ACTUARIAL RESEARCH CLEARING HOUSE
1994 VOL. 1

RUIN MODELING FOR COMPOUND NONSTATIONARY
POISSON PROCESSES WITH PERIODIC CLAIM INTENSITY RATES
José Garrido!’ , Boyan Dimitro# and Stefanka Chukova

'Concordia University and Universidad Anahuac,
%Sofia University,

3GMI Engineering & Management Institute

Abstract

Aggregated claims are mod=led by a compound nonstationary
Poisson process with periodic intensity. It is natural to describe
claims with such processes when the claim intensity shows a clear
seasonal dependence.

Some general properties of such processes are briefly discussed
as well as the possible shapes of the intensity function. A
decomposition of the accumulated claims as a sum of independent
compound Poisson sums is shown. Some results analogous to those of
the classical model are established. An imbedded discrete risk model
is introduced. It is shown that ruin probabilities and maximal losses
for the nonstationary risk model find lower bounds with the imbedded

discrete model.
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1. Introduction

The question of time periodicity for random processes is not new
in Risk Theory . It 1is usually discussed in the context of the
nonstationarity of nonhomogeneous processes. When time plays an
essential role in the behavior of the observed processes, an approach
in terms of stochastic differential equations can be used (see e.g.
Garrido, 1989). When the process possesses apparent discontinuities,
nonstationary Polsson processes can give an adequate representation.
This approach is well developed in reliability theory (see e.g.
Block et al., 1992 and 1985; Baxter, 1982; Beichelt, 1991). In the
case of time periodic behaviors one can expect that differential
equations with periodic coefficient functions could find sclutions
processes that would serve as valid models. This case is discussed by
Gnedenko and Makarov, 1971. They have shown that under some
conditions Markov chains in continuous time with periodic intensities
have periodic stationary probabilities. For the nonstationary Poisson
process (that we will denote NPP in the sequel) periodicity in time
is conveniently described by the periodic behavior of its intensity
(or failure rate) function A(t).

The name failure rate function comes from reliability theory.
Under a minimal repair policy (Block et al. 1992; Baxter 1982) the
failed unit is replaced by one of the same type and same age. The
rate of the resulting process couiting the number of failures is
exactly equal to the intensity fuiction A(t) of the failure time

distribution. In Chukova et al. (1933) we have used this relation to
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show characterization propertieé of the NPP with periodic failure
rate. On the basis of these properties we consider here some
modeling problems in Risk Theory for the claims process and the time
to ruin. A discussion of some simple statistical aspects such as thg
identification of the characteristics of an NPP is also included. We

follow the description and results of Cinlar(1974) in this subject.

2. Preliminary Results

We consider the risk problems from the point of view of an
insurance company. A general insurance contract is igssued for a
limited time period, say one year. During this period the insurance
company will pay admissible claims to the policyholder; when no claim
is made (i.e. no events occurred or they were not reported), then no
payment is issued. At the end of the contract period the policyholder
may renew the policy, effectively buying new coverage for the next
year. We assume automatic renewals of the insurance contracts on the
part of the policyholders and a constant average number of
policyholders within the portfolio.

Let A(t) be the intensity of claims generated by a given
policyholder at time t, tz0. When seasonal conditions affect the
insured risk (e.g. automobile or fire insurance, hurricanes) it is
natural to assume that A(t) is a periodic function with a one year
period. This corresponds to the case where the chances for an
insurance event to occur will depend on the season, but will
otherwise be identical from year to year. Moreover, if no insurance

event is observed during a given year, it does not affect the chances
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that an event will occur during the next year.

We fix the beginning of the period. The dependence of A(t) on
the time parameter t, describes the claims intensity. For instance,
the form
(1) act) = atP =091 and anet) = act)
for A>0; p>0; @>0; neN and tef0,1) , similar to that of the beta
distribution, seems flexible enough to include many possible shapes
of claims intensity in a given year.

It is possible to have multiple claims generated by the same
policyholder, as described above for minimal repairs in reliability
theory. Also, many policyholders will have no claims during the
period, but we assume that they renew their insurance for the next
period. A NPP model is natural under such assumptions.

Let Ak(t) be the claims intensity for the kth individual
policyholder. If there are K policyholders at the beginning of the
year, we know from the theory of NPP's that the portfolio claims
intensity for all K individual claim processes is
(2) A(t) = A](t) + Az(t) + o+ AK(t)
(see Cinlar, 1974) and that the portfolio claims process is also NPP.
Further, 1if each Ak(t) is periodic, the same is true of a(t). In
particular, if each individual claims intensity takes the form in
(1), then the portfolio intensity takes the same form, namely
(3) act) = KatP -7 for telo, 1)
vwhich is suitable for statistical inference.

In conjunction, it might be natural to assume that claim sizes

also depend on time. Consider a claim Ct occurring at time t, with a
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distribution depending on t. Therefore, the total claims in the time
interval [0,%) will be represented by the process
t

(4) St = g A(u)Cudu

The process in (4) will not be investigated here in its full
generality, but it follows that for A(t) periodic St is also a
periodic process.

In the sequel we will refer to the following result of Chukova
et al. (1993), concerning the NPF with periodic intensity function,

Let (Nt, tz0} be an NPP with intensity function A(t) and hazard

function
t

(5) A(t) = fA(u)du
o]

Denote by N the random number of events of the NPP over the

[t,T+t)

interval [T,T+t), T=0, t=0, i.e. (N tz0} = {N__,- N_, tz0).

[T, T+t)’ T+t T

Theorem 1: (i) If A(t) is a periodic function (with an arbitrary
periocd, say b>0), then its hazard function A(t) has the following
property
(6) A(t) = [t/bIA(b) + A(t-[t/b]b), t20,
where [.] denotes the "integer part” function;

(ii) Under the conditions of (i)

P{ =m} = P(Nt =m} , m=0,1,2,...

N[nb,nb+t)

for any integer nz0 and any t=0. Moreover, the random variables

and N are mutually independent;

N[nb,nb+t) {0, nb)

(iii) A NPP (Nt’ t=0} has periodic intensity function A(t) with

period b>0 if and only if the random numbers of failures N[ and

o,b)

are independent and distributed as N, and N, , respectively;

N[b.b+t) b t

265



(iv) If {Nt, t=0} is a NPP with periodic intensity function of
period b>0 , then for any ¢20 the random variable Nt can be
represented in the form

Ne =My Moo B * Yoot

where all terms are independent Poisson random variables, Mj being

distributed as N , for i=1,2,...,{t/bl.

[o,b)
3. Applications to Risk Theory

The properties of NPP's with periodic failure rates given in
Theorem 1 suggest possible applications in risk theory. At first we
will consider the modeling of the claims counting process. An
application to the ruin problem follows.
3.1. The number of claims in an arbitrary time period

Assume that insurance is bought for a known term (0,b), e.g b=l
for the usual one-year coverage. The number of claims recorded in an

arbitrary period ([t,7+t) € [0,b), for a portfolio of K similar

insurance policies, is denoted N[T c+t) and has a Poisson
Tt
distribution with parameter A(v+t)-A(tr) = [ A(u)du . Thus
T+t n T
{ J Alu)du} et
- = T - - =
(7) P{N[T,T+t) = m} - exp( i Alu)du} , m=0,1,2,...

Let us further assume that A(t) taltes the form in (3) for tel0,b),

i.e. the following periodic functior of period b :
katP Lep-1)97!
pPta 2

(8) A(t) = and A(nb+t) = A(t)

for neN and te{0,b). We consider a few special cases of interest of

the random variable in (7).
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First the simple case t=0 and t=b for A(t) as in (8). We get for

Nb , the total number of claims over the first period, that
(9) P(Nb =m} = £532_§%¥;SZIT exp(-Kxb B(p,q)} ., m=0,1,2,...
where
1
B(p.,q) = -Eggégg%l = [wP Y 1-w9 lau

is the usual beta function for p,qz0 . The expected number of claims
during the period is equal to its variance and is given by
E(Nb) = Kxb B(p,q)

Here A, p and gq are parameters of the distribution and can be
estimated from annual data records. In (8) K denotes the total number
of pollcyholders over the period which is assumed known and constant.

Models with a random K can also be defined as immediate
extensions and are similar to classical contagion models. For
instance, if the number of policyholders over the year is a randon
variable J with known distribution, then its probability generating
function (p.g.f.) is

RN _ Kk
P(z) = E(z) -ZP{J-—R} z

k=0

The total number of claims by time t is a random variable Kt'

represented by a random sum of individual claim counting processes

Kt = NI + Nz + ...t NJ
and the p.g.f. of the process Kt is given by
K
E(z 1) = p MP(ZD,

J

where A(t) is given in (5), or in (6) for a fixed value of b. Hence,

the expected number of claims over an interval [0,t) is equal to

E(Kt) = A(tIE(J)
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and its variance is
Var(Kt) = AEIE(J) + A(t)War(J))}

If P{J = K} = 1 for a certain integer K, we obtain the previous
result, where Kt is a superposition of K independent NPP’s each with
intensity function A(t).

Finally, when A(t) is as in (8), we can consider the number of
claims during any arbitrary period [Tt,T+t) within the 7-th year. Its
expectation is given by:

(10} E(N ) = Kxb B(p,q;t)

[t,z+t)
where B(p,q:t) = Iup-l(l—u)q_ldu is the incomplete beta function.
Numerical values of (10) can be obtained by computer and/or with
statistical tables of the beta distribution, for p and g known.
3.2 Compound NPP claims processes with periodic intensity

Let Ci denote the i-th claim amount. Now assume Ci does not
depend on the claim occurrence time and that (Ci)?=1 is a sequence of
i.1.d. random variables with c.d.f. F(x) = P{Ci < x}. Then the total

claims for time period {0,t) can be written as

N[O,t)
(11) s, = Z c,

n=0
where N[O t) is assumed to be a NPP with the properties established
in Theorem 1 and CO = 0. From Theor=m 1-(iv) we can re-write (11) in
the form
(12) St = SI * SZ et S(ub] * S[o,t—[ublb)

where the Si’s are i.i.d. random variables equally distributed to
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[0,b)

(13) Sb = E: Cn

n=0 b

and N is a Poisson r.v. with parameter A(b) = lA(u)du. Thus, the

[0,b)
moment generating function (m.g.f.) of each Si is given by

(14) E{exp(tsb)) = exp(A(b)(MG(t)—l))

where Mc(t) is the m.g.f. of a single claim amount Cn. By contrast,
S[O,t—[t/b]b) in (12) 1is independent of the previous terms and is

equivalent to the random sum

(15) s[o,b4c/wb) = Cl * CZ t... tC
{0,t-({t/blb)

where N is the random number of events of that part of the

(0,y)
original NPP claim-counting process, for which ye[0,b).

Moments of St can be obtained from (14) and (15). Exact premiums
can thus be calculated with compound NPP’s as easily as in the
classical compound Poisson case. The introduction of time periodicity
does not seem to add any difficulties in rate making. We will now see
how it affects the solution of the ruin problem.

3.3 Ruin probabilities

3.3.1 The general NPP case

Consider the ruin probability in the case of a NPP with known
claim intensity A(t). Let us define the initial age of the process as
its age t=0 when observation starts at time t=0. The number of claims
is counted over age intervals [1, tT+t) , for t=0, and is denoted by

The distribution of N is given by (7) and can be

N[r,r+t)' [t,t+t)

expressed in a more compact form in terms of the hazard function

A(t). Thus the time of occurrence of the first claim follows the law
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(16) gT(t)dt P{N[t,r+u] = 0 for all ust , N[T+t,T+t+dt) =1}

Alt+tdexp(={(A(T+t)-A(T)})dt

which defines the density 8. of this time to the first claim. As in
the previous section we assume that the claim severities (Cn)n:1 are
i.i.d. with common distribution F and density f. Now, denote by
Rt(u,t) the surplus process at time t when the initial reserve (at
time 0) is u, with a claims process of initial age T . In the

classical, constant and continuous premium environment we have
N[r,1+t)
(17) R (u,t) = u+ct- E:(Z , T=0 , t20
T n
n=0

Define Tt(u) = inf { t=0 ; RT(u,t)<O } , i.e. the time to ruin under
the above conditions, and introduce the following notation
(18) wr(u,t,s)dtds = P{Tt(u) = ? , RT(u,t) = -5}, s>0
for the jolnt probability density that ruin occurs at time t and that
its severity equals s. We can now prove the following result.

Lemma 1: The density wt(u,t,s) is solution of the following

recursive functional equation:

(19) Y(u,t,s) = A(t+t)exp(~{A(:+t)-A(T)}) f(utct+s) +
t I+CV
+ I ACT+viexp(—-{A(x+t)~A(T)}) ( wt+v(u+cv—y,t—v,s)dF(y)dv
o n

Proof: Conditioning on the f .rst occurrence of a claim we
distinguish two cases:

(i) it occurs exactly at time ¢t and it is of size u+ct+s,
causing ruin at that instant with a severity of s ,

(ii) it occurs at some prior time v , where o=v<t , it does not

cause ruin. Then, starting with an initial amount of u#cv—Clzo and
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)
with an initial age of T+v, ruin »>ccurs in exactly t-v years, that is
TT+V(u+cv—Cl) € (t-v, t-vidt). Then (19) follows from (16) and by

conditioning on the possible values of 01 and its occurrence times. o

We define

o
(20) g (u,t)dt = P(T_(u) € (t,t+dt]) = I v (u,t,5)ds
the marginal density of the time to ruin TT(u]. It is obtained from
the Jjoint density wt(u,t,s) by integrating over all possible ruin
severities sz0 . Therefore, the following results holds.

Corollary 1: The density gT(u,t) is solution of the following
functional equation

(21) gr(u,t) = A(r+t)exp(~{(A(T+t)-A(T)}) (1-F(utct)} +

t u+cv
I Alz+viexp(-{A(T+v)-N(T))}) I gT+V(u+cv-y,t-v)dF(y)dv
From the density of TT(uJ one can find the marginal c.d.f. of

the time to ruin,
z

(22) VRORY def PAT (u) < 2} = t[ g (u, t)dt,
which is alsoc the probability of ruin within z years when the initial
reserve is u and the initial age of the claim process is t. The main
conclusion of the above discussion rests in Theorem 2.

Theorem 2: The probability of ruin wt(u,z) in (22) satisfies the

following integral equation
z

23) 9 (uz) = I A(T+t)exp(-{A(T+t)-A(T)}) {1-F(u+ct)}dt +
z u+ct

l AlT+tlexp(-{A(T+t)-A(T))}) I wr+t(U+ct-y,z—t)dF(y)di

Proof: According to (22} the probability of ruin can be obtained
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by integrating (21) over the interval (0,z]. The first term of the
right hand side in (23) is clear from (21). The second term is

obtained after a variable change in the integration in (21), i.e.
z t uscv

l (I Alt+v)exp(-{A(T+v)-A(T)}) I gr+v(u+cv—y,t-v)dF(y)dvdt

Z u+cv z

IlAhwk@ﬁMﬁw%MwﬂqgﬁwwwawMUﬂva

z Uu+cv

l AlT+viexp(-(A(t+t )-N(T)}) l wt+v(u+cv—y,z—v)dF(y)dv

a

Corollary 2: The probability of ultimate ruin

wr(u) = lim ¢T(u,z)
Z-00

in the case of a NPP claim process starting at age v, satisfies the

following integral equation:
o«

®
(24) y_(u) = l A(T+t Jexp( ~(A(T+t)-A(T)}) I v, (urct-y)dF(y)at
vhere we assume wt(u)=1 for u<0 , =0 .

Proof: Equation (24) follows after taking the limit z-— o in
(23) and using the uniform integrability of the function in the
second term of the right hand side. D

If A(t) = A is constant then (24) coincides with the classical
result of Gerber(1979), p.114.

Let us now consider the probability of ruin wo(u,z]. By analogy
with Lundberg's theory on the adjustment coefficient and bounds on
ruin probabilities, let us denote by Rz a positive solutien, if it

exists, of the following equation
z

(25) M (R) l actye Mt)gmRety
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where it is assumed that the moment generating function (m.g.f.)
(-]

MC(R) = l eRde(y) exists for some R > 0 . Then the following holds.

Theorem 3: The probability of ruin wo(u,z) satisfies the
inequality

wo(u,z) = exp(-Rou)

where Ro is defined as the lowest upper bound of all positive
solutions of (25).

Proof: First we observe that positive solutions Rz of (25) exist
and these decrease in z>0 . Equation (25) can be re-written in the

form
z

(26) Ih(t)e_Mt)e_RCtdt = /M (R)

The right hand side of (26) is decreasing in R , from 1 to O, over
the interval [0,R0). The left hand side in (26} is positive and less
than 1, it is increasing in z and also positive for R ¢ [O,ROL
Therefore, solutions Rz of (26) exist, are decreasing in z and thus
belong to [O,Ro).

The rest of the proof is by induction as in the classical case
(e.g. refer to Gerber, 1979, pp.119-120). Denote by win)(u,t) the
probability that ruin occurs with or before the n-th claim, within

the age interval (t,t+t], when the initial surplus isu (n=1,2,...,

O=r=<t+t<z). By induction with recpect to n we see that

(27) win)(u,t) = exp(—Rou) , T and t+te(0,2z]
This inequality implies that c¢f Theorem 3, since wo(u,z) = égg
wén)(u,zl , with the understanding that ng)(u,t) = 1 for u<O

wéO)(u,t) = 0 for uz0 and, hence, that w(()O)(u,t) = exp(-Ru) for all
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u . Moreover, the same considerations also lead to

Wio)(u,t) s exp(—Rtu) = exp(—Rzu) , for T and t+t € (0,z]
Assume (27) 1is true for some n=1,2,... and then apply the law of
total probability, conditioning on the time and the amount of the

first claim within (0,z]. The induction assumption gives
Z

2]
wgn)(u,z) = l A(t)e_A(t) l w;"-l)(u+ct-y,z—t)dF(y)dt
2]

4

1A

l actye Mt l exp{-R_(utct-y)}dF(y)dt

-A(t)e-Rth

)

z
exp(—Rzu) {I A(t)e dt)MC(RZ)

exp(-R u) o
Corollary 2: The probability wo(u) of ultimate ruin satisfies
wo(u) s exp(-Rmu) for all u

where Rm is the positive solution of the equation

o«

M (R) I Actye MU Rty

Proof: It follows from Theoren 3 and (25}, since wo(u) = lim
Z3®

Yy (u,z) and R = lim R_ . a
o [ z
20

The result of Theorem 3 can be used even in the case of compound
Poisson «claim processes to improve the wupper bounds for the
probability of ruin on a finite interval. In that case equation (25)
reduces to

AMC(R)

{1 - exp(-Az-cRz)} =1
A + cR

We have RZ > Rm , for 0<z<e , and therefore the upper bound exp(—RZu)

can be smaller than exp(—Rmu).
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3.3.2. The periodic NPP casé

Now we turn to the case where the intensity function A(t) is
periodic with period b>0. Then A(nb+t) = A(t) for all tz0 and for any
integer n=1,2,...

From (17) and from Theorem 1-{iv) we obtain the following

representation for the surplus process Ro(t,u):
No,t)
(28) Ro(t,u) =u+ct - Z C
n=0
[t/b) Mk N[O.t-[t/Mb)
w+ clltsblb + (t - [trbled) - % ) ¢ . ch‘“"”’“

n

k=1 n=0 ne0
ft/b]) Mk N[O,y)
=u + Z {cb - Z c:"} + {cy - ZC:\(UMH))
k=1 ne0 e~
where y = t - [t/blb € [0,b), the (C;k)}n:o' K=l.2.. .. are

independent sequences of i.i.d. random variables distributed as a

single claim amount Cn , and Hk (respectively N[o )) are i.i.d.
¥
Poisson random variables with parameter A(b) (resp. A(y)),

independent of (C(k)} >
n n=0

We introduce the new random variables

(29) U =cb-Zc“", kK=1,2,...

n=0

Then {Uk)k: are i.i.d. and their common m.g.f. is MU(t) = E(ew) =
ethexp(A(b){MC(t)-I}]. Consider now the random walk (k,Sk].
k=0,1,2,... , where Uo=u and

(30) Sk=UO+U1+U2+...+Uk, k=0,1,2,...

Denote by T its first passage tine to a negative value, i.e.
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(31) T(u) = inf (k=0 ; 5 <0).

The process Sk denotes the insurer’s surplus at time Kk,
k=0,1,2,... in a discrete time collective risk model (see for
instance Bowers et al., 1986, pp.354-358). Then u is the initial

surplus, cb is the amount of premiums received each period and

n=0

is the sum of the claims in period k. As it is shown above, wl,wz,..
are i.i1.d. random variables which have compound Poisson distribution
Fw(y) with parameter A(b). Moreover, T(u) in (31) is the time to ruin
for the discrete risk model; we say, it is an “"imbedded discrete risk
model" into the original continuous risk model with periodic NPP of
claims.

Let To(u) = inf {t=0; Ro(t,u)<0} be the time to ruin of our
original risk process with periodic intensity function A(t) of period
b>0. Then the following is true.

Theorem 4: The time to ruin distribution satisfies the following
inequality
(32) P(T (u)>t) = P{T(u)>[t/b])
where T(u) is defined in (31).

Proof: We have the following oovious relations, obtained on the
basis of representation (28) for the surplus process (for convenience
we set k=[t/bl):

P{To(u)>t) = P{Ro(s,u)zo for all sef0,t]}
= P{Ro(s,u)zo for s=nb, n=1,...,k and for se({kb,t]}

= P{Sle, 3220, vees SRZO, Ro(s,u+Sk)zO for all se[0,t-kb]}
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= P(T(u)>k, R (s,u+S )z0 for all sel0,t-kb]} = P(T(u)>k). o

Therefore, a lower bound for the ruin probability wo(u,t) is

given by
(t/b]

(33) ¥ (u,t) = Plu, (t/b]) = Z P{T(u)=n}.
n=1

Here $lu,k} = 1 - P{T(u)>k) is the probability that the random walk
(n,Sn) hits (-w,0) within k moves, 1if So = u. There are general
results for random walks in R (e.g. Feller, 1966, chapter 12) one can
use to derive explicit forms for the distribution of T(u) and thus

for the probability of ruin. For instance the p.g.f. of T(u) is seen

to be
o0 [t/b)
= Feu)=n)st= 1 - s -
PT(S) = E: P{T(u)=n)s"= 1 - expl }Z = P{Sn< u})
n=1 n=1

Moreover, the inequality
E(U) = cb - ABD)E(C_) > O
" n

implies that P{T(u)<w) < 1, i.e. this is a necessary and sufficient
condition for the probability of wultimate ruin of the imbedded
discrete risk model to be less than one. Relation (32) shows that the
r.v. To(u) is in some sense stochastically smaller then T(u).

The probabilities (u,k) satisfy the following recurrent

equations:
u+cb

Ulu, k+1) = 1 - F,(utch) + I J:(u+cb—y,k)drw(y)
o]
with ﬁ(u,0)=0 for uz0.

The inequality in (33) remains valid also for the probability of

ultimate ruin. This is seen after taking the limit as t -« (and
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therefore as [t/b] -+w ).
Referring to Theorem 12.2 of Bowers et al.(1986) we can also

conclude that the probability of ultimate ruin $(u) = lim y(u,t)

t 2w
satisfies the following inequality
exp(-ﬂu)
Y(u) = — —
-RSz <
E(exp{ R.T(u)}lT(u) w)
where R is the positive solution of the equation
A(b)(MC(R)—I} - cRb =1
Finally we consider the maximal loss random variable
L = sup (St - ct),
t=0
where St , given by (11), is the total claims for time interval

[0,t]. Denote by I the maximal loss for the imbedded discrete model,
i.e.

L = sup (WI+W2+...+Wk - kecb).
k=1

Then the following is true.

Theorem 5: The maximal loss L ian the continuocus time model with
an NPP claim process and periodic intensity is stochastically larger
than the maximal loss L for the imbedded discrete risk model.

Proof: It follows from the following inequality,

sup (S, - ct) = sup (S - ckb),
t=0 t k=0 kb
and from (12) which gives S, . = W +W_+...+W . a
kb 1 2 k

As in the classical case, the imbedded discrete model is a
useful tool for comparing the ruin probabilities and maximal losses
of continuous risk models where the claim process 1s described by an

NPP with periodic intensity.
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