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Random sum models with compound distributions are used extensively in modelling
of insurance risks. Unfortunately, the compound distributions themselves are awkward to
evaluate. Consequently, various numerical and analytical approximative techniques have
been used. In this talk we derive various upper and lower bounds on the tails of compound
distributions. Some notions in reliability theory are used.

Consider a sequence of 1.i.d. positive random variables X;, X;,---, X,, -+ with dis-
tribution function F{r) and a counting random variable N independent of X;, with

Pr(N=n)=p,, n=0,1,2,---. (1)

Let
S=X+X;+---+Xn (2)

We are interested in estimating the tail probability
Y(z) = Pr(§>z), z2>0, (3)
which has applications in many disciplines.
Example 1 Total Claim Amounts Distribution in Group Insurince

Let N be the number of claims for a particular period and X, be the nth claim
amount. Then § = X; + X3 + - + Xy is the total claim amounts. ¥(x) = Pr(S > 1) is
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the probability of the total claim amount greater than r. Furthermore, [~ w:(s)ds is the
stop-loss premium.

Example 2 Infinite Ruin Probability

Let N, be the number of claims by time ¢, whix is assumed to be a Poisson process
with parameter A\. S, = X + X; + --- + Xu, is thus the total claimamounts by time ¢.
Denote u to be the initial surplus at time 0 and u, to be the surplus at {. We have

u=u+{L+HMEX) - S

where 6 is the relative security loading.
The ruin probability therefore is

¢(u) = Pr{u, < 0, for some ¢>0)
. It is well known that it can be expressed as
Ulu) = Pr(S > u)
where § = Y1+ Y, + - + Yy, Y, are i.i.d. with density function P and N is a

N E(X1)
geometric distribution with Pr(V =n) = %(—f}r-g—)".

The tail probability can be written as
| .1‘) = Z pn—F(n)(I)w
n=1

where F“")(I) = Pr(X, + X2+ -+ X, < z)is defined to be the distribution function of
the n-fold convolution. Its computation involves infinite many convolutions of distributions
and it is unwieldy numerically except for a few cases. Derivation of parametric upper and
lower bounds for the tail probabilities of compound distributions would give us qualitative
and quantitative insight into these distributions.

The classical Cramer-Lundberg bound gives a simple exponential upper bound for a
class of compound geometric distributions. More precisely, if Pr(N =n) = (1 — p)p" and
there is « such that

P = /‘xewdF(y).
8

then,
Y(r) <e ™.

We now introduce some definitions that will be used to derive our main results. A
distribution function B(z) 1s said to be new worse than used(NWU)[new better than
used(NBU)] if

B(x)Bly) < [2|B(z +y), for £ >0, y>0
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Many common used distributions are either NWU or NBU. For example, Exponential,
Gamma{a, A) with a > 1, Pareto, and Weibull(a) with o < 1 are NWU; whilst Exponen-
tial, Gamma((a, A) with a < 1, and Weibull(a) with o > 1 are NBU.

Our idea is to use the tail of a new worse than used distribution as upper bound and
the tail of a new better than used distribution as lower bound.

We now state our main results:

Let an = 3200 44 P
Theorem 1 [f
(1) there exists 0 < ¢ < 1 such that

an < Pap-1, n=12,---, (%)
(it) B(z)is NWU and satisfies
/ (By)) " MdF(y) = 67",
(iii) there is A(z) > 0 for all z > 0 such that

1
f — .
(A=) 0< <;nF(z)>o F(z)

then

P(x) < 1‘T”"A(z)-

Remark: () is satisfied by many distributions including Geometric, Poisson, Binomial
and Negative Binomial.

Theorem 2 If

(i) there exists ¢ such that

an>¢an_1, n:l’Q‘..._ (*.*)

(i1) B(x) is NBU and satisfies
/ (B(y)})"'dF(y) = 67,
(iii) there is A{x) > 0 for all z > 0 such that

[ZBlz — =+ y)) 'dF(y)

[A(z)]' > sup
0<2<z F(2)>0

™| @
ot
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then
w2 2P,
é
It is easy to see that Theorem 2 is similar to Theorem 1 except the inequalities are
reversed. Hence, hercafter we state results on upper bound only. The results on lower

bound can be derived accordingly.

Corollary 1 If « satisfies
o7 = [Temary)

3]

and o ey
5~1 - mf fz € y_dF (y)
0<aF(z)>0 e F(z2)
then,

P(r) < 1~—;—p£58_”.

Easy to see § < 1. Hence,
1 - poe—xr

Corollary 2

Corollary 3 If F(z) is NWU, then

wle) < TP [T 1B 4 R )

1
¢

Corollary 4 1If {B(z)]™' is a convex function in z, then

wlo) < EB(r 4 nf i),
where
rp(z) = [7y — 2)dE(y)
)

1s the mean residual lifetime of F.
Some applications are now given.

1. Compound Geometric Distributions
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Pr(;’v:n):(l—p)p", n=0,1,2,---.

p-lz_/a e"*dF(z).

Then,
w(x) < b7,

where -
6—1 — ll'lf fz eKde(y)
o<z en*F(z)
If F(z)is NWUC,
b(z) < pe”,
a refinement of the Lundberg bound.

2. Distributions with a Finite Numher of Moments
/ dF(z) < oo, j<m.
o

/ e"dF(z) =00, for any x> 0.
0

Let N

Bx)=(1+&z)™, x>0,2>0

be the tail of a Pareto distribution.

Choose £ > 0 such that

ol = /°°(1 + kz)"dF(z).
0

1 —po

b(z) < —5

(1+xx)™™.

When m = 1,

‘ (1= po) E(Xy)
o) < SE(X) + (1 - ¢)r’

3. Generalized Inverse Gaussian Disribution
Assume that X has the density
flz)~ Kz} 'e™ £ >0,z = o0

with ¢ > 0,3 < 0. If E(e*¥1) < ¢~!, the best exponential upper bound is of the form
Ce .
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Choose _
B(r) = (14 kx) me ™,

where 0 < m < —\ and & > 0 satisfying
o7t = / (1 + xz)"et” f(x)da.
0

1 -
Yir) < - + kx) e M.
j ) - (DPU 1 m _—ur

4. Ruin Probability for Compound Poisson Claims Process Perturbed by Diffusion

wo=u+ (1 +OME(X,) — S+ Wi,

where W, is a Wiener process with infinitesimal drift 0 and infinitesimal variance 2.D.

Y{u) = Pr(u, <0, for some t>0).

‘ o(u)y —en, U)o
Plu) < {l—-—"=}e + —e
(=t Ba ) @4
where 0
/O dH + Hy(x) = ()™
H, is the exponential distribution with parameter £ = (1+8)AE(X,)/D, H; has the density

function %ﬁl, b4 = gz—" and

> e~vdH, « H
[e(r)]™' = in S etdty + Hly)
0<z<x CKZHl * HQ(Z)
We now give a variation of Theorem 1. More applications are given based on this variation.
Theorem 3 If H.(y) = | — H.(y) is a df satisfying H.(0) = 0 and
Hiy) < inf  Flz+y)/Fl2), y 20,

— 0<z<

o -1
. 1-po dH.(y)
w(z) < 3 {0 E(z+y)} . =20

then

The result comes from the relation
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Corollary 5 If F(y) is IFR then

5. Burr Distribution

Suppose that

J— u2 &
Fly) = ,z 20,
v (#’ﬂﬂ)

here g > 0,a > 0. Moments exists up to order 2c.

Choose B(z) = (1 + xz)™", where 0 < r < 2a and « > 0 satisfies

1 oo
E]/1+rcy' YdF(y

And then choose

. 2# 2a
Holy)={ — et ,y20.
W {y+ y2+4ﬂ2} Y
Then,

¥(z) < ! ;PO {/(1 + KT+ ny)rde(.U)}

6. Mixture of Weibull Distributions

Let
F(y) = [ Fuloyg(6)ds,

where F(ylf) = ¢ and 0 < 8, <6 < #; < cc.
Choose

Hily) = o=z,

— e_’\yel, <1
Hz(y):{ RV
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and

Fl-(y) = min{ﬁl("/)v f_fz(y)}-
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