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Abstract 

Aggregated claims are modeled by a compound nonstationary 

Poisson process with periodic intensity. It is natural to describe 

claims with such processes when the claim intensity shows a clear 

seasonal dependence. 

Some general properties of such processes are briefly discussed 

as well as the possible shapes of the intensity function. A 

decomposition of the accumulated claims as a sum of independent 

compound Poisson sums is shown. Some results analogous to those of 

the classical model are established. An imbedded discrete risk model 

is introduced. It is shown that ruin probabilities and maximal losses 

for the nonstationary risk model find lower bounds with the imbedded 

discrete model. 
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1. Introdaction 

The question of time periodicitl for random processes is not new 

in Risk Theory It is usually discussed in the context of the 

nonstationarity of nonhomogeneous processes. When time plays an 

essential role in the behavior of the observed processes, an approach 

in terms of stochastic differential equations can be used (see e.g. 

Garrido, 1989). When the process possesses apparent discontinuities, 

nonstationary Poisson processes can give an adequate representation. 

This approach is well developed in reliability theory (see e.g. 

Block et al., 1992 and 1985; Baxter, 1982; Beichelt, 1991). In the 

case of time periodic behaviors one can expect that differential 

equations with periodic coefficient functions could find solutions 

processes that would serve as valid models. This case is discussed by 

Gnedenko and Makarov, 1971. They have shown that under some 

conditions Markov chains in continuous time with periodic intensities 

have periodic stationary probabilities. For the nonstationary Poisson 

process (that we will denote NPP in the sequel) periodicity in time 

is conveniently described by the periodic behavior of its intensity 

(or failure rate) function A(t). 

The name failure rate function comes from reliability theory. 

Under a minimal repair policy (Block et al. 1992; Baxter 1982) the 

failed unit is replaced by one of the same type and same age. The 

rate of the resulting process cou'~ting the number of failures is 

exactly equal to the intensity function A(t) of the failure time 

distribution. In Chukova et al. (1993) we have used this relation to 
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show characterization properties of the NPP with periodic failure 

rate. On the basis of these properties we consider here some 

modeling problems in Risk Theory for the claims process and the time 

to ruin. A discussion of some simple statistical aspects such as the 

identification of the characteristics of an NPP is also included. We 

follow the description and results of Cinlar(1974) in this subject. 

2. Preliminary Results 

We consider the risk problems from the point of view of a n  

i n s u r a n c e  co m p an y .  A g e n e r a l  i n s u r a n c e  c o n t r a c t  i s  i s s u e d  f o r  a 

l i m i t e d  t i m e  p e r i o d ,  s a y  o n e  y e a r .  D u r i n g  t h i s  p e r i o d  t h e  i n s u r a n c e  

c o m p a n y  w i l l  p a y  a d m i s s i b l e  c l a i m s  t o  t h e  p o l i c y h o l d e r ;  when no c l a i m  

i s  made ( i . e .  no e v e n t s  o c c u r r e d  o r  t h e y  w e r e  n o t  r e p o r t e d ) ,  t h e n  no  

p a y m e n t  i s  i s s u e d .  At  t h e  e n d  o f  t h e  c o n t r a c t  p e r i o d  t h e  p o l i c y h o l d e r  

may r e n e w  t h e  p o l i c y ,  e f f e c t i v e l y  b u y i n g  new c o v e r a g e  f o r  t h e  n e x t  

y e a r .  We a s s u m e  a u t o m a t i c  r e n e w a l s  o f  t h e  i n s u r a n c e  c o n t r a c t s  on  t h e  

part of the policyholders and a constant average number of 

policyholders within the portfolio. 

Let A(t) be the intensity of claims generated by a given 

policyholder at time t, tzO. When seasonal conditions affect the 

insured risk (e.g. automobile or fire insurance, hurricanes) it is 

natural to assume that A(t) is a periodic function with a one year 

period. This corresponds to the case where the chances for an 

insurance event to occur will depend on the season, but will 

otherwise be identical from year to year. Moreover, if no insurance 

event is observed during a given year, it does not affect the chances 
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that an event will occur durin 8 the next year. 

We fix the beginning of the period. The dependence of h(t) on 

the time parameter t, describes the claims intensity. For instance, 

the form 

( I )  ~ ( t )  = ~ t P - 1 ( 1 - t )  q - I  a n d  ~ ( n + t )  = ~ ( t )  , 

f o r  ~>0; p>O; q>O; n e ~  a n d  t ~ [ O , l )  , s i m i l a r  t o  t h a t  o f  t h e  b e t a  

distribution, seems flexible enough to include many possible shapes 

of claims intensity in a given year. 

It is possible to have multiple claims generated by the same 

policyholder, as described above for minimal repairs in reliability 

theory. Also, many policyholders will have no claims during the 

period, but we assume that they renew their insurance for the next 

period. A NPP model is natural under such assumptions. 

Let Ak(t) be the claims intensity for the kth individual 

policyholder. If there are K policyholders at the beginning of the 

year, we know from the theory of NPP's that the portfolio claims 

intensity for all K individual claim processes is 

(2 )  ~ ( t )  = X l ( t )  . ~ 2 6 t )  + . . .  + A K ( t )  

( s e e  ~ i n l a r ,  1974)  and  t h a t  t h e  p o r t f o l i o  c l a i m s  p r o c e s s  is a l s o  NPP. 

F u r t h e r ,  i f  e a c h  ~ k ( t )  i s  p e r i o d i c ,  t h e  same i s  t r u e  o f  A C t ) .  I n  

p a r t i c u l a r ,  i f  e a c h  i n d i v i d u a l  c l a i m s  i n t e n s i t y  t a k e s  t h e  fo rm i n  

( 1 ) ,  t h e n  t h e  p o r t f o l i o  i n t e n s i t y  t a k e s  t h e  same f o r m ,  n a m e l y  

(3} ~ ( t )  = K ~ t P - l ( 1 - t )  ~-1 f o r  t ~ [ O , 1 )  

which is suitable for statistical inference. 

In conjunction, it might be natural to assume that claim sizes 

also depend on time. Consider a claim C t occurring at time t, with a 

26e~ 



distribution depending on t. Therefore, the total claims in the time 

interval [O,t) will be represented by the process 
t 

(4) s t = J' A(U)CudU 
o 

The process in (4) will not be investigated here in its full 

generality, but it follows that for h(t) periodic S t is also a 

periodic process. 

In the sequel we will refer to the following result of Chukova 

et al. (1993), concerning the NPP with periodic intensity function. 

Let {Nt, tzO} be an NPP with intensity function A(t) and hazard 

function 
t 

(5) A(t) = IA(u)du 
o 

Denote by N[~,~+t ) the random m~ber of events of the NPP over the 

interval [T,x+t), ~zO, tzO, i.e. {N[z,~+t), tzO} = {N + t- NT, taO}. 

Theorem I: (i) If A(t) is a periodic function (with an arbitrary 

period, say b>O), then its haz~rd function A(t) has the following 

property 

(6) A(t) = [t/b]A(b) + A(t-[t/b]b), taO, 

where [.] denotes the "integer part" function; 

(ii) Under the conditions of (i) 

P{N[nb, = m} = P{N t = m} m =0,1,2 nb+t) . . . . .  

for any integer naO and any taO. Moreover, the random variables 

N[nb,nb+t ) and N[o,nb) are mutually independent; 

(iii) A NPP {N t, tzO} has periodic intensity function A(t) with 

period b>O if and only if the random numbers of failures N[o,b ) and 

N[b,b+t ) are independent and distributed as N b and N t , respectively; 
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(iv) If {N t, tzO} is a NPP with periodic intensity function of 

period b>O , then for any tzO the random variable N t can be 

represented in the form 

N t = N1+ N2÷...÷ Mit/b ] + N[o,t_[t/b]b),  

where all terms are independent Poisson random variables, M. being 
l 

distributed as N[o,b ) , for i=i,2 .... ,[t/b]. 

3. A p p l i c a t i o n s  t o  Risk  Theory 

The p r o p e r t i e s  o f  NPP's w i th  p e r i o d i c  f a i l u r e  r a t e s  g i v e n  in 

Theorem 1 suggest possible applications in risk theory. At first we 

will consider the modeling of the claims counting process. An 

application to the ruin problem follows. 

3 . 1 .  The number o f  c l a i m s  i n  an a r b i t r a r y  t i m e  p e r i o d  

Assume that insurance is bought, for a known term [O,b), e.g b=1 

for the usual one-year coverage. The number of claims recorded in an 

arbitrary period [T,T+t) ~ [O,b), for a portfolio of K similar 

insurance policies, is denoted NrTt T+t) and has a Poisson 
' T÷% 

distribution with parameter A(T+t)-A(T) = I A(u)du . Thus 
T 

T+t 

{ I A(u)du} m 
T÷t 

(7) P{N[x x+t) = m} = x , m! exp{-f A(u)du} , m=O,l,2 .... 
T 

Let us further assume that A(t) ta]tes the form in (3) for te[O,b), 

i.e. the following periodic functior of period b : 

KAtP-](b_t)q -1 
(8] A(t) = and A(nb+t) = A(t) 

bp+q-2 

for nE~ and te[O,b). We consider a few special cases of interest of 

the random variable in (7). 
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First the simple case T=0 and t=b for A(t) as in (8). We get for 

N b , the total number of claims over the first period, that 

{KXb ~(p,q)}m 
(9) P{N b = m} = m! exp(-KAb ~(p,q)} , m=O,l,2 .... 

where 
1 

8(p,q) = F(p)F(q) ~uP-1 
F(p+q) = (l-u)q-ldu 

is the usual beta function for p, qzO . The expected number of claims 

during the period is equal to its variance and is given by 

E(N b) = KAb ~(p,q) 

Here A, p and q are parameters of the distribution and can be 

estimated from annual data recor(|s. In (8) K denotes the total number 

of policyholders over the period which is assumed known and constant. 

Models with a random K can also be defined as immediate 

extensions and are slmilar to classical contagion models. For 

instance, if the number of policyholders over the year is a random 

variable J with known distribution, then its probability generating 

function (p.g.f.) is 

Pj(z) = E(z J) = ~ P(J = k} z k 

kZO 

The total number of claims by time t is a random variable Kt, 

represented by a random sum of individual claim counting processes 

K t = N I + N 2 + ... + Nj 

and the p.g.f, of the process K t is given by 

Kt ) ( z - l )  
E ( z  ) = Pj(e  ̂ ( t  ) 

w h e r e  A ( t )  i s  g i v e n  i n  ( 5 ) ,  o r  i n  (6) f o r  a f i x e d  v a l u e  o f  b.  Hence ,  

t h e  e x p e c t e d  number  o f  c l a i m s  o v e r  an i n t e r v a l  [ O , t )  i s  e q u a l  t o  

E(K t )  = A ( t ) E ( J )  
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and its variance is 

Var(K t) = A(f){E(J) + A(t]Var(J)} 

If P{J = K} = I for a certain integer K, we obtain the previous 

result, where K t is a superposition of K independent NPP's each with 

intensity function A(t). 

Finally, when A(t) is as in i8), we can consider the number of 

claims during any arbitrary period [x,x+t) within the T-th year. Its 

expectation is given by: 

(I0) ~ E(N[~,T+t )) = KAb ~(p,q;t) 
L 

where 8(p,q;t) = ~uP-1(1-u)q-ldu is the incomplete beta function. 

Numerical values of if0) can be obtained by computer and/or with 

statistical tables of the beta distribution, for p and q known. 

3.2 Compound NFP claims processes with periodic intensity 

Let O. denote the i-th claim amount. Now assume C. does not 
1 1 

depend on the claim occurrence time and that {Gi}i= I is a sequence of 

i.i.d, random variables with c.d.f. F(x) = P{C. < x}. Then the total 
1 

claims for time period [O,t) can be written as 
N 
[0,t) 

ill) S t = ~ C n 

n=O 

where N[O,Z ) is assumed to be a NPP with the properties established 

in Theorem I and O 0 m O. From Theorgm l-(iv) we can re-write ill) in 

the form 

+S (12)  S t = S 1 + S 2 + . . .  + S { t / b  ] [ O , t - [ t / b l b )  ' 

where  t h e  S . ' s  a re  i . i . d ,  random v a r i a b l e s  e q u a l l y  d i s t r i b u t e d  to  
1 
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N 
[O ,b )  

(13)  S b = Z Cn 
n=O b 

and N[o,b ) i s  a P o i s s o n  r . v .  w i t h  p a r a m e t e r  A(b) = Ik(u)du.  Thus,  t h e  

moment g e n e r a t i n g  f u n c t i o n  ( m . g . f . )  of  e ach  S .  i s  g i v e n  by 
1 

(14)  E(exp(tSb)} = exp(A(b) (Mc( t ) - l ) )  

where  Me(t) i s  t h e  m . g . f ,  o f  a s i n g l e  c l a i m  amount  ¢ n . By c o n t r a s t ,  

S in (12) is independent of the previous terms and is 
[O,t-[t/b]b) 

equivalent to the random sum 

(15 )  S[o,t_[t/b]b) = C I + C 2 + . . .  + C N 
[O,t-[t/b|b) 

where N[o,y ) is the random number of events of that part of the 

original NPP claim-counting process, for which y~[O,b). 

Moments of S t can be obtained from (14) and (15). Exact premiums 

can thus be calculated with compound NPP's as easily as in the 

classical compound Poisson case. The introduction of time periodicity 

does not seem to add any difficulties in rate making. We will now see 

how it affects the solution of the ruin problem. 

3.3 Ruin probabilities 

3.3.1 The general NPP case 

Consider the ruin probability in the case of a NPP with known 

claim intensity k(t). Let us define the initial age of the process as 

its age TzO when observation starts at time t=O. The number of claims 

is counted over age intervals [~, ~+t) , for tzO, and is denoted by 

N[T,y+t ). The distribution of N[T,T+t ) is given by (7) and can be 

expressed in a more compact form in terms of the hazard function 

A(t). Thus the time of occurrence of the first claim follows the law 
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( 1 6 )  g T ( t ) d t  = P{N[T,T+u ) = 0 f o r  a l l  u~t , N [ T + t , ~ + t + d t )  = I} 

= A ( T + t ) e x p ( - ( A ( T + t ) - A ( T ) } ) d t  

which defines the density gT of this time to the first claim. As in 

the previous section we assume that the claim severities {C } are 
n n : l  

i.i.d, with common distribution F and density f. Now, denote by 

R (u,t) the surplus process at time t when the initial reserve (at 
T 

time O) is u, with a claims process of initial age T In the 

classical, constant and continuous premium environment we have 

N[T,-:+t)  

(17) R(u,t) = u+ct- ~C n , T~O , taO 

n=0 

Define TT(u) = inf { tzO ; RT(u,t)<O } , i.e. the time to ruin under 

the above conditions, and introduce the following notation 

(18) @T(u,t,s)dtds = P{T (u) = t , RT(u,t) = -s}, s>O 

for the joint probability density thnt ruin occurs at time t and that 

its severity equals s. We can now prove the following result. 

Lemma I: The density ~T(u,t,s) is solution of the following 

recurslve functional equation: 

(19) @(u,t,s) = A(T+t)exp(-{A(':+t)-A(T)}) f(u+ct+s) + 
t 'I÷C V 

+ ; A(z+v)exp(-{A(T+t)-A(T)})[ ~z+v(U+cv-y,t-v,s)dF(y)dv 

0 ') 

Proof: Conditioning on the f.rst occurrence of a claim we 

distinguish two cases: 

(i) it occurs exactly at time t and it is of size u+ct+s, 

causing ruin at that instant with a :~everity of s , 

(ii) it occurs at some prior time v , where o~v<t , it does not 

cause ruin. Then, starting with an initial amount of u+cv-C1zO and 
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with an initial age of T+v, ruin ~ccurs in exactly t-v years, that is 

TT+v(U+cv-C I) ~ it-v, t-v+dt). Then (19) follows from (16) and by 

conditioning on the possible values of C I and its occurrence times, a 

We define 

(20)  g ( u , t ) d t  = P{TT(u) ~ ( t , t+d t ] }  = I 0 ( u , t , s ) d s  

t h e  m a r g i n a l  d e n s i t y  o f  t h e  t i m e  t o  r u i n  T ( u ) .  I t  i s  o b t a i n e d  f r o m  
T 

t h e  J o i n t  d e n s i t y  ~T(u , t , s )  by  i n t e g r a t i n g  o v e r  a l l  p o s s i b l e  r u i n  

severities s~O . Therefore, the following results holds. 

Corollary I: The density gT(u,t) is solution of the following 

functional equation 

(21)  g ( u , t )  = ~(~+t)exp(-{A(T+t)-A(T)})  {1-F(u+ct)} + 
t U + C V  

I ~(~+v)exp(-{A(T+v)-A(~)} ) I g~+v(U+cv-y, t-v)dF(y)dv 
From the density of T (u) one can find the marginal c.d.f, of 

T 

the time to ruin, 
2 

(22)  ~T(u,z  ) d~f P{T (u) < z) = I gT(u ' t )d t '  

w h i c h  i s  a l s o  t h e  p r o b a b i l i t y  o f  r u i n  w i t h i n  z y e a r s  when  t h e  i n i t i a l  

reserve is u and the initial age of the claim process is T. The main 

conclusion of the above discussion rests in Theorem 2. 

Theorem 2: The probability of ruin @T(u,z) in (22) satisfies the 

following integral equation 

z 

(23)  ~T(u 'z )  = i ~(T+t)exp(-{A(~+t)-A(T)})  {1-F(u+ct)}dt + 

Z u+ct 

X(~+t)exp(-(A(T+t)-A(T)}) I ~+t(u+ct-y'z-t)dF(y)dt 
Proof: According to (22) the probability of ruin can be obtained 
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by i n t e g r a t i n g  (21)  o v e r  t h e  i n t e r v a l  [O,z]. The f i r s t  t e r m  o f  t h e  

r i g h t  hand  s i d e  i n  (23)  i s  c l e a r  from ( 2 1 ) .  The s e c o n d  t e r m  i s  

o b t a i n e d  a f t e r  a v a r i a b l e  c h a n g e  i n  t h e  i n t e g r a t i o n  in  ( 2 1 ) ,  i . e .  
z t u ÷ c v  

I (I A(x+v)exp(-(A(T+v)-A(T)}) IgT+v(U+cv-y,t-v)dF(y)dvdt 
z u + c v  z 

= I ~ A(x+v)exp(-(A(~+v)-A(x))){~gT+v(u+cv-y,t-v)dt)dF(y)dv 
z u+cw 

= I A(T+v)exp(-(A(T+t)-A(~))) I ~T+v(U+cv-y,z-v)dF(y)dv [] 

Corollary 2: The probability of ultimate ruin 

~T(u) = l i m  CT(u,z) 
Z - - ' ~  

in the case of a NPP claim process starting at age T, satisfies the 

following integral equation: 

(24)  ~T(u)  : ~ X(T+t)exp(-(A(~+t)-A(T)}) I *T+t(u+ct-y)dF(y)dt 

where we assume ~T(u)=l for u<0 , Tz0 . 

Proof: Equation (24) follows after taking the limit z----> m in 

(23) and using the uniform lntegrability of the function in the 

second term of the right hand side. D 

If X(t) = A is constant then (24) coincides with the classical 

result of Gerber(1979), p.114. 

Let us now consider the probability of ruin ~o(U,Z). By analogy 

with Lundberg's theory on the adju3tment coefficient and bounds on 

ruin probabilities, let us denote by R a positive solution, if it z 

exists, of the following equation 
z 

(25) Mc(R) ~ A(t)e-A(t)e-RCtdt = I 
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where it is assumed that the moment Eeneratin g function (m.g.f.) 

Mc(R) = ~ eRYdF(y) e x i s t s  f o r  some R > 0 . The n  t h e  f o l l o w i n g  h o l d s .  

The  p r o b a b i l i t y  o f  r u i n  @o(U,Z) s a t i s f i e s  t h e  Theorem 3: 

inequality 

@o(U,Z) ~ exp(-RoU) 

where R is defined as the lowest upper bound of all positive 
o 

solutions of (25). 

Proof: First we observe that positive solutions R z of (25) exist 

and these decrease in z>0 . Equation (25) can be re-written in the 

form 
Z 

[26) ~ A(t)e-A(t)e-RCtdt = 1/Nc(R) 

The r i g h t  h a n d  s i d e  o f  ( 26 )  i s  d e c r e a s i n g  i n  R , f r o m  1 t o  O, o v e r  

t h e  i n t e r v a l  [O, Ro). The  l e f t  h a n d  s i d e  i n  (26} i s  p o s i t i v e  a n d  l e s s  

t h a n  1, i t  i s  i n c r e a s i n g  i n  z and  a l s o  p o s i t i v e  f o r  R ~ {O, Ro). 

T h e r e f o r e ,  s o l u t i o n s  R o f  (26 )  e x i s t ,  a r e  d e c r e a s i n g  i n  z a n d  t h u s  
z 

b e l o n g  t o  [O, Ro). 

The rest of the proof is by induction as in the classical case 

(e. E. refer to Gerber, 19791 pp. I19-120). Denote by ~n)(u,t) the 

probability that ruin occurs with or before the n-th claim, within 

the aEe interval (x,~+t], when the initial surplus is u (n = 1,2 ..... 

0mwsw+tsz). By induction with respect to n we see that 

'(n)(u,t) s exp(-RoU) T and T+t~(O,z] (27) W T , 

This inequality implies that cf Theorem 3, since ~o(U,Z) = n-~lim 

~(n)(u,z) with the understandin8 that @(°)(u,t) = I for u<0 
o ' --O 

~(O)(u,t) m exp(-RoU) fo[ all (°)(u,t) = 0 for u~O and, hence that ~o G o 
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u . Moreover, the same considerations also lead to 

@~°)(u,t) ~ exp(-Rtu) ~ exp(-RzU) , for T and ~+t ~ (O,z] 

Assume (27) is true for some n=l,2 .... and then apply the law of 

total probability, conditioning on the time and the amount of the 

first claim within (O,z]. The induction assumption gives 

z 

~(n)(U'Z) = I A(t)e-A(t) I "(n-l}(u+ct-y'z-t)dF(y)dt o ~t 
z 

~ I A(t)e-A(t) I exp{-Rz(U+ct-y))dF(y)dt 
z 

= exp(-RzU) {I A(t)e-A(t)e-RzCtdt}Mc(Rz) 

= exp(-azU) o 

Corollary 2: The probability ~0(u) of ultimate ruin satisfies 

@o(U) s exp(-Rmu ) for all u 

where R is the positive solution of the equation 

Me(R) I A(t)e-A"t)e-RCtdt = I 

[=rOOf: It follows from Theoren 3 and (25), since @0(u) = tim 
z-)co 

_~o(U,Z) and R~ = lim Rz o 
z-ie~ 

The result of Theorem 3 can be used even in the case of compound 

Poisson claim processes to improve the upper bounds for the 

probability of ruin on a finite int~:rval. In that case equation (25) 

reduces to 

AMc(R) 
{1 - exp(-Az-cRz)} = I 

A + cR 

We have R > R , for O<z<~ , and therefore the upper bound exp(-R u) 
z m z 

can be smaller than exp(-R u). 
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3.3.2. The periodic NPP case 

Now we turn to the case where the intensity function A(t) is 

periodic with period b>O. Then A(nb+t) = A(t) for all tzO and for any 

integer n=1,2 .... 

From (17) and from Theorem t-{iv) we obtain the following 

representation for the surplus process Ro(t,u): 

N[O, t) 

(28) Ro(t,u) = u + ct - ~ C 

n=O 
H N 

[t/b} k {0, t-[t/b}b) 

= u + c { [ t / b ] b  + ( t  - [ t / b ] L , ) }  - - C 
n 

k=l n=O n=O 

H N 
[t/b] k tO,y) 

= u + (cb - C (k)) + .~cy - 
n n 

k=l n=O n=O 

where y = t [t/b]b E tO,b) the {C (k)} ~ k=1 2, .. are 
' n n=O' ' " 

independent sequences of i.i.d, random variables distributed as a 

single claim amount C , and M (respectively N ) are i.i.d. 
n k tO,y) 

Poisson random variables with parameter A(b) (resp. A(y)), 

independent of {C (k)} ~ . 
n n=O 

(29) 

We introduce the new random variables 

H 
k 

U k = cb - > C (k)n ' k = 1,2 

n=O 

Then {U k k=l are i.i.d, and their common m.g.f, is MU(t) = E(e tu) = 

tcb 
e exp(A(b){Hc(t)-l}). Consider now the random walk (k,gk), 

k=O,l,2 ..... where U =u and 
0 

(30) = U + U + U + ... + U k=O,l,2 .... 
Sk 0 1 2 k '  

Denote by T its first passage tine to a negative value, i.e. 
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(31) T(u )  = inf {kzO ; S <0} .  
k 

The process S denotes the insurer's surplus at time k, 
k 

k=0,1.2 .... in a discrete time collective risk model (see for 

instance Bowers et al., 1986, pp.354-358). Then u is the initial 

surplus, cb is the amount of premiums received each period and 
M 
k 

Wk = ~ C(k)n 

n=O 

is the sum of the claims in period k. As it is shown above, WI,~2,... 

are i.i.d, random variables which have compound Poisson distribution 

Fw(y) with parameter Afb), Moreover, T(u) in (31) is the time to ruin 

for the dlscrete risk model; we say, it is an "imbedded discrete risk 

model" into the original continuous risk model with periodic NPP of 

claims. 

L e t  T ( u )  = i n f  { t~O;  R ( t , u ) < O }  be t h e  t i m e  t o  r u i n  o f  ou r  
o o 

original risk process with periodic intensity function A(t) of period 

b>O. Then the following is true. 

Theorem 4: The time to ruin distribution satisfies the following 

inequality 

(32) P(T (u)>t) ~ P(T(u)>[t/b]) 
0 

where T(u) i s  d e f i n e d  in  (311. 

Proof: We have the following o3vious relations, obtained on the 

basis of representation (28) for the surplus process (for convenience 

we set k=[t/b]): 

P{T ( u ) > t )  = P{R ( s , u ) a O  f o r  a l l  s ~ [ O , t ] }  
o 0 

s P{Ro(S,u)aO for s=nb, n=l ..... k and for s¢[kb, t]} 

= P{SlzO, S2zO ..... SkaO, Ro(S,U+$k)ZO for all sE[O,t-kb]} 

2 7 6  



= P{T(u)>R, Ro(S,U+Sk)aO for aJ1 se[O, t -kb] )  ~ P{T(u)>k). s 

Therefore, a lower bound for the ruin probability @o(u,t) is 

given by 
[t/b] 

(33)  @o(u,t) ~ ~ ( u , [ t / b ] )  = T P{T(u):n}. 
n= l  

Here ~(u,k) = 1 - P{TCu)>k) is the probability that the random walk 

(n,S) hits (-m,O) within k moves, if S = u. There are general 
n o 

results for random walks in R (e.g. Feller, 1966, chapter 12) one can 

use to derive explicit forms for the distribution of T(u) and thus 

for the probability of ruin. For instance the p.g.f, of T(u) is seen 

to be 

[ tzb ] n 

P~(s) = P{T(u)=n)s n= I - exp( n s 

n=l n=1 

Moreover, the inequality 

P{S <-u)) 
n 

E(U k) = cb -A(b)E(C n) > 0 

implies that P{T(u)<~} < 1, i.e. this is a necessary and sufficient 

condition for the probability of ultimate ruin of the imbedded 

discrete risk model to be less than one. Relation (32) shows that the 

r.v. T (u) is in some sense stochastically smaller then T(u). 
o 

probabilities ~(u,k) satisfy the following recurrent The 

equations: 
u + c b  

~ ( u , k + l )  = 1 - Fw(u+cb) + [ ~ ( u + c b - y , k ) d F ~ ( y )  

o 

with ~(u,O)=O for uzO. 

The inequality in (33) remains valid also for the probability of 

ultimate ruin. This is seen after taking the limit as t-~m (and 
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t h e r e f o r e  a s  [ t / b ] - o ~  ).  

R e f e r r i n g  t o  Theo rem 12 .2  o f  Bowers  e t  a 1 . ( 1 9 8 6 )  we can  a l s o  

c o n c l u d e  t h a t  t h e  p r o b a b i l i t y  o f  u l t i m a t e  r u i n  ~ ( u )  = l i m  ~ ( u , t )  

satisfies the following inequality 

e x p ( - R u )  
~(u) 

E(expI-~;~(u)JlT(u)<~) 
w h e r e  R i s  t h e  p o s i t i v e  s o l u t i o n  o f  t h e  e q u a t i o n  

A ( b ) { M c ( R ) - I )  - o r b  = 1 

F i n a l l y  we c o n s i d e r  t h e  maximal  l o s s  r andom v a r i a b l e  

t = s u p  (S  t - c t ) ,  
t~O 

w h e r e  S$ , g i v e n  by  ( 1 1 ) ,  i s  t h e  t o t a l  c l a i m s  f o r  t ime  i n t e r v a l  

[ O , t ] .  D e n o t e  by L t h e  max imal  l o s s  f o r  t h e  i mb ed d ed  d i s c r e t e  mode l ,  

i . e .  

= s u p  ( ~  + ~  + . . . + W  - R o b ) .  
1 2  k 

k m l  

Then the following is true. 

Theorem S: The maximal loss L in the continuous time model with 

an NPP claim process and periodic intensity is stochastically larger 

than the maximal loss ~ for the imbedded discrete risk model. 

Proof: It follows from the following inequality, 

s u p  ( S  t - c t )  ~ sup ( S k b  - c k b ) ,  
t ~ O  k~9  

and  f r o m  (12) w h i c h  g i v e s  S k b  = WI+W2 + ' ' ' + ~ k  [] 

As i n  t h e  c l a s s i c a l  c a s e ,  t h e  i m b e d d e d  d i s c r e t e  model i s  a 

u s e f u l  t o o l  f o r  c o m p a r i n g  t h e  r u i n  p r o b a b i l i t i e s  and  maximal l o s s e s  

of continuous risk models where the claim process is described by an 

NPP with periodic intensity. 
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