W LC Sim age HP M W LC Sim

0 0.00338 0.00338 0.00343 0.00348 0 0.00337 0.00235 0.00083 0.00259
1 0.00061 0.00062 0.00056 0.00051 1 0.00060 0.00043 0.00010 0.00040
2 0.00034 0.00039 0.00043 0.00039 2 0.00033 0.00027 0.00008 0.00026
3 0.00024 0.00029 0.00030 0.00027 3 0.00023 0.00020 0.00006 0.00020
4 0.00019 0.00023 0.00023 0.00021 4 0.00018 0.00016 0.00005 0.00016
5 0.00016 0.00019 0.00020 0.00018 5 0.00014 0.00013 0.00005 0.00015
6 0.00014 0.00016 0.00018 0.00013 6 0.00012 0.00011 0.00005 0.00012
7 0.00013 0.00014 0.00016 0.00013 7 0.00011 0.00010 0.00005 0.00011
8 0.00012 0.00012 0.00014 0.00012 8 0.00010 0.00009 0.00004 0.00011
9 0.00012 0.00011 0.00013 0.00011 9 0.00009 0.00008 0.00004 0.00010
10 0.00012 0.00010 0.00012 0.00010 10 0.00009 0.00007 0.00003 0.00010
11 0.00013 0.00009 0.00012 0.00012 11 0.00010 0.00006 0.00003 0.00011
12 0.00015 0.00010 0.00013 0.00010 12 0.00011 0.00008 0.00004 0.00010
13 0.00017 0.00015 0.00015 0.00010 13 0.00014 0.00012 0.00004 0.00010
14 0.00022 0.00020 0.00019 0.00011 14 0.00018 0.00017 0.00006 0.00011
15 0.00027 0.00026 0.00026 0.00038 15 0.00023 0.00022 0.00008 0.00036
16 0.00033 0.00033 0.00036 0.00041 16 0.00028 0.00029 0.00012 0.00039
17 0.00040 0.00040 0.00046 0.00044 17 0.00035 0.00035 0.00016 0.00044
18 0.00046 0.00047 0.00055 0.00047 18 0.00041 0.00041 0.00019 0.00043
19 0.00053 0.00053 0.00062 0.00050 19 0.00047 0.00047 0.00021 0.00046
20 0.00059 0.00059 0.00064 0.00053 20 0.00052 0.00052 0.00022 0.00051
21 0.00063 0.00064 0.00064 0.00058 21 0.00056 0.00057 0.00022 0.00053
22 0.00067 0.00068 0.00064 0.00058 22 0.00059 0.00060 0.00021 0.00052
23 0.00070 0.00071 0.00065 0.00062 23 0.00061 0.00062 0.00021 0.00056
24 0.00072 0.00072 0.00065 0.00065 24 0.00062 0.00063 0.00022 0.00059
25 0.00074 0.00073 0.00064 0.00069 25 0.00062 0.00063 0.00022 0.00062
26 0.00074 0.00073 0.00063 0.00068 26 0.00062 0.00062 0.00022 0.00060
27 0.00075 0.00072 0.00063 0.00072 27 0.00061 0.00060 0.00022 0.00064
28 0.00075 0.00070 0.00066 0.00075 28 0.00060 0.00058 0.00023 0.00067
29 0.00076 0.00069 0.00068 0.00079 29 0.00059 0.00055 0.00024 0.00070
30 0.00077 0.00067 0.00071 0.00079 30 0.00058 0.00052 0.00026 0.00069
31 0.00078 0.00066 0.00074 0.00091 31 0.00057 0.00050 0.00028 0.00082
32 0.00080 0.00066 0.00078 0.00100 32 0.00057 0.00048 0.00030 0.00089
33 0.00083 0.00067 0.00082 0.00111 33 0.00057 0.00047 0.00032 0.00098
34 0.00087 0.00070 0.00086 0.00117 34 0.00058 0.00047 0.00035 0.00105
35 0.00091 0.00074 0.00091 0.00129 35 0.00059 0.00048 0.00038 0.00111
36 0.00097 0.00080 0.00098 0.00141 36 0.00061 0.00050 0.00042 0.00122
37 0.00103 0.00087 0.00107 0.00151 37 0.00064 0.00054 0.00046 0.00134
38 0.00111 0.00097 0.00116 0.00160 38 0.00068 0.00060 0.00051 0.00141
39 0.00120 0.00109 0.00126 0.00171 39 0.00072 0.00068 0.00057 0.00148
40 0.00130 0.00124 0.00138 0.00184 40 0.00077 0.00077 0.00064 0.00159
41 0.00142 0.00141 0.00152 0.00200 41 0.00084 0.00088 0.00072 0.00170
42 0.00155 0.00160 0.00167 0.00215 42 0.00091 0.00102 0.00081 0.00182
43 0.00170 0.00181 0.00185 0.00225 43 0.00099 0.00117 0.00090 0.00195
44 0.00187 0.00206 0.00205 0.00247 44 0.00108 0.00135 0.00102 0.00210
45 0.00206 0.00233 0.00228 0.00268 45 0.00118 0.00155 0.00117 0.00228
46 0.00227 0.00262 0.00256 0.00284 46 0.00130 0.00177 0.00134 0.00238
47 0.00251 0.00294 0.00284 0.00304 47 0.00143 0.00202 0.00152 0.00250
48 0.00277 0.00329 0.00312 0.00330 48 0.00158 0.00229 0.00168 0.00267
49 0.00306 0.00367 0.00341 0.00354 49 0.00174 0.00258 0.00186 0.00287
50 0.00338 0.00408 0.00376 0.00376 50 0.00192 0.00290 0.00208 0.00307
51 0.00373 0.00451 0.00417 0.00411 51 0.00212 0.00325 0.00234 0.00331
52 0.00413 0.00497 0.00460 0.00431 52 0.00234 0.00363 0.00262 0.00350
53 0.00456 0.00546 0.00504 0.00472 53 0.00259 0.00403 0.00290 0.00378
54 0.00505 0.00598 0.00550 0.00501 54 0.00286 0.00447 0.00319 0.00394
55 0.00558 0.00652 0.00599 0.00553 55 0.00316 0.00492 0.00351 0.00429
56 0.00617 0.00709 0.00651 0.00607 56 0.00350 0.00541 0.00384 0.00466
57 0.00683 0.00770 0.00710 0.00655 57 0.00387 0.00592 0.00421 0.00495
58 0.00755 0.00834 0.00773 0.00706 58 0.00428 0.00646 0.00460 0.00517
59 0.00835 0.00903 0.00839 0.00775 59 0.00474 0.00702 0.00502 0.00562

(Table 7)
(Table 8)
(Table 10)

M odel Param eters are found in the follows 
(Table 5)
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M odel result, year 2000 M odel result, year 2025 
age HP M W LC Sim age HP M W LC Sim
60 0.00923 0.00977 0.00916 0.00861 60 0.00524 0.00761 0.00553 0.00613
61 0.01021 0.01058 0.01002 0.00929 61 0.00580 0.00821 0.00610 0.00661
62 0.01129 0.01147 0.01096 0.01015 62 0.00641 0.00884 0.00672 0.00714
63 0.01248 0.01245 0.01196 0.01137 63 0.00709 0.00950 0.00737 0.00767
64 0.01380 0.01353 0.01306 0.01250 64 0.00784 0.01019 0.00812 0.00834
65 0.01525 0.01474 0.01427 0.01393 65 0.00868 0.01093 0.00894 0.00915
66 0.01686 0.01609 0.01561 0.01523 66 0.00959 0.01172 0.00987 0.00982
67 0.01863 0.01759 0.01713 0.01702 67 0.01061 0.01258 0.01094 0.01088
68 0.02058 0.01929 0.01880 0.01882 68 0.01173 0.01350 0.01213 0.01188
69 0.02273 0.02119 0.02062 0.02137 69 0.01297 0.01452 0.01343 0.01314
70 0.02510 0.02333 0.02263 0.02356 70 0.01434 0.01564 0.01489 0.01429
71 0.02771 0.02573 0.02494 0.02649 71 0.01585 0.01688 0.01659 0.01605
72 0.03058 0.02843 0.02758 0.02956 72 0.01751 0.01827 0.01860 0.01747
73 0.03375 0.03146 0.03057 0.03301 73 0.01935 0.01983 0.02091 0.01955
74 0.03722 0.03485 0.03389 0.03653 74 0.02138 0.02157 0.02350 0.02156
75 0.04104 0.03865 0.03756 0.04074 75 0.02361 0.02354 0.02638 0.02413
76 0.04524 0.04288 0.04165 0.04540 76 0.02607 0.02576 0.02966 0.02696
77 0.04984 0.04759 0.04644 0.05054 77 0.02878 0.02826 0.03356 0.02974
78 0.05488 0.05281 0.05188 0.05573 78 0.03176 0.03108 0.03803 0.03299
79 0.06039 0.05858 0.05798 0.06203 79 0.03504 0.03425 0.04311 0.03688
80 0.06643 0.06494 0.06474 0.06842 80 0.03865 0.03783 0.04884 0.04132
81 0.07302 0.07191 0.07223 0.07483 81 0.04260 0.04183 0.05527 0.04554
82 0.08020 0.07953 0.08040 0.08252 82 0.04695 0.04631 0.06234 0.05004
83 0.08803 0.08783 0.08909 0.09009 83 0.05171 0.05130 0.06989 0.05583
84 0.09654 0.09682 0.09815 0.09914 84 0.05693 0.05685 0.07781 0.06214
85 0.10578 0.10654 0.10787 0.10732 85 0.06264 0.06299 0.08639 0.06809
86 0.11579 0.11699 0.11887 0.11702 86 0.06889 0.06975 0.09604 0.07444
87 0.12661 0.12819 0.13109 0.12706 87 0.07570 0.07717 0.10661 0.08216
88 0.13829 0.14012 0.14345 0.13713 88 0.08313 0.08528 0.11745 0.09043
89 0.15086 0.15358 0.15668 0.14803 89 0.09121 0.09427 0.12882 0.09902
90 0.16435 0.16720 0.17182 0.15942 90 0.10000 0.10388 0.14210 0.10782
91 0.17879 0.18159 0.18631 0.17255 91 0.10953 0.11424 0.15466 0.11770
92 0.19421 0.19674 0.20115 0.18536 92 0.11984 0.12539 0.16712 0.12820
93 0.21061 0.21261 0.21678 0.19755 93 0.13099 0.13733 0.18047 0.13857
94 0.22801 0.22920 0.23289 0.21181 94 0.14300 0.15007 0.19383 0.15116
95 0.24640 0.24646 0.24949 0.22650 95 0.15592 0.16361 0.20783 0.16289
96 0.26577 0.26435 0.26678 0.24185 96 0.16977 0.17793 0.22208 0.17643
97 0.28607 0.28282 0.28445 0.25611 97 0.18459 0.19305 0.23633 0.18970
98 0.30728 0.30180 0.30284 0.27024 98 0.20038 0.20893 0.25135 0.20472
99 0.32933 0.32122 0.32181 0.28617 99 0.21717 0.22556 0.26675 0.21867

100 0.35217 0.34099 0.34174 0.30399 100 0.23495 0.24291 0.28240 0.23350
101 0.37569 0.36099 0.32117 101 0.25372 0.26096 0.24986
102 0.39982 0.38110 0.33898 102 0.27344 0.27966 0.26984
103 0.42445 0.40113 0.35039 103 0.29410 0.29897 0.28508
104 0.44946 0.42090 0.37298 104 0.31564 0.31884 0.30462
105 0.47473 0.44013 0.39535 105 0.33800 0.33921 0.32062
106 0.50012 0.45850 0.41893 106 0.36111 0.36001 0.33993
107 0.52552 0.47560 0.44971 107 0.38488 0.38117 0.35546
108 0.55078 0.49095 0.45165 108 0.40922 0.40261 0.38026
109 0.57579 0.50400 0.50108 109 0.43400 0.42421 0.39524
110 0.60041 0.51420 0.48707 110 0.45913 0.44586 0.41904
111 0.62453 0.52114 0.50420 111 0.48446 0.46741 0.41911
112 0.64806 0.52478 0.54237 112 0.50987 0.48868 0.45129  
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(G raph 11a) C om parison of Projection - q(x)
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(G raph 11b) C om parison of Projection - log(q(x))
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(G raph 11c) C om parison of Projection - q(x)
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(G raph 11d) C om parison of Projection - log(q(x))
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(G raph 11e) C om parison of Projection - q(x)
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(G raph 11f) C om parison of Projection - log(q(x))
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(G raph 11g) C om parison of Projection - q(x)
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(G raph 11h) C om parison of Projection - log(q(x))
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(G raph 11i) C om parison of Projection - q(x)
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(G raph 11j) C om parison of Projection - log(q(x))
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(G raph 11k) C om parison of Projection - q(x)
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(G raph 11l) C om parison of Projection - log(q(x))
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(G raph 11m ) Relative m ortality (base SP-a)
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