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Abstract 

Most of the literature on the arbitrage-free pricing of contingent claims places its 

primary emphasis on methods of computing the prices of contingent claims. The 

underlying economic principle that permits one to calculate the price of a contingent 

claim within the arbitrage-flee framework is that the contingent claim may be replicated 

through an appropriate investment portfolio of risky assets and the risk-flee asset. 

Although these replicating strategies are implicit in the analysis, they are not required to 

compute the price of a contingent claim. Consequently, in most of this literature the 

replicating strategies are not explicitly discussed. In this paper we discuss the link 

between the price of a contingent claim and its replicating strategies. We compute the 

replicating strategies for some contingent claims when the price of stocks are modelled 

using either the Wiener process or the Poisson process. These replicating strategies are 

essential knowledge if one wishes to implement a dynamic trading strategy. It is hoped 

that this paper will provide the reader who is interested in the theory of arbitrage-free 

pricing of contingent claims with an opportunity to peruse the underlying dynamic 

trading component of the theory. The notion of Arrow-Debreu security is reviewed and 
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applied. The lookback option, an exotic option of recent practical and theoretical interest, 

is examined. 

1. Introduction 

The main focus of the literature dealing with the valuation of contingent claims is 

on characterising the price of a contingent claim. This characterisation may be in the 

form of an abstract expression, a numerical procedure, or a closed formula. Although the 

underlying theory that supports these characterisations of price involves the notion that 

there exist investment strategies that replicate the payoffs of the contingent claim, these 

investment strategies do not usually receive much attention in the literature. One reason 

for this is that in practice one is seeking to price a contingent claim that is traded on an 

exchange, such as an option traded on the Chicago Board Options Exchange (CBOE). In 

such an instance, one is buying and selling options and is interested in getting an 

assessment of the value of the option and not in synthetically reproducing the payoffs of 

the option by managing a portfolio of assets. However, if one wants to fully appreciate 

the concepts that underlie the theory of contingent claims valuation then an understanding 

of the role that these replicating portfolios play is important. Moreover, in order to 

dynamically manage an investment portfolio to some desired terminal wealth distribution, 

an investor will require the appropriate portfolio mix throughout the investment horizon. 

In this paper we discuss the relation of contingent claims valuation formulas to the 

replicating strategies that synthetically produce these contingent claims. In the case of 

the Wiener process model we provide a simple relation for a wide class of contingent 

claims. In the case of the Poisson process model we determine the replicating strategies 

completely. In theory, a knowledge of these replicating strategies will allow an investor 

to customise the payoffs that he receives at the end of his investment horizon. However, 

in practice there are market frictions that make it impossible for a small investor to carry 

out such a procedure, to say nothing of the fact that the assumed model for the stock price 
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dynamics may be inaccurate. Nevertheless, the intention of this paper is to offer an 

accessible treatment of the relationship between the valuation of contingent claims and 

the portfolios that replicate these claims so that interested readers may enhance their 

understanding of the theory of contingent claims valuation. 

Although a knowledge of how to calculate the investment strategy that replicates 

any terminal payoff distribution enables an investor to generate the terminal payoff 

scenario of his choice, the terminal payoff distribution that an investor chooses will 

depend on his tolerance for risk. Ultimately, the analysis of such portfolio selection lies 

in the province of expected utility theory. We do not attempt to discuss this here. 

Instead, we discuss the investment strategies that an investor can employ to obtain a 

specified choice of terminal payoffs. We note that for the class of diffusion models the 

expected utility analysis has been elegantly merged with the contingent claims valuation 

framework by Cox and Huang(1989.a). 

2. A General Model 

In this section we outline a general model for securities trading as set forth in 

Harrison and Pliska (1981). We attempt only to convey the flavour of their framework 

here and we therefore confine ourselves to the conceptual aspects of their model. The 

reader who wishes to also study the important technical components of the theory may 

consult Harrison and Pliska (1981), Duffle (1992), or Mtiller (1985). 

Trading will take place over the time interval [0, T]. The securities that are 

available for trading consist of a risk-free asset, denoted B, and n stocks, denoted S 1 . . . . .  

Sn. An investor may take positions in any of these assets. The value of the risk-free asset 

is assumed to accumulate at force of interest 5 and is taken to be given by B(t) = exp(&). 

Consequently, money invested in the risk-free asset amounts to placing cash on deposit at 

force of interest 5. The number of shares of stock j held by an investor at time t is 

denoted by 0j(t). The number of units of the risk-free asset held by an investor at time t is 
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denoted by ¢(t). The vector (~, O j . . . . .  0 . )  is referred to as an investment strategy. The 

value o f  an investor 's  portfolio at any point in t ime is then 

¢(t)B(t) + 81(t)St(t)  + 02(t)S2ft) + .  • • + 0n(t)Sn(t) .  

For ease  o f  notat ion we will denote this quanti ty by V(t). 

Wha t  happens  to an investor 's  portfolio when  the asset prices change?  If at t ime t 

an investor  is holding ~ t )  units  o f  the risk-free asset and 0j(t) shares  o f  stock j then over  

the next  instant the value o f  his portfolio changes  by 

~(t)lB(t+dt) - B(t)l + Ol(t)lS~(t+dt) - S~(t)l + , • + 0n(t)lS,~(t+dt) - Sn(t)] .  

If we add up I all o f  these changes  in the investor 's  portfolio f rom the beg inn ing  o f  the 

t rading interval to t ime t then the change  in the value o f  his portfolio over  [0, t] due to 

capital gains  and losses is 

j o  ~(u)dB(u)  + f~  01(u)dSj(u)  + • • • + f l  0n(u)dSn(u) ' 

If all changes  in the investor 's  portfolio are due to capital gains  and losses then the value 

o f  his portfolio at t ime t is 

V(O)+ O(u)dB(u)+  0 1 ( u ) d S l ( u ) + . . . +  0 . ( u ) d S . ( u ) .  

I How one adds up these changes depends on the nature of the stock price behaviour that is assumed. For 
the case of the Wiener process one must use the technique of stochastic integration. For the case of the 
Poisson process one can use the ordinary Riemann-Stieltjes integral. In any case, the type of limiting 
procedure that is empk~yed does not affect our interpretation of the investor's holdings of stock and risk- 
free asset for a particular investment strategy, 
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An investment strategy for which all changes in value are the result of capital gains and 

losses is called self-financing. Thus a self-financing investment strategy is an investment 

strategy which at all times 0 <_ t -< T satisfies the relation 

V(t) = V(0) + ~(u)dB(u) + 01(u)dSl(u) + . .  • + 0n(u)dSn(u). 
) 

One understands this relation to say that an investor begins with a total investment of 

V(0) and that any subsequent changes in the value of his portfolio are due to capital gains 

and losses in his investment portfolio, 

A contingent claim is a random payment that is received at time T. For instance, 

a contingent claim could be S2(T), the value of the second stock at the terminal date T or 

it might be the larger of zero and S2(T) - 40, the payoff from a European call option 

written on the second stock with a strike price of $40. We will say that a contingent 

claim X is spanned if there is a self-financing investment strategy which replicates the 

payoffs from X at time T, i.e. V(T) = X. When a claim is spanned its price is defined to 

be the initial cost of the self-financing investment strategy that replicates that claim's 

payoff, which we have denoted by V(0). This is a sensible definition since any other 

price would give rise to an arbitrage opportunity. More generally, the price of a spanned 

claim at time t is seen to be equal to V(t). We emphasise that for a given model there is 

no reason why a claim should be spanned. This issue must be addressed in the context of 

each particular model that is employed. Claims that are not spanned cannot be priced by 

the reasoning that we have described here. 

For the Wiener and Poisson models [sections 3 and 4], the prices of contingent 

claims can be obtained by means of the transformed probability measure, for which 

Si(0 ) = e-~StEISi(t)], 
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where 5 is the risk-free force of interest. Specifically, the value of a contingent claim at 

time t is given by 

e- ~T-t)Et[X] , ( 1 ) 

where the subscript t serves to denote that all information available up to time t is taken 

into consideration in computing the expectation. Intuitively, one says that the value of 

the claim is the expected discounted value of the implied payments. Although we are not 

going to justify this characterisation of prices, we will employ it in what follows. The 

reader may consult Gerber and Shiu (1993) for many practical applications of this result. 

3. Stock Prices Modelled using the Wiener Process 

In this section we will discuss the replication of contingent claims within the 

workhorse model of option pricing, the case of stock prices modelled using the Wiener 

process. The one-dimensional version of this model provided the setting for the famous 

analysis of Black and Scholes (1973). 

Let (X 3 (t) . . . . .  Xn(t)) denote an n-dimensional Wiener process with nonsingular 

covariance matrix Y~ = { oij} per unit time. Stock prices are defined by the equation 

Si(t ) = Si(0)exp[Xi(t)] . 

Thus the stock prices are continuous non-negative processes and the movements of each 

stock are permitted to be correlated with the movements of some of the other stocks. The 

usual interpretation of this model is that each stock has an expected earnings rate which is 

subject to random fluctuations due to uncontrollable economic variables. In 

consequence, the price of each stock will tend to follow a deterministic growth pattern 

with ongoing random fluctuations from this growth pattern. A picture of a typical stock 

price history for this model is shown in figure 1. 
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figure 1 

Stock Price 

Time 

One class of contingent claims that are ubiquitous in practice are those contingent 

claims for which the random payment at time T is some function of the stock prices at 

that time. Mathematically, such contingent claims are of the form 

X = ~0(S1(T) . . . . .  Sn(T)). 

Among these contingent claims are European call and put options on a stock. As we have 

noted, the price of a contingent claim is given by an expected discounted value [equation 

(1)]. For the contingent claim that we are considering, the expression in equation (1) is a 

function of time and the current stock prices only. This follows from the independent 

increments property of the Wiener process and the special form of the contingent claim. 

Therefore, let us denote the price of this claim at time t by V(Sl(t) . . . . .  S n(t), T-t). It 

follows that the process 

{e- &V(Sl(t) . . . . .  Sn(t), T-t)} 

is a martingale for 0 < t _< T. Indeed, one need only note that 
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e &V(SI(t) . . . . .  Sn(t), T-t))  = e 8TEt[tp(SI(T ) . . . . .  Sn(T))I,  (2) 

and recall one of the basic examples of a martingale as noted in Gerber (1979, method 1, 

page 35). We now establish that the investment strategy that replicates the payoff from 

this contingent claim may be expressed in terms of our function V(S1 (t) . . . . .  S n(t), T-t). 

Consequently, a knowledge of the price of this claim at each point in time provides us 

with the information that we require to synthetically produce this claim by managing a 

portfolio of stocks and the risk-free asset. 

Theorem 1 The self-financing investment strategy that replicates the contingent claim 

X = q)(SI(T) . . . . .  Sn(T)) may be computed from the function V. The replicating strategy 

is 

c3V 
0,(t) = T ,  i = l  . . . . .  n 

Remarks :  (i) The above expression for the replicating strategy involves an abbreviation 

of notation which would otherwise be written as 
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3V(S l(t) . . . . .  Sn(t), T-t) 
0i(t) = o~si , i = 1, ..., n 

0(t) = IV(S i (t), Sn(t), T_t)_ ,~, 'gV(S l( t) . . . . .  Sn(t), T-t) l .... i= t ~ Si(t) / egt" 

(ii) We emphasise that the amount of stock and risk-free asset held in the investment 

portfolio at any point in time are random variables that depends on the current stock 

prices. This is not surprising since one would expect that the investor will be adjusting 

his portfolio in response to changes in the stock prices. 

(iii) Theorem 1 says that a knowledge of the price function for a contingent claim is 

sufficient to determine the replicating strategies for that contingent claim. 

Proof: For brevity, we denote V(S 1(0 . . . . .  Sn(t), T-t) by Vt. By It6's lemma 2 

d(e~itVt) = _ iSe~StVtdt + e-f~dVt 

f 1 = - ~ e 4 t V t d t + e  - 8 -  d t + i =  ~-~sidSi+Q Vdt • 

where 
32V 

QV = 12S'HS, with bij = oij 0Si3S-~, and S = (S 1 .... S n) . 

Since d(e 8tSi(t)) = - q~e-Stsi(t)dt + e-&dSi(t), we may rearrange this expression as 

2The usual rules of calculus apply except for the additional term QV. 
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d(e~StVt) = e45 - ~ S V t - ~ -  + QVt + i=  l ~s i  8Si t + i=£1 ~s i  d(e4tSi)  " (3) 

As e aV t is a martingale [equation (2)] and as {e-StSi(t)} are also martingales for each i 

[page 51, it follows that the sum of the dt terms must vanish. Therefore, 

d(e4tVt) = ,--~1 c~V ~t = ~sid(e  --°Si). 

Substituting d(e4aSi(t)) = - ,~e~S~Si(t)dt + e~StdSi(t), doing the same for V t, cancelling e -  

st, and rearranging terms it follows that 

dV l = e V t -  S i B( t )+  = N N dSi" t i =  

In integrated form this expression is 

V~ = V o + e ~ t [Vt - i=  ~-si SildB(t) + i=~l o ~ s i d s i "  

Therefore, the investment strategy (~b, 01 . . . . .  On) is a self-financing strategy that 

replicates the contingent claim. QED. 

We illustrate Theorem 1 by exhibiting the replicating strategies for a European 

call option with strike price equal to K in the Black-Scholes model. As is well known 3, 

the price of this option at time t is given by 

3An elegant derivation may be li.~und in Gerber and Shiu (1993, (3.1.3)). 
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S ( t ) q b ( -  g +(~ ;(y2/2)~) _ e -  6~K~t - K + (6 - 02/2)Z) 
~,/'~ 

where ~ is the standard normal distribution function ~ := ln[K/S(t)], and I: := T-t. Since 

the terminal payoff for this contingent claim is X = Max[0, S(T) - K], Theorem 1 is 

applicable. Calculating 0V/0S, we find that the replicating strategy is 

0(t) = ~ ( -  K +(8 + ~2/2)'~.) 
o,/g 

~(t) = - e- 8"rK@( - K:+(8-  o2/2)'t) 
o'g~- 

In some contexts, 0 is referred to as the delta of the contingent claim [Hull (1989), pages 

186-194]. 

Let us examine the case when the contingent claim has a payoff function which is 

homogeneous of order 1. Mathematically then, we are considering a payoff function q) 

which satisfies 

q)(Ls l . . . . .  L%) = kq)(s~ . . . . .  s n) 

for all X > 0. It follows from equation (2) that V(sj . . . . .  Sn, T-t)  has this same property. 

Therefore, by Euler's theorem [Olmsted (1961), page 272] we see that 

OV 3V 
V(s I . . . . .  s n ,T- t )  = N - ' - s ] + . . . + - - s  n. 

Os n OSl 

Consequently, we see from Theorem 1 that the replicating strategy for any contingent 

claim that is homogeneous of order 1 is of the form 
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~V 
8i(t) = ~ - ~ ,  i = l  . . . . .  n 

os i 

~ ( t )  = O. 

In particular,  when  replicating the payoff  f rom such a cont ingent  c la im an investor  will 

invest  all of  his capital  in the stocks and nothing will be placed in the risk-free asset. 

Examples  of cont ingent  c la ims that are homogeneous  of order I include 

~p(s I . . . . .  s n) = Maxis  1 . . . . .  s .]  

q~fs~ . . . . .  s,0 = (s~s 2 . . .  s,)  TM . 

The first of  these two examples  appears in Margrabe  (1979) and Johnson  (1987), 

Homogeneous  payoff  funct ions of  order I result in a particular form for V. Let s 

denote  the vector  (st . . . . .  sn). In general [noted after equat ion (3)], the price funct ion V 

will satisfy the partial differential  equat ion 

Ov 
OV ½s 'Hs+  L ~s iSs i  O, - 8 V t  - ~ t  + = 

i = l  
(4) 

which together  with the boundary condi t ion V(s ~ . . . . .  Sn, 0) = m s  I . . . . .  Sn) determines  

the function V uniquely. In the case of  our homogeneous  payoff  funct ion equat ion (4) 

becomes 

0V 
+ ~s 'Hs  = 0 

3t z 

which together  with  the boundary condi t ion V(sl  . . . . .  sn, O) = ~ s l  .... , Sn) again 

determines  the funct ion V uniquely. This  implies that V is independent  of ~5. One may 
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interpret this result as reflecting the fact that the risk-free asset is not needed to generate 

such a contingent claim. Gerber and Shiu (1993, (7.6)) is one example of this result. 

A subclass of the contingent claims that are covered by Theorem 1 is the family of 

European call options on powers of the stock price, with strike price K. These European 

call options have terminal payoff X = Max[0, Sa(T) - K] for ~x > 0. This family of 

options is sometimes employed by practitioners because of its flexibility in setting up 

terminal payoff distributions and because the option prices [and replicating strategies] 

may be expressed as convenient closed formulas. Indeed, a straightforward application of 

the techniques from Gerber and Shiu (1993, III. 1) establishes that the price of this option 

at time t is 

Sa(t)exp[(ot-1 ) [ ~ + o ~ J e / 2 l x ] ~ ( ~  + o~cr,rg) - e~XKqb(~), 

- lnlK/Sa(t)] + ct[6 - O2/21~ 
where "t := T- t  and ~ :~- oto,/~ We now apply Theorem I. 

Upon calculating OV/OS we find that the appropriate replicating strategy is 

0(t) = ~xSa-l(t)exp[(~x-l)[8 + cter2/2lx]qb(~ + ~xo¢~) 

if(t) = e~T[(1-a)Sa(t)exp(Ot[~5 + (o~-1)O2/21"t)@(~ + eta,/~-) - K@(~)I • 

For oc = 1 the valuation formula and the replicating strategies reduce to the Black-Scholes 

case. It is interesting to note that for all ~x > 0 the replicating portfolio is always long in 

the stock, just as is the case for the Black-Scholes formula, but if 0 < ot < I then when the 

stock price is sufficiently high the replicating portfolio will be long in the risk-free asset. 
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This is in contrast to the Black-Scholes case in which the replicating portfolio is always 

short in the risk-free asset. 

4. Stock Prices Modelled using a Poisson Process 

In this section we discuss the replication of contingent claims when the stock 

price is modelled using the Poisson process. Although a multi-dimensional counterpart to 

the Wiener process model may be defined, we will restrict our attention to a one- 

dimensional model. The Poisson model provides an interesting setting for the study of 

dynamic spanning and because of the countable state space, the Poisson model admits a 

more direct analysis than is possible for the Wiener process model. Our approach to 

obtaining the replicating strategies for contingent claims will take the characterisation of 

price as an expected discounted value as a natural guide to discovering the replicating 

strategies. This approach is comparable to the technique that was used in the previous 

section. However, some differences in the analysis are necessary because of the jump 

nature of the stock price process for the Poisson model. Nevertheless, if the reader 

compares the analysis of this section with that of the previous section it will he seen that 

the same basic ideas are common to both analyses. 

Let {N(t)} denote a Poisson process and let X(t) = kN(t) - c t ,  where k and c are 

constants. The stock price is defined by the equation 

S(t) = S(0)exp IX(t)l • 

The stock price process is a non-negative process which experiences occasional jumps as 

well as an ongoing deterministic drift. A picture of a typical stock price history for this 

model is shown in figure 2. 
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figure 2 

Stock Price 

Time 

Let us recall the notion of an Arrow-Debreu security. In general, an Arrow- 

Debreu security is a contingent claim which pays a unit in one and only one state of the 

world at time T and nothing in the other states [Ingersoll (1987)]. For the Poisson model, 

the states of the world at time T are indexed by the number of jumps in the stock price 

over the trading interval [0, T]. The Arrow-Debreu securities constitute a basis for all 

terminal payoff distributions. Consequently, a knowledge of the replicating strategies for 

each Arrow-Debreu security is sufficient to enable us to replicate the payoffs from a 

general contingent claim. In the following, we will obtain the replicating strategy for 

each Arrow-Debreu security. There is no counterpart to the Arrow-Debreu security for 

the Wiener process model. Arrow-Debreu securities play a fundamental role in finite 

state space models such as the binomial model. 

Let Vn(t) denote the price at time t of the Arrow-Debreu security for the state 

consisting of n jumps over [0, T]. Vn(t) may be computed in accordance with equation 

(1). For the essential details of this calculation we refer the reader to Gerber and Shiu 

(1993, II1.2). If N(t) > n then Vn(t) = 0 since the number of jumps is non-decreasing and 

so the state {N(T) = n} cannot be attained once N(t) > n. Otherwise, one has 
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1 , N ( t ) _ <  n ( 5 )  Vn(t) = e-~Tq)exp( -- ~ ( T -  t)) [ ~ ( T -  t)] n N(t~ [n-N(t)]! " 

where ~. := (c+5)/(e k_ 1). We note that this expression is the discounted adjusted 

probability that there are exactly n-N(t)  jumps in the stock price in the time remaining 

over  the investment horizon. 

We now establish a result that will take the place of  Theorem 1 in our analysis. 

This result is usually referred to as a change of numeraire. The importance of  this result 

for our analysis is that it affords a technique whereby we can determine the replicating 

strategies for each of our Arrow-Debreu securities. Define S*(t) := e-~S(t). 

T h e o r e m  2 Let 0 be a process for which 

and define 

e~tvn( t )  = v n ( 0 ) + f o  0(u)dS*(u),  

0p(t) := [wn(t) - 0(t)S(t)] / e & . 

0 _ < t < T  (6) 

Then one has the relation 

~i  0(u)dB(u) + f£ 0(t)B(t) + 0(t)S(t) = 0(0)B(0) + 0(0)S(0) + 0(u)dS(u),  

Proof:  For 0 < t < T we have vn(t)  = eStVn(O) + eSt~i 0(u)dS*(u) . 

0_<t_<T.  

After integrating by parts and substituting from equation (6) we obtain 
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t t , 

= f£ [e-~uvn(u) - vn(0)lde ~Su + f0 e~U0(u)dS (u). 

Integration by parts shows that S*(t) = - S(0) + e- SudS(u) + S(u)de- 80 and thus 

e&fo O(u)dS*(u) = ~o ~Vn(u)du - vn(o)(e 'St - 1) + fo eSuO(u)[e SudS(u) + S(u)de- 8u] 

= - vn(0)(e 8t - l ) + ~[Vn(u) - 0(u)S(u)ldu + 0(u)dS(u) 

= - Vn(0)(e & - 1 ) + [(vn(u) - 0(u)S(u)) / eSUldB(u) + 0(u)dS(u). 

Consequently, vn(t) = vn(0) + ~(u)dB(u) + 0(u)dS(u). QED. 

We point out that although Theorem 2 is stated in terms of the price process for an 

Arrow-Debreu security, the proof applies for any contingent claim. Furthermore, 

although the proof of Theorem 2 for the Poisson model depends only on the real analysis 

tools that can be found in Apostol (1974), the same proof works for the general model of 

securities trading [Harrison and Pliska (1981)]. Theorem 2 tells us that in order to 

determine the replicating strategy for the Arrow-Debreu security we need only determine 

a process 0 such that equation (6) is satisfied. We now combine this with our knowledge 

of Vn(t) from equation (5) to obtain the replicating strategies for each Arrow-Debreu 

security. 

Substituting for Vn(t) using equation (5), the relation expressed in equation (6) for 

the Arrow-Debreu security paying a unit in state {N(t) = n} becomes 
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1 e-STexp( - ~.(T - t)) [TV(T - t ) }  n - N ( t )  
[n-N(t)]~ 

= e~STexp( - ~.T) [~,T] n ~ + O(u)dS*(u), 

(7) 

for 0 -< t _< T. Therefore,  if we can determine a strategy 0 that satisfies equation (7) for 0 

< t _< T, then Theorem 2 says that we will have determined the replicating strategy for our 

Arrow-Debreu security'*. 

In order  to handle the jump nature of  the stock prices process,  we require some 

additional notation. To this end we define the random time 

Tj := i n f { t l N ( t ) = j }  . 

Furthermore,  for a general process Z we define Z(t- )  by evaluating the sample path of  the 

process as a left hand limit, i.e. 

zct-) := ,Jim_Z(s). 

Let us give a heuristic discussion o f  how one might now arrive at the replicating 

strategies. To begin with, one notices that between jump times dS*(t) = - (c+~5)S*(t)dt. 

Also, for 0 < t < T I equation (7) becomes  

4To be precise, there is a technical point that we have left by the wayside for the moment. It is the problem 
of doubling strategies. We will come back to this at the end of the section. 
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e4Texp( - X(T - t)) IX(T - t)] n I 

= e-Srexp( - XT) [XT] n 1 + 0(u)dS*(u). (8) 

This suggests that 0 should be such that 

( c + ~ ) S * ( D 0 ( t )  = - d [e~STexp(_  X ( T  - t))  [ X ( T  - t ) ]  n n~- ] . (9)  

Indeed, the fundamental theorem of calculus confirms that this definition of 0 will render 

equation (8) valid on 0<_ t < Tl . Equation (9) may be rewritten as 

0(t)  - - I  d [e~'Texp( - k(T - t)) Ik(T - t)] n n~.] . (9') 
(c+~)S*(t) dt 

A problem with this definition of 0 arises concerning the jump time T t. Indeed, as our 

definition stands, 0(T1 ) would be able to anticipate the jump that is about to occur at time 

Tj because S (Tj) appears in this definition of 0(T1). Since this information is not 

available to the investor in the instants before the jump actually occurs, this definition of 

0 will not do for the jump time T 1. However, since S(t) = S(t-)  for 0 <_ t < T1 one may 

remedy the situation with the definition: 

1 ( lO)  o(t) - -1 d [e-~Texp(_ ~ T  - t)) [k(T - t)] n ~.~] 
(c+8)S*(t-) dt 

With this definition of 0 both sides of equation (7) will be equal at the jump time TI. 

Indeed, at the jump time TI the left hand side of equation (7) is 

e-~Texp(- X(T - Tl) ) [)~(T - TI)] n-I 1 
[n- l ] !  
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and the right hand side of  equation (7) is 

e-~Texp( - ~(T - TI)) [~(T - T1)] n 1 + 0(TI)IS*(TI) _ S*(TI_)] .  

U sing the fact that S * (T ~ ) - S * (T I - )  = S* (T1 - ) [e  k - l ] and the deft nition of 0(Tl ) 

[equation (10)] one finds that these two expressions are equal. One can proceed in this 

fashion for the next stochastic interval and so forth. 

T h e o r e m  3 The replicating strategy for the Arrow-Debreu security which pays a unit 

in the state {N(T) = n}, to be denoted by ( ~ ,  On), is given by 

0"(t) = 

-1 d lemTexp(_ ~.(T _ t)) I~.(T _ t)ln I <t<_Tr 
(c+~)S ' ( t  _) dt .. n ! l ,  0 _ 

1 -1 d le~Vexp(_ ~,(T - t)) I~.(T - t)] n-j ~ ] ,  Tj < t <_ Tj+ 1, j = 1 n 
(c+~)S*(t-)  dt . . . . .  

0 for t > T,+ 1 

and 

0n(t) = [vn(t)  - 0n(t)S(t)l / e ~t . 

Proof :  By Theorem 2 it is sufficient to establish that equation (7) holds for 0 _< t _< T. 

We have already shown that equation (7) holds for 0 <_ t < T t .  We  proceed by induction. 

Suppose that equation (7) holds for 0 <_ t <- T) where j < n-1 .  By the induction 

hypothesis  

258 



e~Texp(  - X(T - Tj)) [X(T - Tj)] n-j 1 
[n-j]!  

l f0x' = e~3Texp(- ~,T) [~,T] n ~-. + 0n(u)dS*(u) . 

(*) 

Consider a time t with Tj < t < Tj+I. Bearing in mind equation (*), we see then that for 

this particular time t, the requirement of equation (7) is that we have the equality 

e~Texp(  - ~.(T - t)) [~k(T - t)} n-j 1 
[n-j]!  

= e-Srexp( - k(T - Tj)) [X(T - Tj)] n-j ~ + -'bt~ 0n(u)dS*(u) • 

Since dS*(t) = - (c+~5)S*(t)dt between jump times, it is clear that this equality holds. At 

the jump time Tj+I the left hand side of  this equation is equal to 

e-aTexp(-  k(T - t)) [;~(T - t)l ~-J-j -[n_jl l l! , 

and the right hand side of  this equation is equal to 

n *' * e4Texp(  - MT - Tj+I)) I)~(T - Ti+01 n-j ~ + 0 (Ti+~)IS (Tj+I) - S ( T i + r ) l .  

Using the fact that S*(Tj+I) - S*(Tj+I-) = S*(Tj+t-)[e k - 1] and the formula for 0n(Tj+l) 

we find that this expression for the right hand side of  the equation is equal to the left hand 

side of  the equation. Thus equation (7) holds for 0 <_ t < Tn. To  complete the proof  we 

must check that equation (7) holds for T n < t < Tn+ 1. The same argument applies except 

that when we check equality at the jump time Tn+l, the left hand side of  the equation is 

equal to 0. QED. 
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R e m a r k :  The reader may ask whether  O n [the strategy for the risk-free asset] def ined in 

Theorem 3 anticipates the j ump  t imes of  the stock price process as was the case for the 

provisional  definit ion of  0 [the strategy for the stock] that was made  in equat ion (9')? 

The answer  to this quest ion is no. In fact, the reader may check that 

vn( t )  = vn( t  - )  + 0n(t)lS(t)  - S( t - ) ]  

and since 0n(t)S(t) = 0n(t)S(t  - )  + 0n(t)[S(t) - S( t - ) ]  one finds that 

~n(t) = lvn( t )  - 0n(t)S(t)] / e t~ = lV" ( t - )  - 0n( t )S( t - ) ]  / e ~ . 

Since the right hand side of  this equat ion is part of  the informat ion that is avai lable to the 

investor  in the instants before any j ump  in stock price, we see that the strategy (on, O n) 

can be implemented  by the investor.  

Wi th in  this model ,  the terminal  payoffs  for a general  cont ingent  c la im can be 

expressed in the form 

X = n=~0anl lNfr )=nl ,  (11) 

for some sequence of non-negat ive  state cont ingent  payoff  amounts  { an } and where  

11N~) = nl denotes  the indicator function for the state {N(T) = n}. The price of  this 

general  cont ingent  c la im at t ime t is equal  to the weighted sum of  the prices of the Arrow- 

Debreu securities at t ime t 

n~__0 anVn(t) , 
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and the associated replicating strategy (~, 0) is 

0(t) = n~0 an0n(t) +(t) = n=~0an+nCt). 

This information is sufficient to price and replicate any contingent claim. 

Let us illustrate this result for a European call option on the stock with strike price 

K. The terminal payoff of the option is Max[0, S(T) - K]. Let nt denote the least integer 

n such that n _> [ln[K / S(t)] + c(T-t)l/k. The option finishes up in the money if and only 

if S(T) > K and this inequality holds if and only if 

N(T) > ln[K / S(0)] + cT 
- k 

Therefore, the option's state contingent payoffs are 

a n 

/ 
= ~ S(0)exp (kn - cT) - K, 

0 otherwise 

n>_n o 

Consequently, the representation corresponding to equation (11) for the terminal payoffs 

of the option is 

[S(0) exp(kn - cT) - K] 1 {Nff) = n} " 

n = r l  o 

It follows that the price of the option at time t is 

~.~ IS(0) exp(kn - cT) - K]Vn(t), (12) 
n = n i l  
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and the replicating strategies are 

0 ( t )  = 

~ , ( t )  = 
n = n o 

IS(0) exp(kn - cT) - Kl0n(t) 

IS(O) exp(kn - cT) - Kld~n(t). 

Since vn(t)  = 0 for n < nt, equation (12) may be rewritten as 

£ IS(O) exp(kn - cT) - K]Vn(t).  
n = n ,  

It is straightforward to confirm that this formula is equivalent to that given in Gerber and 

Shiu (1993, (3.2.6)). 

A technical point that we have hitherto ignored is the regularity conditions that 

must be imposed on the replicating strategies within our model. In fact, without some 

such regularity conditions the model will admit doubling strategies [Harrison and Kreps 

(1979), page 400] and will not be arbitrage-free. Consider a gambler playing roulette in a 

casino. He adopts the strategy of betting $1 on red and subsequently doubles his bet until 

he wins. This generates a certain profit of $1. However, this strategy is not for the faint 

of heart for the gambler will have to bet arbitrarily large amounts of money to make his 

certain $1 profit. Of course, the casino would never tolerate such a gambler and in 

practice the gambler cannot implement such a strategy because of table limits set by the 

casino. The regularity condition that must be imposed in models of continuous securities 

trading to avoid a similar doubling strategy is analogous to the table limits set by casinos. 

The regularity condition serves to impose a restriction on the size of  the position that an 

investor can take in the traded assets. With such regularity conditions in place, the model 

is arbitrage-free. 
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5. The Lookback Option 

The lookback option is an example of an option for which Theorem 1 does not 

apply but for which the replicating strategies can be computed explicitly and are 

analogous in form to those that appear in Theorem 1. Apparently, this option is sold 

through several brokerage houses in the United States and Europe. We will discuss the 

European version of this option which was analysed by Goldman, Sosin, and Gatto 

(1979). Recently, there has been an interest in the American version of this option over 

an infinite time horizon [Shepp and Shiryaev (1993), Duffie and Harrison (1993), Gerber 

and Shiu (1994)], the so-called Russian option. 

The lookback option is a contingent claim for which the terminal payoff is equal 

to the maximum of the stock price over the investment horizon 5 [0, T]. This is an 

example from a class of contingent claims which are sometimes referred to as path 

dependent. The general characterisation of price in equation (l) covers path dependent 

and path independent contingent claims alike. However, as a practical matter the 

computation of the price function for path dependent claims is more difficult than it is for 

path independent claims. 

Assume that the stock price follows the one-dimensional version of the Wiener 

process model of section 3. The price of the lookback option can be derived using the 

technique of Gerber and Shiu (1993, IIL 1). However, the actual c',dculations are 

somewhat involved. The reader who wishes to carry out this calculation will require a 

boundary crossing probability result that may be found in Beekman (1974, (7) page 127), 

Karatzas and Shreve (1988, (3.41), page 265), Shepp(1979), and Park and Schuurmann 

(1976). Define 

M(t) := Max{ S(u) tO_<u_<t}, 

51f the stock price is continuous then the definition of the payoff as a maximum over 10. T] is well defined. 
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In this notation, the terminal payoff from the lookback option is M(T). Upon carrying out 

the lengthy computation that we have described, one finds that the price of the lookback 

option is a function of S(t), M(t), and T-t  [Goldman, Sosin, and Gatto (1979, (10) page 

1116)]. Let us denote this price function by V(S(t), M(t), T-t). Then we have 

V(S(t), M(t), x) = M ( t ) e ~ X [ O ( ~ )  ~2 2t(l~/o:a, ; -  0~- 13"¢~1 

0.2 - ([~ + (~2)'t), 
+S(t){l +2--~][I-~(c~ ~ 1 ,  

(13) 

where • is the standard normal distribution function, o~ := ln[M(t)/S(t)], 13 := 6 - ~2/2, 

and 7: := T-t. 

We now show that the replicating strategies for this option are of the same form as 

those that are given in Theorem 1, despite the fact that the lookback option does not 

satisfy the hypothesis of Theorem 1. 

Theorem 4 The self-financing investment strategy that replicates the contingent claim 

X = Max{ S(u) l 0 _< u _%< 1 } may be computed from the function V [equation (13)]. The 

replicating strategy is 

3V 
0(t) =-ff~- and ¢ ( t ) =  V -  - -  i= 3sS(t)  / e  &. 

Proof: For brevity, we denote V(S(t), M(t), T-t)by Vt. By It6's lemma 6 

6The process M is nondecreasing and is thus a process of finite variation. Consequently, the quadratic 
variation terms which involve M are equal to zero. 
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d(e~StVt) = _ ~e~tVtdt + e~tdVt 

3V bV 3V I 2 2 b2V 
= - ~ie~StVtdt + e~St[ - -~-dt + -~-dS + ~-~dM + ~o" S ~--ff~-s2 dt]. 

Since d(e-&S(t ) )  = - ~e~3tS(t)dt + e~3tdS(t ) ,  we may rearrange this expression as 

~V +L',2q2~2V OV ~V ~V -st 
d(e-StVO = e-&[ - ~V t -  ~ -  2 ~ ~ ~s 2 + ~-sSS]dt + f f~dM + ~ s d ( e  S) 

As e-&Vt and e-&S(t) are martingales it follows that the finite variation terms must 

vanish 7. Therefore, 

~V 
d(e4tVt) = ~-sd(e~tS).  

One now carries out the same calculation that was done in the proof of Theorem 1 to find 

that 

t ~ V  t 3 V  
V t =  Vo+fo  e -&[Vt-~-s  S]dB(t)+fo --~-dS. QED. 

6.  C o n c l u d i n g  Remarks 

In this paper we have analysed the replicating strategies for several different 

contingent claims. There are many other types of contingent claims for which a similar 

analyses may be carried out. Among these are the exotic options. Although the theory 

which tells us that these exotic options are dynamically spanned and what their prices are 

f' c~V . 7The process )~) ~mmdM Is of finite variation [Aposlo| (1974), page 161]. 
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is no different, this abstract theory does not provide a technique for explicitly computing 

the option's price or its replicating strategies. Consequently, the analysis of exotic 

options is a whole problem in itself. Examples of exotic options include the Asian 

option, the barrier option, and the lookback option. The Asian option is discussed in 

Geman and Yor (1993) and Kemna and Vorst (1990). A simple analysis for a special 

case of the Asian option may be carried out as in Bergman (1985). Barrier options are 

treated in Rubinstein and Reiner (1991). Boyle and Lee (1993) is an interesting paper 

which uses barrier options. Goldman, Sosin, and Shepp (1979) discuss certain market 

timing options. The reader may wish to peruse Bhattacharya and Constantinides (1989) 

for more material on option pricing theory. The partial differential equation that appears 

in equation (41 is treated in Jarrow and Rudd (1983), Miiller (1985), Hull 1989), and 

Duffle (1992). 

Option pricing for models in which the stock price is permitted to jump may be 

found in Merton (1976), Naik and Lee (1990), Naik (1990), and Colwell and Elliott 

(1993). More information concerning Poisson models can be found in Elliott and Kopp 

(1990) and Cutland, Kopp, and Willinger (1993). A very general analysis of asset 

pricing, including jump processes, is carried out in Back ( 1991 ). If a model is employed 

which permits the stock price |o jump too much then an arbitrary contingent claim will 

not be dynamically spanned and one cannot use the theory outlined in section 2 for 

pricing. In such cases a utility based approach must be adopted or some other method, 

such as that of F611mer and Sondermann (1986), might be used s. For instance, if the 

stock price involves a gamma process [Garman (1985, pages 856-857), Gerber and Shiu 

( 1993, IV. 1 )] then a general contingent claim cannot be dynamically spanned and some 

other technique must be used to associate a price to the contingent claim. It is interesting 

to note that although it is generally accepted that the gamma process model is incomplete, 

there appears to be available no formal proof of this fact. 

8An insightful paper relating to the approach of F{illmer and Sondermann is Dybvig (1992). 
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As we have mentioned, the choice of which portfolio investment strategy to 

follow is a problem separate from the determination of the investment strategies that one 

requires to synthetically produce a particular terminal payoff distribution. One type of 

portfolio investment strategy that is used by practitioners is constant proportion portfolio 

insurance. Constant proportion portfolio insurance is discussed in Perold and Sharpe 

(1988) and Black and Perold (1992). Cox and Huang (1989.a) is an important paper 

which merges portfolio optimisation with option pricing theory. An accessible 

description of the ideas in this paper may be found in Cox and Huang (1989.b). A 

treatment is also provided in Duffle (1992). Benninga and Blume (1985) discuss one 

version of a portfolio insurance scheme involving the purchase of a risky asset and a put 

option on that asset. Rubinstein (1988) discusses some aspects of portfolio insurance and 

the 1987 market crash. Tilley (1988) contains a general discussion of portfolio insurance. 

Dybvig (1988) is an interesting paper which points out some flaws in several dynamic 

portfolio strategies. 

The reader who wants a source for stochastic calculus will find Arnold (1974) to 

be a friendly reference. The mathematically determined reader will find Karatzas and 

Shreve (1988) an excellent reference as well as Chung and Williams (1990). Stochastic 

differential equations with Poisson components may be found in Gihman and Skorohod 

(1972), Elliott (1982), and Kushner (1967). 
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