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No. 1. I'll bet you 100 to 1 that less than 1 person in 100 will ever reach age 100. 
No. 2. But we have already passed that. 
No. 1. Then I'll bet you 100 to 1 that less than 1 person in 100 will ever reach age 110. 
No. 2. I wouldn't bet on it. —Anonymous, 2004 
 
The biology of longevity has to be considered in the light of evolution, but it also has to be 
considered in the light of reliability engineering. And both evolution and reliability engineering 
have to be considered in the light of population thinking, that is, demography.  —Vaupel, 2003a  
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Introduction 
 

Several leading gerontologists are engaged in a spirited and even vituperous 
debate regarding the prospects for human longevity. The issue is what life expectancy 
will be just after mid-century in the industrialized countries, and, more particularly, in 
the United States in 2060. The debate on the future of life expectancy is closely linked to 
such issues as the possibilities for extending average recorded human life span, the 
existence of limits to human life span and life expectancy, the form of the trajectory of 
age-specific mortality rates at the highest ages of life and the utility of developing 
projections of mortality on the basis of causes of death, particularly as aggregated in the 
categories of intrinsic (or endogenous) and extrinsic (or exogenous) mortality.  

 
This paper sets forth the elements of the two main positions and critically 

examines them. Many of the arguments on each side are cogent, and I found it hard to 
reconcile the two positions. I conclude, therefore, with an intermediate position that 
accepts the principal arguments of each side without fully embracing the conclusions of 
either. I illustrate some of the arguments on the basis of data for the United States.  

 
1. Issues in the Debate

 
The first group espouses the more expansive view. It maintains that a life 

expectation (at birth) of 100 years will be reached in the industrialized countries by the 
year 2060. The second group supports the more conservative view. It maintains that life 
expectation is not likely to exceed 85 years by 2060 in the United States. Both views 
posit the same general cultural and technical environment as now exists, without 
assuming groundbreaking developments in molecular biogerontology, that is, without 
modifications of the basic processes by which humans age. The difference in life 
expectation is great and has tremendous social and economic consequences, particularly 
with regard to planning for health services and the management of the Social Security 
system. 

 
At first view, the debate is between mathematical demographers and social 

biologists, but the sides do not line up so neatly inasmuch as scholars of both types 
appear on each side. On the expansive side are James Carey, James Vaupel, Shiro 
Horiuchi and John Wilmoth; on the conservative side are Leonard Hayflick, Jay 
Olshansky, Bruce Carnes and James Fries. 

 
There are two other positions, each more extreme than those being compared 

here. The first I call "geriatric nihilism." It essentially argues that we ought not be so 
concerned about the longevity of very old people; too much treatment is wasted on 
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people who have only a few years to live. The other position not involved in the main 
contest is the view on the part of some molecular biologists, such as Cynthia Kenyon, 
Leonard Guarente and Michael Rose, that, with genetic engineering, aging can be 
drastically postponed in humans, as it has been postponed experimentally in nematode 
worms and yeast (Guarente, 2003; Guarente and Kenyon, 2000; Hall, 2003). I am not 
concerned with this position either, which I consider to be unrealistic at this time. Work 
in this area is still in its primitive stages and has been confined to very low-order 
animals. 

 
2. The Demographers' View 

 
Using data mostly for the European industrial countries, the demographers point 

to (1) the uninterrupted, long historical rise in life expectancy, (2) the acceleration in the 
rise of the numbers of older aged (85 and over) persons, (3) the increase in the numbers 
and percentages of centenarians and supercentenarians, (4) the steady rise in the 
maximum recorded life span, (5) the deceleration of the age trajectory of death rates at 
the very advanced ages of the life cycle, (6) the lack of a strong positive correlation 
between levels of mortality and rates of improvement of mortality and (7) the 
momentum of cohort succession. This group argues that the processes that have led to 
these developments will continue to prevail in the future. 
 
2.1 Historical Trends in Longevity 

 
Life expectancy (at birth) in the United States has steadily increased over the past 

century. In 1900 it was only 47; it reached 68 by 1950; and today it stands at 77.0 (Table 
1). These numbers represent an annual average amount of gain of 0.3 year, or an annual 
average rate of gain of 0.5 percent, over a century. By exponentially extrapolating such a 
series on life expectancy, Oeppen and Vaupel (2002) predicted a life expectancy of 100 
in 2060 in the United States. According to Vaupel (2003b), approximately half of the 
girls born in Germany today will live to experience the beginning of the 22nd century; 
that is, the median age at death of the birth cohort will be 100 or so.  
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TABLE 1 
Comparison of Percent Declines in Age-Adjusted Death Rates With 

Percent Increases in Life Expectation at Birth: United States,  
1900 to 2000, by Decades and by Tri-Decades 

 

Year 
Age-Adjusted 
Death Rateb  

Expectation of Life at 
Birth (e0) 

Percent Changea 

Death Rate (e0) 
U.S. 2000 Population as Standard 

2000   869.0 76.9 -7.4 +2.0 
1990   938.7 75.4 -9.7 +2.3 
1980 1039.1 73.7 -15.0 +4.1 
1970 1222.6 70.8 -8.5 +1.6 
1960 1339.2 69.7 -7.4 +2.2 
1950 1446.0 68.2 -19.0 +8.4 
1940 1785.0 62.9 NA   NA 

1970-2000    X X -28.9 +8.6 
1940-1970    X X -31.5 +12.6 

U.S. 1940 Population as Standard 
1940 10.8 62.9 -13.6 +5.4 
1930 12.5 59.7 -12.0 +10.4 
1920 c 14.2 54.1 -10.1 +8.2 
1910 c 15.8 50.0 -11.2 +5.7 
1900 c 17.8 47.3 X X 

1900-1930    X X -29.8 +26.2 
1910-1940    X X -31.6 +25.8 

 
X Not applicable.  NA Not available.  

a  For prior decade. 
b  Per 100,000 population for 1940-2000; per 1,000 population for 1900-1940. 
c  Death registration states only.  
 
Source: Based on U.S. National Center for Health Statistics, NVSR 51(3), 2002; NVSR 50(15), 2002; and 
Vital Statistics of the United States, 1950, Vol.1, Part 1, 1954.    
 

In the last several decades of the last century, the percent reductions of death 
rates and the percent increases in survival rates at the older ages have increased greatly 
in relation to those for the younger age groups (Table 2). Select any older age group and 
any younger age group and compute the differences between the ages in the percent 
reductions or increases, as in the examples at the lower panel of Table 2. As a result, 
survival rates at the higher ages have risen briskly and have shifted upward relative to 
those at the younger ages (Table 3). Table 3 also illustrates this trend with data on 
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changes in age-bounded life expectancies (i.e., average years lived in the age interval). 
Average years lived in the interval from age 65 to age 80 increased from 11.1 years to 
12.5 years, that is, by 1.2 years, in the 50-year period from 1950 to 2000, whereas in the 
earlier half-century, average years lived in this age interval amounted to only 1.0 year. 
In the birth-to-65-year interval, the relative shifts were sharply in the opposite direction.  
 

TABLE 2 
Percent Change in 5-Year Mortality Rates and 5-Year Survival Rates:  

United States, 1900-1950 and 1950-2000 
 

Percent Reduction in 5-Year 
Mortality Ratesa 

Percent Increase in 5-Year 
Survival Rates Terminal Age 

Group (Years) 1900-1950b 1950-2000 1900-1950b 1950-2000 
0-4 83.4 76.6 14.8   2.5
5-9 93.7 76.2  5.1   0.4

10-14 97.4 72.6  1.3   0.2
15-19 97.3 47.4  1.3   0.2
20-24 96.3 34.3  2.1   0.2
25-29 95.6 35.7  2.8   0.3
30-34 95.1 40.7  3.1   0.4
35-39 94.5 42.9  3.5   0.5
40-44 93.9 44.8  3.5   0.8
45-49 92.9 47.1  3.5   1.3
50-54 91.6 48.7  3.5   2.1
55-59 89.2 48.9  4.0   3.3
60-64 85.7 46.0  4.7   4.7
65-69 80.5 42.4  6.6   6.4
70-74 73.4 40.1  8.9   9.4
75-79 63.3 38.8 12.6 14.8
80-84 49.8 35.0 20.0 22.4
85-89 35.8 27.6 28.4 30.8
90-94 23.2 21.2 35.6 43.3
95-99 12.9 15.7 43.8 63.0

100-104   5.3 13.1 76.6 104.9
Selected Differences 
(25-29) – (75-79) +32.3 -3.1 -9.8 -14.5
(30-34) – (80-84) +45.3 +5.7 -16.9 -22.0

 

a Five-year mortality rates are the  complements of 5-year survival rates. 
b Life table for 1900-02 relates to white males in the Original Death Registration States.   
 
Source: Based on life tables for 1900-02, 1949-51, and 2000, published by the U.S. National Center for 
Health Statistics or its predecessor agencies.  
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TABLE 3 
Percent Surviving and Age-Bounded Life Expectancies:  

United States, 1901 to 2000 
 

Percent surviving           Average years lived in interval  
Year     Birth to 65   Age 65 to 80  Age 80 to 95   Birth to 65          65 to 80  80 to 95    95+ 

     
 Percent Surviving Average Years Lived in Interval 

Year 
Birth to 

65 
Age 65 
to 80 

Age 80 
to 95 

Birth to 
65 

Age 65 
to 80 

Age 80 
to 95 Age 95+ 

1901a 40.9     33.1     2.5     44.4    10.1 5.2 2.2 
1939-41 60.4     37.9     3.7   55.9    10.6 5.6 2.6 
1949-51 67.6     43.4     5.2   58.7    11.1  6.2  2.5 
1959-61 71.1     47.2     4.5   59.7    11.4  6.3 2.4 
1969-71 71.9     49.1     7.9  60.0    11.5  6.9 3.1 
1979-81 77.1     56.0    11.7  61.1    12.0  7.6 3.3 
1989-91 79.5     59.2    13.3   61.6    12.3  8.0 3.3 

2000 82.1     62.1    14.2   62.2    12.5 8.1 3.5 
Percent Increase 

1901 to 1949 65.3 31.1 108.0 32.2 9.9 19.2 13.6 
1949-51 to 2000 21.4 43.1 173.1 6.0 12.6 30.6 40.0 
 
 a Original Death Registration States.  
Source: Based on decennial life tables, 1901 to 1989-91, and life table for 2000 published by the U.S. 
National Center for Health Statistics or its predecessor agencies.  
 

The rise in life expectancy at birth shows no signs of stopping. Currently, 
Japanese women are setting the national record for women, with a life expectancy at 
birth of 85 years, and Icelandic and Japanese men are setting the national record for 
men, with a life expectancy of 79 and 78 years, respectively (Population Reference 
Bureau, 2004).  

 
As a result of the higher survival to age 85 and the reduction of death rates above 

age 85 in the United States in recent decades, there has been a sharp increase in the 
number of persons 85 years and over and 100 years and over (although the possible 
contributions to this trend of an increase in the size of birth cohorts 85 years ago and 
earlier and immigration need to be evaluated). (See Table 4.) There even appears to 
have been an acceleration in the rise in the numbers of older aged persons and 
centenarians (Tables 4 and 5).  While being a centenarian is still relatively rare, the 
number of centenarians is estimated to have increased 22-fold in the United States 
between 1950 and 2000, from 2,300 to 50,000. 
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TABLE 4 
Percentage Increase in the U.S. Population 85 Years and Over, by Age: 

1980 to 2050 
 

 Population (000) Percent Increase 
Age 1980 1990 2000 2050 a 1980-90 1990-2000 2000-50b 

Total, 85 and over 2,240 3,049 4,240 20,861 36.1 39.1 392.0 
85-89 1532     2,047 2,790 10,253 33.6 36.3 267.5 
90-94  562      760 1,113 6,473 35.2 46.4 481.6 
95-99  132      205   287 2,984 55.3  40.0 939.7 

100 and over   14c   37 50 1,150 164.3 35.1 2,200.0  
 

a U.S. Census Bureau projections, middle series, based on 2000 census. 

b Average decennial increases are 32 percent for 85 years and over, and 26, 35, 47, and 63 percent for the 
component age groups.   

c Records of the Social Security Administration; the original census count, 32,000, was re-estimated.   
 
Source: Internet, www.census.gov. Various census reports. 

 
TABLE 5 

Growth of U.S. Centenarian Population: 1950 to 2050 
 

Year Number Percent Increase 
Percent of Total 

Population 
1950 2,300 X -- 
1960 3,300 43.5 -- 
1970 4,800 45.5 -- 
1980 14,000 195.2 0.01 
1990 37,000 164.3 0.01 
2000 50,000 35.1 0.02 
2050 1,150,0001 2,200.02 0.29 

 
-- Less than 0.005 percent. 
X Not applicable.  
1 Census Bureau middle series of projections. 
2 The average decennial rate of increase is 62.7 percent.  
 
Source: U.S. Census Bureau census reports; records of the Social Security Administration; Internet, 
www.census.gov; and Siegel and Passel (1976). 
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We cannot talk of trends in supercentenarians (people who have a verified age of 
110 or more) in the United States because the figures are too unreliable, whether we 
consider census, vital statistics, Medicare data, or Social Security beneficiaries. The 
number of supercentenarians is rapidly increasing in Western Europe, however (Robine 
and Vaupel, 2002). While the first confirmed supercentenarians go back only to the 
1960s, their numbers have increased exponentially since then.     

 
Maximum recorded life span has been steadily increasing at least for 140 years in 

Sweden, and the rate of increase has been rising (Wilmoth and Robine, 2003). (See also 
Robine and Saito, 2003). Maximum recorded life span rose by 0.4 years per decade 
before 1969 and 1.1 years per decade thereafter.  Maximum recorded life span in the 
"world" (Western Europe) has risen even more rapidly. It rose linearly since mid-19th 
century at an average "rate" of three months per year (2.5 years per decade) for females 
and at an average "rate" of 2.5 months per year (2.0 years per decade) for males (Oeppen 
and Vaupel, 2002).  For every year since 1977, the oldest validated age at death was 110 
or higher. For the seven countries with the most thoroughly validated data, maximum 
age at death rose 1.4 years per decade from 1977 to 2000 (Wilmoth and Robine, 2003). 
Wilmoth and Robine attribute the rise in the maximum age at death in Sweden largely 
to declines in mortality over age 70 and secondarily to increased numbers of survivors 
to old age (both larger birth cohorts and increased survivorship from birth to age 70). 
 
2.2 Age Pattern of Mortality Rates 

 
An examination of the age pattern of age-specific mortality reveals a slowing 

down of the rate of increase in death rates at the highest ages, that is, from about age 85. 
Between ages 30 and 85, age-specific death rates tend to rise roughly in accordance with 
the Gompertz curve, that is, at a fixed rate of increase.  The rate of increase tends to fall 
above age 85, and even possibly, at the more extreme ages, to become zero or negative, 
although one cannot be certain of the latter because of the sparseness of the data above 
age 110. Several researchers have described this phenomenon: Robine and Vaupel 
(2002), Horiuchi and Wilmoth (1998), Wilmoth (1998), and Robine and Saito (2003). 
Robine and Vaupel (2002) reported, on the basis of the experience of the International 
Database on Longevity (IDL) list of validated supercentenarians (n=159), a probability 
of dying at age 110 of 0.52 and then virtual stability just below this level until age 114.  

 
Table 6 presents a rough illustration of this generalization using mortality rates 

for the United States in 1979-1981 and 2000. The table shows the rate of mortality 
change between adjacent 5-year age groups (from 5-year age group to 5-year age group) 
based on official U.S. life tables for these years. The figures are roughly similar over the 
range of ages from 40 to 85. They resemble a modification of the growth parameter of 
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the Gompertz curve—for the Gompertz curve to fit these figures exactly, they would 
have to be constant—and are possibly described better by the Makeham model, which 
allows for extrinsic or exogenous mortality (i.e., mortality due to nonbiological or 
accidental causes). Table 7 shows rates of mortality change for single ages from age 85 
to age 99 based largely on Medicare data. There is a substantial and steady decline of 
the rates over the whole range of these ages.   
 

TABLE 6 
Rate of Mortality Change Between Successive 5-Year Age Groups: 

United States, 1979-81 and 2000 Life Tables 
[k = ln (5qx)  - ln (5qx-5) ] 

 
Ages of Initial Rate Terminal Rate 1979-81 2000 

Births/5 5/10 -2.303 -2.303 
5/10 10/15 .027 .226 
10/15 15/20 1.101 1.188 
15/20 20/25 .333 .340 
20/25 25/30 .089 .031 
25/30 30/35 .061 .158 
30/35 35/39 .284 .332 
35/40 40/45 .417 .383 
40/45 45/50 .460 .405 
45/50 50/55 .449 .374 
50/55 55/60 .410 .432 
55/60 60/65 .413 .436 
60/65 65/70 .374 .408 
65/70 70/75 .372 .406 
70/75 75/80 .357 .396 
75/80 80/85 .385 .427 
80/85 85/90 .337 .381 
85/90 90/95 .265 .288 
90/95 95/100 .181 .204 
95/100 100/105 .090   NA  
100/105 105/110 .044   NA 

 
NA - Not available. 
 
Note: Death rates for ages under 85 years are based on vital statistics and death rates for ages 85 years 
and over are based on the Medicare program.   
Source: Based on U.S. National Center for Health Statistics, NVSR 50(15), "Deaths: Final Data for 2000," 
2002; U.S. Decennial Life Tables for 1979-81 1(1), 1985. 
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TABLE 7 
Age-Specific Rate of Mortality Change at Successive Ages Above Age 84 

Based on Medicare Data: United States, 1997 and 1990 
[kx = ln (qx) - ln (qx-1)] 

 
Initial Terminal 

Ages 1997a 1990b 
84-85 0.0926 0.0858 
85-86 0.0902 0.0908 
86-87 0.0878 0.0898 
87-88 0.0855 0.0875 
88-89 0.0831 0.0865 
89-90 0.0807 0.0899 
90-91 0.0783 0.0919 
91-92 0.0759 0.0864 
92-93 0.0736 0.0809 
93-94 0.0712 0.0715 
94-95 0.0688 0.0691 
95-96 0.0664 0.0697 
96-97 0.0640 0.0628 
97-98 0.0616 0.0562 
98-99 0.0593 0.0563 
99-100 NA 0.0564 

 
NA Not available. 

a Ages 85 to 99 based on Medicare data. 
b Ages 95 to 99 based on Medicare data; ages 85 to 94 based on a shifting blend of Medicare rates and 

rates based on vital registration.  
 
Source: U.S. National Center for Health Statistics, reports on life tables for 2000 (NVSR 51(3), 2002) and 
1989-91 (U.S. Decennial Life Tables for 1989-91 1(1), 1997). 
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 The proponents of the demographic position conclude from the historical trends 
and the age trajectories described that no limit can now be set for human longevity, 
either as measured by life expectancy or by life span. They maintain that the pattern of 
decelerating death rates at the later phases of the age cycle, and especially of 
unchanging or even declining death rates, is inconsistent with the assumption of a limit 
to life expectation or life span.  

 
There is a more narrowly focused debate as to whether the deceleration of the 

hazard rates at the oldest ages can be accounted for entirely by the selective elimination 
of the more vulnerable members of the cohort. Otherwise stated, the members who 
have poorer health die off, leaving the more healthy persons as survivors at the highest 
ages. The evidence seems to support the view that heterogeneity of the older population 
with respect to health does not fully explain the deceleration (Wachter, 2003). Some of 
the deceleration could then reflect real declines in mortality at the "individual" level or 
for the component "health status" subgroups. In an exceptional turn to biology by the 
demographers, a revision of classical evolutionary theory has been co-opted to explain 
the deceleration of the rates, but the arguments are inconclusive (Wachter, 2003).  
 
2.3 Momentum of Cohort Succession 

 
There is emerging evidence that the improvements in health in youth are 

maintained into the later ages (Elo and Preston, 1992; Haywood and Gorman, 2004). 
Given the considerable class mobility in the United States, the generally improving 
health of the younger population is reflected in better health at the older ages, which 
results in more healthy children and then more healthy older years (Marmot, 1986).  In 
other words, upward mobility leads to better health for the families of the upwardly 
mobile, which they pass on by example, education and provision of better care to their 
children, who pass on these practices to their children.  
 
2.4 The Role of Medical and Other Human Interventions 

 
In the past, medical and other human interventions have contributed greatly to 

the extension of human life. We have benefited from immunizations, water purification, 
cleaner air and a greater supply of nutritious food, as well as coronary bypass surgery, 
organ transplantation and new medications for chronic diseases.  The demographic 
protagonists in this debate maintain that we must not dismiss the possibilities of 
considerable further progress in both biomedicine and social medicine.  
 
 The rate of progress in the reduction of death rates from the major chronic 
diseases of later life, especially the cardiovascular diseases, achieved in the 1970s and 
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1980s, was spectacularly large, unanticipated and unprecedented (U.S. National Center 
for Health Statistics (NCHS), 2004). Even though the rate of progress diminished 
somewhat in the 1990s, the death rates from the major cardiovascular diseases fell by 31 
percent between 1970 and 2000. Even if the advances achieved through human 
intervention in the last quarter-century helped only to manage chronic diseases, 
without dealing with their underlying causes or eliminating them, they contributed to 
the tremendous reduction we have seen in the death rates of cardiovascular and 
selected other diseases in this period. The demographers argue that we may anticipate 
further medical developments that will result in a continuation of these declines, as 
suggested below.   

 
Gains could come from further progress in regenerative medicine genetic 

engineering, tissue engineering, nanotechnology and sonocytology.  Regenerative 
medicine is a rather general concept referring to the use of human, organic materials to 
stimulate the body's healing power, and includes such procedures as bone marrow 
transplantation, joint replacement, organ transplantation and cartilage cell transplants. 
Genetic engineering includes recombinant DNA technology (i.e., gene splicing), in 
which drugs based on human proteins, such as recombinant human insulin (for 
diabetes) and interferon alpha (for boosting the immune system in response to hepatitis 
and cancer) are used to treat common diseases. The sequencing of the human genome 
poses new possibilities for progress through gene therapy, even though at this time the 
functions of most genes are unknown, as are the combinations of genes needed to 
perform most cellular and tissue functions. For example, gene therapy could be used to 
stimulate bone growth (osteogenesis) or growth of blood vessels (angiogenesis). 
Embryonic stem cells could be programmed to metamorphose into specialized cells and 
tissues. Therapeuting cloning could become the route by which some of our most 
intractable illnesses could be treated. Other possibilities include the development of 
new drugs and new medical devices, such as new medical imaging devices, sensor-
driven drug delivery, remote monitoring devices, improved coronary stent systems and 
implantable neurostimulation systems.  

 
There are vast uncertainties with regard to the chances of success and timing of 

any successes in these programs, but they all could be interpreted as human 
interventions short of interventions in the fundamental processes of aging, that is, 
programs that would slow the rate of biological aging.   
 
2.5 Biological Considerations 

 
The demographers have some biological arguments as well, although these 

arguments are not central to their position. The classical evolutionary theory of 
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senescence generally supports the view of an intrinsic tendency for the mortality rates 
at the higher ages in most species to rise steadily, possibly exponentially. However, as I 
have noted, several researchers have demonstrated and as I have illustrated, the rise in 
the curve of mortality rates of humans tends to slow down after about age 85 and may 
even peter out or reverse direction above age 110.  Carey et al. (1992) and Curtsinger et 
al. (1992) have shown that the hazard rates at extreme ages in several subhuman species 
(medflies, nematode worms and yeast) also do not continue to rise exponentially.  In 
fact, in numerous species the fundamental shape of the hazard curve is approximated 
by the Gompertz curve, that is, by unchanging rates of increase from young adulthood 
up to advanced age, and then the rates of increase decelerate (Finch, 1990). This 
interspecies similarity suggests that the same biological patterns apply to humans and 
subhuman species.  On the other hand, there is considerable variability among species 
and within species in the manifestations of senescence.      

 
3. The Social Biologists' View 
 

To counter the claims of the demographers that there are no limits to human 
longevity, the biological position places considerable weight on (1) the epidemiological 
transition, particularly the current dominance of the endogenous causes of death, (2) the 
limited prospects of eliminating or even sharply reducing the endogenous causes, (3) 
the massive reductions in mortality rates necessary to produce even small increases in 
life expectation in low-mortality countries and (4) the evidence of considerable age-
related somatic deterioration in humans (and most animal species) after the peak 
fertility years.   
 
3.1 Demographic Considerations 

 
During the epidemiological transition that occurred in the last century, the 

predominance of infectious and parasitic diseases was replaced by the predominance of 
the degenerative diseases of later life, such as cancer, cardiovascular diseases and 
diabetes. The former are typically acute diseases with an early outcome of complete 
recovery or death. The latter are typically chronic and progressive. Whereas the former 
diseases were essentially externally caused and relatively easy to treat once vaccines for 
them were developed and immunization against them became widespread, the latter 
are difficult to treat and essentially incurable, having an etiology that is quite complex 
and essentially biologically based. Alternatively stated, the extrinsic (exogenous) causes 
of death result largely from external forces such as microbes and violence, and the 
intrinsic (endogenous) causes result essentially from biological or genetic causes.  
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While the 1970s and 1980s saw sharp reductions in the death rates from several 
endogenous diseases, these high rates of decline did not continue during the 1990s (U.S. 
NCHS, 2004). The decline in the death rate from the major cardiovascular diseases in 
the 1990s was less than 8 percent, as compared with 15 percent in the 1970s and 13 
percent in the 1980s. The death rate from cancer increased 24 percent (not age-adjusted) 
between 1970 and 2000. The protagonists on the biological side maintain that it is 
unreasonable to expect the death rates from the endogenous diseases to decline during 
the next several decades at the same rate as they declined during the last several 
decades, or to expect age-specific death rates as a group to decline in this century at the 
same rate as they declined during the last century (when life expectation at birth 
increased by nearly 30 years, or over 60 percent). In fact, we cannot confidently assume 
that death rates at the higher ages will continue to fall. The trends can decelerate, come 
to a halt and even change direction. Any extrapolation of the trend of life expectancy at 
birth on the basis of its past trends could easily overstate the prospects for its increase.  

 
As stated, Oeppen and Vaupel's (2002) prediction of a life expectancy (at birth) of 

100 in 2060 in the United States corresponds roughly to an exponential extrapolation of 
life expectancy in 2000 on the basis of the 1900-2000 annual rate of increase. Olshansky, 
Carnes and Cassel  reported in 1990 that achieving a life expectancy of 100 in the United 
States would require, for example, a uniform reduction of about 90 percent in current 
age-specific death rates. Golini reported in 2002 that a reduction of 85 percent would be 
required to achieve a life expectancy of 100. The answer depends on the mortality base 
for the projection and the age pattern assumed for the reduction. I estimate that 
obtaining a life expectancy of 100 from the level of the U.S. age-specific death rates of 
2000 under the assumption of a uniform reduction of these rates would require a 
decline of 82 percent in age-specific mortality. The following mini-table relating the 
(uniform) percent reduction in death rates and percent increase in life expectancy at 
birth, beginning with the U.S. life table for 2000 (e0 = 76.9 years), suggests a curvilinear 
relationship between these measures:  

 
Percent Reduction in Age-

Specific Death Rates 
Percent Increase in 

Life Expectancy 
Resulting Life 

Expectancy 
0 0                77 (base value) 
45 10.5 85 
50 12 86 
80 25  96 
82 30 100 
90 71 132 
100 �� �� 
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Olshansky et al. (1990) consider that attaining a figure of 100 in 2060 is 
implausible, if not impossible, because it would require the elimination of all deaths 
from endogenous causes. This presumably assumes that exogenous mortality continues 
roughly at the present level. Much exogenous mortality would certainly remain with us. 
 Deaths from violence (i.e., accidents, suicide and homicide), which make up 6 percent 
of deaths today, may be expected to continue, as would some types of infectious and 
respiratory diseases, and complications of pregnancy, childbirth and the puerperium. 
Accordingly, these analysts concluded that life expectation was unlikely to rise above 85 
years (88 for females and 82 for males) unless the aging process itself could be modified, 
which is not expected for the foreseeable future. This is consistent with a uniform 
reduction of age-specific death rates in 2000 of about 45 percent. (See also Fries, 1980; 
Carnes, Olshansky and Grahn, 1996; Olshansky, Carnes and Désesqelles, 2001; and 
Olshansky, Carnes and Grahn, 1998.)  

 
According to the current life table for the United States in 2000, about 1.8 percent 

of an initial birth cohort survive to age 100 (U.S. NCHS, 2000b). The mean age at death 
is 77 and the median age at death is 80. The Oeppen-Vaupel projection of mortality, 
having posited that the mean (life table) age at death in 2060 will be 100, implies that 
about 56 percent of the initial cohort will survive to age 100, about 50 percent of the 
initial cohort will survive to about age 103 (the corresponding median age at death), 
and the complete expectation of life at age 100 (e100 + 100) will be about 106 years. The 
biologists maintain that this kind of change in the next half-century is simply not 
credible.    

 
It is evident that at low levels of mortality, a considerable decline in age-specific 

death rates is required to produce even a small increase in life expectancy. Table 1 
compares, for the period 1900 to 2000, the percent reductions in age-adjusted death 
rates (standard population = 2000 for 1940-2000, and standard population =1940 for 
1900-1940) with the percent increases in life expectancy at birth for each decade. As 
expected, for every decade in this period, the percent increase in life expectation at birth 
is smaller than the associated percent decrease in death rates. However, we see only a 
rough indication of an inverse correlation between decennial changes in age-adjusted 
death rates and life expectation over this 100-year period. When the figures are grouped 
in 30-year intervals, the indications of this pattern are stronger. At eo = 71 years in 1970, 
a decline of the age-adjusted death rate of 29 percent between 1970 and 2000 
corresponds to a rise of only 9 percent in eo  (Table 1). In the previous 30-year period, 
with an initial expectation figure of 63 years, the changes were 32 percent and 13 
percent.  A similar relation is shown (except at the oldest ages) between percent 
declines in 5-year mortality rates from life tables and the corresponding percent 
increases in 5-year survival rates (Table 2).  (See also Vaupel, 1986.) 
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3.2 Biological Aspects 
 
As I interpret the views of the social biologists, "normal aging" in humans is a 

road map to disaster in later life. With normal aging there is senescence, i.e., molecular 
and cellular pathogenesis that degrades functional integrity and homeostasis of the 
body. Senescence limits life expectancy and life span. As a result of the biological 
processes and evolutionary influences noted, there is an average 50-to-80-percent loss in 
the functioning of the various physiological systems by one's 80th year. These relate to 
heart function, immune system function, endocrine system function, lung capacity, 
kidney function and bladder capacity (U.S. National Institute on Aging (NIA), 2002). 
There are sharp declines in muscle strength, bone density, aerobic capacity, glucose 
tolerance and the heart's maximum pumping rate. The declines in psychological 
functioning are also enormous by the 10th decade (Baltes, 2002).    

 
No chronic degenerative disease has been eliminated, or even nearly eliminated, 

in spite of all the efforts in this direction. There is no evidence that the age of onset of 
any major endogenous disease has been raised, although, admittedly, establishing the 
age of onset of a disease is extremely difficult. We have been able only to manage some 
of these conditions so that their disabling effects are postponed and the quality of life 
for persons having the conditions is improved.  Some additions to life expectancy may 
clearly result from medical interventions, but at this stage there are narrow limits as to 
how far these interventions can extend life expectancy. The death rates from various 
forms of violence were reduced by only one-third between 1970 and 2000, so these 
causes may still be expected to contribute substantially to future mortality. The death 
rate for cancer, as well as for several other leading endogenous diseases (e.g., nephritis, 
chronic obstructive pulmonary diseases, Alzheimer's disease, septicemia), rose in this 
period. 
 
3.3 Epidemiological Considerations 

 
The resurgence of old infectious diseases and the emergence of new ones may 

make progress more difficult. The last few decades have seen the reappearance in the 
United States of several infectious diseases that had largely been obliterated—measles, 
tuberculosis, whooping cough, diphtheria—and the appearance of new infectious 
diseases, primarily HIV/AIDS, but also SARS, monkeypox, and West Nile virus. 
Moreover, the death rate from influenza has increased significantly in recent decades. 
This trend is due to the decreasing effectiveness of many established antibiotics, the 
mutation of viruses and the possible transfer of viruses from animals to humans.  
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A more ominous threat is the recent sharp increase in overweight and obesity (37 
percent between 1977 and 1999), with their numerous negative health implications, such 
as increased risk for diabetes, hypertension, stroke, osteoarthritis and various types of 
cancer (U.S. NCHS, 2004, Internet). Olshansky and Carnes have estimated that the 
current impact of obesity on life expectancy in the United States is approximately 3.5 
years—a loss to life expectancy about the same as that caused by all types of cancers, 
and they expect the impact to at least double in the next few decades  (Olshansky, 2004). 
 
3.4 Evolutionary Perspectives 

 
A basic argument of the group espousing a limit for human life expectancy and 

life span rests on the role of evolutionary biology in aging and senescence.  
Evolutionary theory informs us that animals have responded to the high levels of 
extrinsic mortality (i.e., accident, disease, starvation and predation) throughout their 
existence on earth by experiencing early reproduction of the species (35 years of age or 
younger for humans), and then experiencing failure of their bodily structures, which are 
not designed for extended operation. This evolutionary experience dictates an age 
beyond which the probability of continued survival is extremely low, defining a 
"biological warranty period," as Carnes, Olshansky, and Grahn (2003) have called the 
extended period allowed by evolution for human survival. 

 
According to evolutionary theory, as Olshansky has stated, "natural selection 

operates primarily on traits that affect an organism's ability to reproduce; accordingly, 
one would not expect evolution to favor genes that extend an organism's life much 
beyond its reproductive years" (quoted in Smithsonian, March 2004, by Stephen S. Hall.). 
For Carnes, Olshansky and Grahn (2003), the duration of human life needed to achieve 
maturation and reproduction—ages 13 to about 40—helps define their biological 
warranty period. 

 
Today most people survive beyond the ages of reproduction, but recall that only 

a century ago, life expectancy hardly extended through the reproductive years. Three 
factors account for the extension of life expectancy beyond the prime reproductive 
years. First, it would appear that evolution has endowed the body with a reserve 
capacity so as to assure the completion of its reproductive mission. It would be 
inefficient to risk failure in this mission, given the ever-present extrinsic factors vying 
for the life of an animal, by not building in such a reserve capacity. Next, evolution has 
discovered a "reproductive" role for older people. Most parents become grandparents 
and are thus available to nurture and train the young, who may go on to achieve  
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successful reproduction (Vaupel, 2003a; Austad, 1997).  Finally, trends in life expectancy 
suggest that human intervention may have contributed to the success of many people in 
approximating, and of some people in exceeding, their biological warranty period.  
Survival into post-reproductive years has been achieved by human ingenuity and self-
discipline, including public health innovations, medical developments, environmental 
improvements and especially lifestyle changes (Carey, 2003).  I should also note that, 
according to reliability engineering theory, the fact that humans have many redundant 
parts could also be used to explain the extended life expectancy of humans after 
menopause (Gavrilov, 2003).  

 
The biologists claim that there are no longevity genes in humans, and they 

question the relevance for humans of the research on aging of nematode worms, now 
being vigorously pursued by some evolutionary biologists. "Gerontogenes," or 
longevity assurance genes, have been found only in a few invertebrate species, such as 
nematode worms. Carnes and Olshansky (1993) consider age 80 as the limit of the 
biological warranty period for humans and 85 as the limit of life expectancy, barring 
pioneering scientific developments in understanding the fundamental processes of 
aging and ways of modifying them (e.g., modifying the biological rate of human aging). 
Survival much beyond these years, however, will be limited until such knowledge is 
secured (Hayflick, 1998, 2000). Hayflick also doubts that life span can be significantly 
prolonged by genetic engineering. He argues that extending human life span can only 
be achieved by probing into the causes of the aging of cells, i.e., by determining why 
older cells are more likely to fail than younger cells (Hayflick, 1998). 
 
4. Comments and Critique 

 
The arguments presented on each side are cogent even though they lead to 

different conclusions. Unlike the protagonists in this debate, I am inclined to be 
restrained in my comments on the two positions because I have no emotional 
commitment to either. I am concerned that the two sides have become so doctrinaire in 
their positions that they cannot recognize the merits of the opposing arguments. A 
review of some of the issues by a panel of the National Academy of Sciences revealed 
how ambivalent the situation remains with respect to forecasting mortality(Stoto and 
Durch, 1993). 

 
The first position may be characterized as one of demographic determinism. It is 

strong on analysis of demographic trends but lacks a theory of demographic change. It 
lacks a theory for projecting mortality but finds the past statistical record of mortality 
change alone an adequate basis for determining future levels of mortality.  Several 
pieces of historical evidence are offered for the position that there are no foreseeable 
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limits to life expectancy and life span, but we are not offered a convincing explanation 
of why the changes that have occurred should continue. If compositional/heterogeneity 
changes and classical evolutionary theory do not fully explain the deceleration of 
hazard rates at the very advanced ages, another theory is needed (Wachter, 2003).  

 
The other position may be described as one of biological determinism. It is strong 

on biological theory, but its historical base for analyzing the trends in longevity is 
limited. It sets only rough guidelines for the future of life expectancy and life span and 
fixes no dates for the attainment of the "maximum" values hypothesized. For the most 
part, this position lacks a statistical model relating the biological processes at work to 
the demographic results proposed. Specifically, it lacks a formal statistical basis for 
developing projections of age-specific mortality. 

 
Before presenting a more detailed evaluation of the two sides of the argument, I 

want to digress to consider three related topics that shed light on significant facts in the 
debate: the possible use of cause-eliminated life tables in judging the limits to life 
expectancy, the relation of mortality compression theory to the possibility of limits to 
life expectancy and the use of death rates disaggregated by cause in making projections 
of mortality. 

 
4.1 Cause-Elimination Life Tables and Limits to Life Expectancy 

 
Cause-elimination life tables provide another way of looking at the possibility of 

extending life expectancy. Cause-elimination life tables calculate life expectancy on the 
assumption that a particular cause of death or group of causes has been eliminated. 
Such tables have been computed by the National Center for Health Statistics every 10 
years from 1959-61 to 1989-91. Tables are calculated for a few dozen causes, including 
the leading causes and an "all other causes" category; hence, all causes are nominally 
covered. They make the unrealistic assumption that the causes of death occur 
independently of one another; that is, they disregard the competing risks of the causes 
of death.  
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If we track the total life expectancy that would have been achieved between 1960 
and 1990, assuming the complete elimination of each of the causes of death (and 
assuming independence of the risks of dying from the various causes), we would derive 
a series that approximates 90 or 91 years:   
 

Years 
Life Expectancy 

Without “Gains” 
“Gains” in Life 

Expectancy 
Life Expectancy 

Including “Gains” 
1989-91 75.4 14.3 89.7 
1979-81 73.9 18.6 92.5 
1969-71 70.8 20.1 90.9 
1959-61 69.9 18.9 88.8 

 
Source: Based on U.S. National Center for Health Statistics decennial life tables for the indicated years.  
 

For example, in 1989-1991, 14.3 years would be added to total life expectancy by 
the elimination of the various listed causes of death.1 The sum of this number and the 
current expectation of life, 75.4 years, is 89.7. For 1959-61 the corresponding sum is 88.8. 
Inasmuch as this series of figures displays a fluctuating trend rather than a monotonic 
one and is not fully comparable, it is difficult to extrapolate it with confidence. 
Theoretically, we would expect the total years to be nearly constant if the data were 
accurate and the figures consistent and comparable; as life expectancy rises and age-
cause-specific death rates fall, the increase in life expectation at birth during any period 
and the reduction in the total gains from eliminating the various diseases during the 
same period should approximately balance.  
 

I have previously asserted that cause-of-death life tables tell us little or nothing 
about the future (Siegel, 1993); they give us only indications of the relative importance 
of various causes of death currently and inform public health policy in this way. Now I 
am deviating from this view to suggest that we can theoretically consider these figures 
as a current maximum estimate of human life expectancy. To understand why this may 
be so, we must recognize that independence of mortality risk is not the way mortality 
risks work in the real world. In actuality, all the causes of death compete actively with 
one another to achieve a person's demise.  

 



 22 

Because of (1) the competing risks of death, (2) the multiplicity of causes that 
contribute to or are associated with each death and (3) the impossibility of human 
immortality, in the event of the elimination of any cause of death, or even its sharp 
reduction, the death rates from other causes—particularly those usually associated with 
the cause eliminated or with average ages close to that of the cause eliminated—will 
tend to rise. Obviously, death rates for all the listed causes cannot be reduced to zero. 
Stallard's (2002) study of underlying and multiple-cause mortality showed conclusively 
that "death is due not to just one single disease but to a complex set of interacting 
pathological processes. In these cases the designation of any single disease as the 
underlying cause of death provides a distorted description of the causal pathways." It is 
even conceivable that the sharp decline recorded for death rates from cardiovascular 
causes between 1970 and 2000 "contributed" to some extent to the lack of substantial 
progress in reducing cancer during this period, even though cancer is not usually 
reported as a contributing cause of death from cardiovascular diseases.  Hayflick (1998) 
supports the main point here from the perspective of the molecular biologist.  

 
On the other hand, it could be argued that if certain causes of death were 

eliminated, the death rates from some other causes would be lower than recorded 
because the specified eliminated cause could not have contributed to earlier deaths 
from these other causes. Hence, death rates from these other causes would also be 
lower. I believe, however, that the earlier of these two arguments is more cogent. 

 
If two causes are eliminated in successive stages, first one cause and then the 

other, the gain made by the elimination of the second cause, allowing for the principle 
of competing risks, would tend to be greater than if it were eliminated independently. 
This is so because the number of survivors at each age in the life table is greater after the 
first cause is eliminated than when each of the two causes is eliminated independently 
and because of the competing risk principle. In other words, success in reducing some 
causes will exact a price on other causes, possibly resulting in a rise in the rates of these 
other causes. I am hypothesizing, therefore, that the total years added by the 
independent elimination of the various causes is a maximum in relation to probable life 
expectancy, since the real addition to life expectancy would be less because of the force 
of the competing risks of death. 
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4.2 The Compression of Mortality 
 

Compression-of-mortality/rectangularization theory has been considered for its 
possible relevance in providing an indication of whether there are limits to life 
expectancy and life span (Wilmoth, 1997). Mortality compression theory may be 
relevant to this issue because a decreasing variation in the age distribution of deaths, or 
an increasing rectangularization of the survival curve, is more supportive of the view 
that there is a limit to life expectancy and life span. Many measures of the compression 
of mortality have been proposed (Wilmoth and Horiuchi, 1999), and I employ a few of 
them in the discussion here. It can be maintained, reversing the order of the arguments, 
that if average recorded life span is a fixed quantity such as 100, mortality will tend to 
become compressed because of the  "ceiling effect," and if we assume that average 
recorded life span has been rising, then mortality compression may not be occurring. In 
the former case, the measure of compression can be life expectancy itself in the form of a 
percentage (for example, 1960, 69.9 percent; 1990, 75.4 percent; and 2000, 77.7 percent), 
where in a graphic presentation the percentage represents the share of the total 
rectangular area bordered by the x-axis running from 0 to 100 (age) and the y-axis 
running from 0 to100 (life expectancy). (See Siegel, 1993.)   

 
In assessing the trend of variation in the distribution of deaths by age for 1940 to 

2000, I use the relative interquartile range as derived from the appropriate U.S. life 
tables and recorded death statistics. The last column of Table 8 gives this measure based 
on life tables for 1939-41 to 2000. It is computed by dividing the interquartile range (the 
difference between the first and third quartile) by the second quartile, i.e., median age at 
death (expressed as a percent). The series shows a nearly steady decline in the percent 
variation around the median from 34 percent to 23 percent, and suggests, therefore, a 
pronounced trend of mortality compression. As stated, these results are more consistent 
with the fact that the rise in life expectancy is slowing down and may be approaching a 
fixed upper limit than that it will rise indefinitely. These results are mitigated by the 
data on average age at death in Table 8, however. In addition to the measure of 
variation, Table 8 displays several measures of central tendency.  Not one of the three 
measures of central tendency shows a substantial falling off in its increase over the 60 
years, as would be expected if the rise in longevity were slowing down. Similar 
measures based on recorded death statistics show a steady rise in the median age of 
deaths between 1950 and 2000, but the decline in the relative interquartile range from 
39.0 percent to 27.0 percent suggests a marked trend toward mortality compression, as 
did the life table data (Table 9).  
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TABLE 8 
Measures of Central Tendency and Dispersion of the Age Distribution of  

Life Table Deaths: United States, 1900 to 2000 
 

Year Modea Meanb Median 1st Quartile 3rd Quartile IQRc RIQRc 
2000 85.5 76.9 80.3 69.7 88.0 18.3 22.8 

1989-91 83.5 75.4 79.0 67.9 87.2 19.3 24.4 
1979-81 83.5 73.9 77.6 66.3 86.0 19.7 25.4 
1969-71 80.5  70.8 74.9 63.1 83.5 20.4 27.2 
1959-61 81.5 69.9 74.3 62.7 82.8 20.1 27.1 
1949-51 78.5 68.1 72.8 60.6 81.5 20.9 28.7 
1939-41 76.5  63.6 69.9 55.5 79.2 23.7 33.9 

1900 72.5 47.7 56.4 20.2 73.1 52.9 93.8 
Increase 

1970-2000 5.0 6.1 5.4  6.6 4.5 -2.1 -4.4 
1940-1970 4.0 7.2 5.0 7.6 4.3 -3.3 -6.7 
1900-1940 4.0 15.9 13.5 35.3 6.1 -29.2  -59.9 

a Approximation.  
b Mean age of death, or life expectation at birth.  
c Interquartile range (IQR) and interquartile range as percent of median age at death (RIQR).  
 
Source: Based on life tables published by U.S. National Center for Health Statistics or its predecessor 
agencies and by U.S. Office of the Chief Actuary (2002).  
 

TABLE 9 
Measures of Centricity and Dispersion of the Age Distribution of Deaths  

Based on Vital Statistics: United States, 1950, 1970, and 2000 
 

    Increase 
Measure 1950 1970 2000 1950-1970 1970-2000 

Modea 72.5 77.5 82.5 5.0 5.0 
Median 66.2 70.3 77.3 4.1 7.0 
1st quartile 51.0 56.9 64.9 5.9 8.0 
3rd quartile 76.8 80.0 85.8 3.2 5.8 
IQRb   25.8 23.1 20.9 -1.3  -2.2 
RIQRb  39.0 32.9 27.0 -6.1 -5.9 

a Approximation. 
b Interquartile range (IQR) and interquartile range as percent of median age at death (RIQR). 
 
Source: Calculated from U.S. National Center for Health Statistics vital statistics reports for 1950, 1970, 
and 2000. 
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A new measure of rectangularization, the ratio of life expectancy at birth to total 
life expectancy at age 100, that is, e0 / 100 + e100, takes account of the available 
information on superlongevity and removes the confining effect of the assumption of a 
fixed life span. The measure shows continued compression of mortality even though life 
expectation at age 100 is rising. Using life tables of the Social Security Administration, 
the series increases steadily through two centuries:      

 
1900 48.2 
1950 69.8 
2000 77.6 
2100 83.5 

 
A total life expectancy at age 100 of about 107 would be required to have this 

measure begin to turn around. In sum, compression-of-mortality theory is more 
consistent with limits on life expectancy and life span, but is not a very probative 
argument for the reason that the theory essentially depends on a prior assumption 
regarding how life span shifts. 

 
4.3 Disaggregating Deaths by Cause in Mortality Projections 
 

A sub-plot in the debate regarding the future "terminal" levels of mortality 
relates to the data and methodology for making projections of mortality in connection 
with population projections. The issues are closely connected with those earlier 
discussed. One side, the social biologists (especially Carnes, 2004a; Carnes, 2004b; 
Carnes and Olshansky, 1997), argues for disaggregating deaths by cause, not into a full 
array of causes but into the two broad categories of endogenous (intrinsic) and 
exogenous (extrinsic) causes, in making projections of mortality. The demographers 
(especially J. Wilmoth, J. Vaupel, R. Lee and S.Tuljapurkar) see no necessary merit in 
this approach or in any use of cause-of-death data. In their projections of population, 
they have mainly used time-series analysis, either on the total population of each 
age/sex group or on the fertility and mortality components of population change 
without any further disaggregation of the data, except for age and sex (Lee, 1992). In 
spite of the major change in the cause-pattern of death rates in the last century, the rate 
of mortality decline has remained quite steady, as shown by the Lee-Carter (1992) 
index. The demographers note that the Actuary's Office of the Social Security 
Administration (SSA) has long used cause-of-death classes in projecting mortality and 
that its  experience with this procedure has not been particularly favorable. SSA has 
more often overestimated future mortality levels than underestimated them. Moreover, 
the SSA method does not provide probabilistic confidence intervals for its projections, 
only low and high alternatives. For these reasons, these demographers argue for 
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abandoning the cause-of-death approach. To be sure, if there is a problem with the SSA 
projections, it is not the use of cause-of-death detail but the assumptions and 
applications made with the data.  

 
The biologists want to incorporate the endogenous/exogenous dichotomy into 

the projection design. They consider endogenous mortality to be essentially different in 
character from exogenous mortality because of the former's mainly biological origins, 
argue that endogenous mortality has a persistent and characteristic pattern and feel that 
more accurate judgments regarding the future levels of mortality can be made for the 
two separate series than for the combined series. No actual projections of mortality have 
been made in this way, so a report on the method's performance cannot be made. 
Implementation of the endogenous/exogenous dichotomy in making mortality 
projections would raise some fundamental problems of classification and design, as 
suggested below.   

 
A comparison of endogenous death rates for 1950 and 2000 in the United States 

showed that both the level and age pattern of endogenous death rates changed 
substantially between these years. The rates for endogenous causes had sharp declines 
at every age (10-year age groups except ages under 1, 1-4, and 85+) between 1950 and 
2000, ranging from 28 percent (85+) to 92 percent (1-4). The rates for exogenous diseases 
showed declines at most ages, although less marked ones, and increases at ages 65-74, 
75-84, and 85+. The summary figures (rates per 100,000) are as follows:2  
 

   Change 
All Causes 1950 2000 Amount Percent 

All causes* 963.8  873.1 -90.7  -9.4 
Endogenous mortality 815.8 712.4 -103.4 -12.7 
Exogenous mortality 148.0 160.7 +12.7 +8.6 
Sums of rates**     
Endogenous mortality 36,018.2 21,949.2 -14,069.0 -39.1 
Exogenous mortality  4,507.3 4,100.5 -406.8 -9.0 

 
 * Crude rate for all deaths, endogenous deaths and exogenous deaths.  
** The sum of the age-specific death rates for endogenous and exogenous causes from age under 1 to 

ages 85 and over. 
 
Source: Based on U.S. National Center for Health Statistics, Vital Statistics of the United States, 1950, Vol.1, 
Part 1, 1954; and National Vital Statistics Reports 50 (15), "Deaths: Final Data for 2000," 2002.  
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The patterns of endogenous and exogenous deaths rates also changed in this 
period. This is shown by weighted indexes of dissimilarity for each of the years and the 
two categories of causes of death:3 

 
Comparison of Patterns of Death Rates by Weighted Index of Dissimilarity 

 
 

1950 and 2000 
Endogenous and 

Exogenous 
All causes 27.4   
Endogenous 28.9 1950 32.0 
Exogenous 32.9 2000 18.3 

 
The change in the pattern of endogenous mortality between 1950 and 2000 was 

substantial (29 percent). The change in the pattern of exogenous mortality was even 
greater (33 percent). Exogenous mortality would be expected to have more irregular 
fluctuations than endogenous mortality, both in level and pattern, but here the situation 
is mixed. Because the pattern of endogenous mortality in the two years was so different, 
human intervention (whether in the form of changes in lifestyle, medical developments 
or improvements in the environment) must have been involved. Hence, for humans it is 
hardly possible to establish an underlying, unchanging, mortality age "signature," as it 
has been for mice and other animals that have been subject to human care (Carnes, 
2004a). In sum, human endogenous mortality and human exogenous mortality do not 
maintain a fixed level or pattern (except very broadly), so that while the trends of each 
of these classes of mortality may reasonably be extrapolated separately for purposes of 
population projections, the process is subject to the same uncertainties as other types of 
projections. 

 
4.4 Other issues re the Endogenous/Exogenous Classification 

 
As mentioned, the biologists argue for the use of cause-of-death data in 

projecting mortality, but not in the form of specific groups of causes of deaths like 
infectious diseases, heart disease, cancer, diabetes, nephrotic disease, etc. They maintain 
that the specific causes listed on death certificates are not the real causes of death, but 
only rough indications of the cause system.  Death may better be viewed as the end 
result of the compromise of the integrity of the cells and organs of the body and the 
associated decline of physiological systems, particularly the endocrine and immune 
systems. This decline results from such processes and agents as oxygen free-radical 
molecules, protein crosslinking, reduced production of heat-shock proteins and a 
decrease in the production of natural hormones (U.S. NIA, 2002).  Accordingly, these 
analysts argue that the natural way to group deaths for projection of mortality is along 
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biological lines, that is, into the broad categories of deaths denoted as endogenous/ 
intrinsic mortality and exogenous/extrinsic mortality.  They maintain that the 
categorization of deaths as endogenous and exogenous is fundamental to 
understanding the past trend of mortality, the age pattern of mortality and the future 
prospects for mortality. The endogenous group of causes is deemed to have a more 
regular trend and age pattern than total mortality, and hence is deemed to provide the 
best basis for extending the age curve of mortality to the highest ages and projecting the 
trend of mortality over time. Once projections of endogenous mortality have been 
completed, the less-regular component, exogenous mortality, can be superimposed on 
them (Carnes, 2004a). 

 
 One logical flaw in this apparently straightforward notion is that the line of 
demarcation between endogenous/intrinsic and exogenous/extrinsic mortality is 
unclear, and experts would disagree as to the classification of many diseases. Another is 
that as changes in technology, community organization and medical knowledge occur, 
the levels and age patterns of both endogenous and exogenous death rates change. 
While there may be no disagreement that accidents, suicides and homicides, and even 
infective and parasitic diseases, are extrinsic, there are some specific types of chronic 
diseases of later life that may be characterized as "man-made," or at least as being 
caused in large part by external agents, such as lung cancer (from heavy smoking), 
rheumatic heart disease (from an infection, i.e., rheumatic fever), cirrhosis (from heavy 
drinking), cardiomyopathy (possibly from a virus), chronic obstructive lung disease 
(induced by early-life respiratory infections) and gastric carcinoma (possibly due to 
infection). Value judgments suggesting contributory negligence enter into the 
classification scheme. Few diseases are purely genetic (germ-line). Some so-called 
"genetic" diseases result from somatic mutations caused by environmental factors, e.g., 
radiation-induced cell mutations causing cancer. Oxygen free radicals, indicted as a 
cause of oxidative damage to cells and tissues, can be produced by tobacco smoke, sun 
exposure and other environmental factors. The International Classification of Diseases 
(ICD) codes do not permit a precise assignment to the two broad-cause categories 
proposed without a major overhaul.  

 
The National Institute on Aging has concluded that the environmental/lifestyle 

component of so-called "genetic" diseases accounts for a considerable percentage of the 
cause-structure of these diseases (U.S. NIA, 2002), but it does not provide precise 
quantitative measures for specific diseases. Some conditions are affected by large 
genetic contributions; others are affected by small ones. In each case, the contribution of 
lifestyle/environment may do much to modify the effect of the genetic component but 
cannot eliminate it. Even the rough quantification of the genetic/nongenetic etiology of 
endogenous diseases, as NIA has tended to make, is difficult to defend. That effort 
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seems to accept the earlier theories of behavior genetics, according to which heritability 
indexes can be calculated for non-Mendelian traits. The genetic/environmental/lifestyle 
interaction in the causation of diseases is believed to be far more complex than a simple 
exogenous/endogenous classification of deaths seems to imply. Vetta and Courgeau 
(2003) maintain that the genetic factor and the nongenetic factor cannot be separated for 
any human trait. It is virtually impossible to assign many diseases to either the 
endogenous or exogenous categories except arbitrarily. Even with deaths due to 
violence and adverse effects (accidents, homicides and suicides), we recognize the 
greater vulnerability of some age groups—the very young and the very old—over other 
age groups. 

 
 In general, the social biologists accept the fact that the distinction between two 
cause-categories is a simplification of reality (Carnes, 2004a). All models are 
simplifications, that is, ideal typical constructs, but the classification may still be of 
value for analytic and heuristic purposes. In trying to compare mortality levels and 
patterns between populations, we need to decide what are the most informative 
indicators of mortality we should compare, and the biological/nonbiological dichotomy 
is one useful way to draw information from the record. Admittedly, endogenous 
mortality is not a collection of purely genetically determined causes and includes 
diseases caused by genetic/lifestyle/environmental interactions. It is, however, "a 
collection of causes that are all related in some direct way to the biology of the 
organism" (Carnes, 2004a; Carnes, 2004b; Carnes and Olshansky, 1997).     
 
4.5 Review of Projections of Mortality by Cause  

 
To consider projections of mortality developed by disaggregating deaths by 

cause, we refer to the sets of U.S. population projections made by the Chief Actuary's 
Office, U.S. Social Security Administration. For a half-century, SSA has prepared its 
mortality projections by employing assumptions involving detail for cause-of-death 
classes as well as age, sex and marital status. Mortality is projected to a distant terminal 
date, by a process of expert judgment ("Delphic" method), in terms of the assumed 
reductions in the age-sex-specific rates for 10 groups of causes of death. Until recently, 
the various sets of mortality projections have been routinely criticized for being too 
conservative. In spite of the considerable disaggregation of the input data for the SSA 
mortality projections and the many years that SSA employed this method, the SSA  
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intermediate projections of life expectation were low for most projection years (Table 
10). The projections of life expectancy prepared by the SSA in 2002 were adjusted 
upward in accordance with the recommendations of its 1999 Technical Panel on 
Assumptions and Methods (1999), but SSA continued the cause-of-death approach in 
spite of the recommendation of the panel to employ the Lee-Tuljapurkar stochastic 
forecasting method (Table 11).  
 

TABLE 10 
Comparison of Actual Values for U.S. Life Expectation and Values Projected by the  

U.S. Actuary’s Office, for 1990,2000,and 2050 
(Figures Shown are Intermediate Series or Averages of Low and High Series) 

 
LIFE EXPECTATION      
Pub.year   Actuarial   Expectation at birth Expectation at age 65   (Base year)       report 
no.  1990 2000   2050   1990   2000   2050  
 
Male 
1957(1954)  46  NA 71.4 71.4 NA 15.0 15.0 
1966(1965)   62 69.4 70.3 70.3 13.9 14.3 14.3 
1974(1972) 72  68.6 69.0 NA 13.4 13.6 NA 
1978(1977)  77 69.6 70.3 71.6 14.2 14.6 15.4 
1983(1981)  88  72.3 73.4 75.8 15.1 15.7 17.5 
1987(1986)  99 72.3 73.9 76.7 14.9 15.6 17.4 
1991(1989) 106 71.9 72.9 76.7 15.3 15.9 17.9  
1996(1994) 110 71.8 73.0 77.2 15.0 15.6 17.7  
2002(actual)  71.8  74.1 79.0a 15.1 16.3 18.8a 
 
Female 
1957(1954) 46  NA 77.1 77.1 NA  17.5 17.5 
1966(1965)  62  75.6    76.4    76.4  16.8   17.2  17.2 
1974(1972)   72  76.3   76.9    NA      17.8   18.1  NA 
1978(1977)  77  77.3    78.0    80.4    18.4   18.9  20.5  
1983(1981)  88  79.8    81.0    83.8    19.9   20.8  23.1 
1987(1986)  99          79.3    80.8    83.7    19.2   20.1  22.4 
1991(1989) 106 78.8    79.9    83.1    19.0   19.6  21.7   
1996(1994) 110 78.8   79.7    83.0    19.0  19.4  21.4 
2002(actual)   78.8    79.5    83.5a    19.0   19.2  21.8a      
 
DEVIATIONS FROM ACTUAL 
 
Male 
1957     NA      -2.7  -7.6    NA    -1.3   -3.8    
1966     -2.4      -3.8  -8.7  -2.2   -2.0  -4.5  
1974     -3.2       -5.1   NA     -1.2   -2.7   NA 
1978     -2.2       -3.8  -7.4    -0.6   -1.7  -3.4 
1983     +0.5       -0.7  -3.2    +0.5   -0.6  -1.3 
1987     +0.5       -0.2  -1.3    +0.2   -0.7  -1.4 
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1991     +0.1       -1.2  -1.3     -     -0.4  -0.9 
1996      -         -0.9  -1.8     -     -0.7  -1.1 
 
Female 
 
1957      NA       -2.4 -6.4    NA    -1.7  -4.3 
1966     -3.2  -3.1  -7.1   -2.2    -2.0  -4.6  
1974     -2.5  -2.6  NA  -1.2    -1.1   NA  
1978     -1.5  -1.5 -3.1   -0.6    -1.3  -1.3  
1983     +1.0  +1.5 +0.3   +0.9    +1.6  +1.3  
1987     +0.5        +1.3  +0.2  +0.2    +0.9  +0.6 
1991      -       +0.4  -0.4    -      +0.4  -0.1 
1996       -  +0.2  -0.5    -      +0.2  +0.4 
 
NA - Not available.   - Rounds to zero. 

a Intermediate projection in 2002 Annual Report of the Board of Trustees of the Federal OASI and SI and DI 
Trust Funds, published in 2002.  

Source: Selected Actuarial Studies of the U.S. Office of the Actuary, Social Security Administration. U.S. 
National Center for Health Statistics, National Vital Statistics Reports, Vol. 51, No.3, 2002. 
 

TABLE 11 
Alternative Projections of Life Expectation at Birth for the United States and Canada 

From Official and Private Sources: Base Year, 2030, 2050, and Terminal Year 
 

 Base Year 2030 2050 
Terminal Year 

as Noted 
Source Male/Female Male/Female Male/Female Male/Female 

U.S. Census 
 Low  76.5/82.6a 79.5/84.9 85.0/89.3 (2100) 
 Medium 74.1/79.8 77.6/83.6a 81.2/86.7 88.0/92.3 (2100) 
 High (1999) 79.1/84.6a 83.8/88.4 92.3/95.2 (2100) 
U.S. Actuary’s Office 
 Low cost series   75.4/80.4 76.4/81.4 77.7/82.3(2080) 
 Intermediate series 73.8/79.4 77.1/81.9 79.0/83.5 81.4/85.6(2080) 
 High cost series (2002) 79.2/83.8 82.4/86.6 86.4/90.1(2080) 
Ahlberg/Vaupelb 
 Low    71.4/78.2 (2080) 
 Medium 71.4/78.2   84.0/89.0 (2080) 
 High (1987)   96.0/100.0 (2080) 
Olshansky/Furnerc 
 Lowest  75.3/82.5   
 Middle  76.0/83.3   
 Highest  77.0/84.9   
Lee/Tuljapurkard 
 Low    81/86 (2065) 
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 Base Year 2030 2050 
Terminal Year 

as Noted 
Source Male/Female Male/Female Male/Female Male/Female 

 Medium    83/88 (2065) 
 High    86/90 (2065) 
Tuljapurkar/Li/Boe 
 Low  77.6 (2020)  80.7 
 Middle 75.5 79.3 (2020)  82.9 
 High (1994) 80.9 (2020)  85.0 
Statistics Canada 
 Low  78.5/83.0 (2026)   
 Medium 75.5/81.2 (1996) 80.0/84.0 (2026)   
 High  81.5/85.0 (2026)   

 
a For the year 2025. 
b  Low: Mortality at 1987 level. Medium: 1% annual decline in mortality. High:2% annual decline in 
mortality.      
c Non-black population. 
d Stochastic time series forecasts. The low and high figures define the lower limit and upper limit of the 
95% confidence interval. 
 
Source:  
 
 U.S. House of Representatives, 107th Congress, 2nd Session: Communication from the Board of 
Trustees, Federal Old-Age and Survivors Insurance and Disability Insurance Trust Funds transmitting 
The 2002 Annual Report of the Board of Trustees of the Federal Old-Age and Survivors Insurance and Disability 
Insurance Trust Funds, U.S. Government Printing Office, Washington, 2002. 
 
 U.S. Bureau of the Census: Internet, 2004: www.census.gov. See also Population Division Working 
Paper, No. 38, by F.W. Hollmann, T.J. Mulder and J.E. Kallan, 1999.   
Ahlburg/Vaupel: D.A. Ahlburg and J.W. Vaupel, "Alternative Projections of the U.S. Population," 
Demography, 27(4), November 1990. 
 
 Olshansky/Furner: Interagency Forum on Age-Related Statistics, Occasional Paper from the National 
Center for Health Statistics, "Projections of Health Status and Use of Health Care of Older Americans," 
January 1996.   
 
 Lee/Tuljapurkar: R.D. Lee and S. Tuljapurkar, "Population Forecasting for Fiscal Planning: Issues 
and Innovations," unpublished manuscript, September 1998. 
S. Tuljapurkar, N. Li., C.Boe, "A Universal Pattern of Mortality Decline in the G7 Countries," Nature, 
405:789-792, 2000. 
 
 Statistics Canada: Canada, Statistics Canada, Population Projections for Canada, Provinces, and 
Territories: 2000-2026, by M.V. George, S. Loh, R.B.P. Verma and Y.E. Shin, 2001. 
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Several other sets of mortality projections essentially approximate those of the 
SSA. As Table 11 suggests, the projections of life expectancy of the U.S. Census Bureau, 
the U.S. Actuary's Office, Lee-Tuljapurkar, Statistics Canada and Olshansky/Furner are 
roughly similar for 2025-2050.  On the other hand, the projections of Ahlberg-Vaupel, 
Oeppen-Vaupel (not shown) and Manton-Stallard-Tolley (not shown) offer high figures 
for life expectancy at birth that reach 100 before the end of this century. I think, on 
balance, that the more conservative projections of life expectancy for mid-century of the 
two federal agencies, Olshansky and Furner, and Lee-Tuljapurkar are to be preferred to 
the more radical ones proposed or supported by Oeppen-Vaupel, Manton et al. and 
Wilmoth.   

 
5. Conclusion 

 
The probability of few or no survivors at the very advanced ages is still very 

high, and supercentenarians are extremely rare. Simply because certainty of death is not 
explicitly reached does not preclude a near-zero probability of survivorship, and, with 
present mortality rates, this situation is reached approximately by ages 100-105. 
Moreover, the fact that one cannot prove that life expectancy and life span have no 
current ceilings does not prove that they have no current ceilings. If death rates at the 
oldest ages decline over time and, as a result, relatively more people survive to these 
ages, life expectation will tend to rise and one may then reasonably hypothesize that an 
immediate limit to life expectation is not in sight. Even so, this outcome is not 
necessarily probative of the notion that there is no practical limit to life expectancy or 
life span. As Wilmoth (1997) recognizes, the link between the patterns of mortality 
change that we have seen recently and the hypothesis that there is no limit to mortality 
decline "relies on intuition rather than on firm theoretical results."   
 
 
 
 One explanation offered for the steady rise in maximum recorded life span, 
namely the increasing size of national populations (or the increasing size of birth 
cohorts), has limited probative value. The conclusion depends in part on the 
assumption that death rates do not rise at the highest ages. Disregarding the factor of 
immigration, the argument is true if (1) the number of survivors to advanced ages is 
increasing as a result of an increase in the size of birth cohorts and/or unchanging or 
falling death rates up to the advanced ages and (2) death rates at the highest ages 
remain unchanged or fall. It is not true if (1) the number of survivors to advanced ages 
falls because of declining size of birth cohorts or an increase in mortality up to the 
advanced ages and (2) mortality at the highest ages rises. It mainly depends on what 
happens to mortality rates at the upper end of the age scale, and we do not know with 
certainty what will happen. This is evident from a comparison of two life tables with 
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greatly different mortality rates, e.g., the SSA life tables for 2000 and 2100 (U.S. Office of 
the Chief Actuary, 2002). With initial cohorts of equal size (100,000), the last survivor in 
the first table is age 113, and the last survivor in the second table is over age 120—all 
based on the assumption of declining mortality over the century.   
 

Focusing on the size of birth cohorts instead of survival rates, if birth cohorts fall, 
as in many countries of Western Europe, then we should expect maximum recorded life 
span to move in reverse.  One can also argue that the phenomenon of a rising maximum 
age at death is partly a statistical artifact. Consider the analogy to statistical sampling 
error in relation to the size of the sample population. The sampling error of an 
"estimate" of the age of the oldest person from a small "sample" population would be 
wider than the "estimate" from a large "sample" population. Hence, the confidence 
interval of the first estimate may very well overlap with the confidence interval of the 
second estimate and may even encompass it.  

 
We have to be mindful of the insights provided by evolutionary biology to 

research on human longevity, but we must not be too ready to apply findings about 
subhuman species to humans, especially the findings about the longevity genes of the 
few lower-order invertebrates that have been studied. Knowledge remains very limited 
with respect to the range of species studied under natural conditions from which 
generalizations can be made. Moreover, while humans have the capacity to apply 
accumulated knowledge about themselves to themselves and, to a limited extent, 
determine their own biological destiny, they still embody reliability systems that are 
products of biological evolution and that expire under appropriate conditions.      

 
There is considerable logic in projecting past trends of mortality in one form or 

another, because it incorporates the observed and unobserved wisdom of the past and 
the effect of changing  influences of the past on mortality (e.g., epidemiological 
transition), and it makes possible separate projective judgments about important 
compositional/etiological elements (e.g., endogenous/exogenous mortality). On the 
other hand, projection of past trends cannot allow for the emergence of new factors, the 
turning points and the unexpected future changes that are sure to occur. Our 
considerable experience with population projections should remind us that 
overconfidence with any doctrinaire position can be risky. Recall how demographers 
failed to predict the baby boom after 1945, the baby bust after 1965, the lack of progress 
in mortality between 1954 and 1968, the sharp decline in mortality from heart disease 
and cerebrovascular disease after 1968, and the general lack of progress in reducing 
cancer in the last several decades. Twenty years ago, we could not have predicted the 
AIDS epidemic, the obesity epidemic and the re-emergence of old infectious diseases 
that are occurring today. Surprises will not stop occurring; trends in mortality, as in 
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fertility, may decelerate sharply, accelerate sharply or even change direction. 
Unexpected influences can emerge that make our complex technical manipulations and 
demographic logic ineffective as predictors of the future.  

 
The issue of the detail of disaggregation to be used in any projection is a 

perennial one, and so far, detail by cause of death has not proved to be a solution of the 
problem of the accuracy of population projections. The future is simply too hard to 
predict with confidence, no matter how complex we structure our projections, however 
we disaggregate the data and how logical our demographic analysis. There is no way of 
developing forecasts of life expectation with an acceptable confidence interval, say 95 
percent, that is narrow enough to provide meaningful guidance to policymakers. We 
can strive for maximum accuracy, but at best we can achieve greater analytical utility.  

 
Finally, I am not arguing against research on methods of projecting mortality. 

We must proceed with studies comparing alternative methods of projecting mortality 
and alternate constellations of the data, employing both global measures of mortality 
and measures defined by various degrees of disaggregation. In addition, research on 
competing causes may lead to more fundamental designs for structuring the causes of 
death. Such research may add to the analytical utility of projections, but do not count on 
it to add to their accuracy. At the same time, to support the goal of providing the most 
useful information to policymakers, it is important to continue to explore ways of 
conveying the degree of uncertainty in the projections prepared, whether in the form of 
alternative assumptions providing a range of figures, alternative methods with variable 
weighting of the results, stochastic demographic forecasting, simulation modeling and 
ex post facto evaluations of projections.   
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Notes 
 

1 Because the exact figure for the number of years added depends on the detail of the 
cause-of-death classification for which cause-elimination life tables are available, it is 
not a unique number and should be considered only an estimate of the total years 
added. For 1969-71, I had to make an estimate of gains for "all other causes."   

 

2 Although this comparison is affected by changes in the classification from the Sixth 
Revision of the International List of the Classification of Diseases to the Tenth 
Revision of the International List, the effect of any bias is largely negated by the 
broad grouping of deaths by cause. 

 
3  The Index of Dissimilarity for the 1950-2000 comparison indicates the extent of 

disagreement between the two distributions (patterns) in these two years, with limits 
of 0 percent and 100 percent.  It is calculated as follows: (1) The age-specific death 
rates for all endogenous causes combined (and all exogenous causes combined) are 
summed over all ages in each of the years 1950 and 2000, (2) the percent distribution 
of the endogenous (and exogenous) age schedule is computed for 1950 and 2000, (3) 
the algebraic differences between the endogenous (and exogenous) series for 1950 
and 2000 are taken and (4) the sums of the positive and negative differences over all 
ages between 1950 and 2000 are obtained. The Index of Dissimilarity is the positive or 
negative sum (the two being equal) of the differences: 

 
ID = ½ [�a (ra50 - ra00 ) ]   

 
where ra  represents the age-specific death rate (as percent of total)  in the indicated 
year.  

 
The very high rates at the older ages tend to dominate the percent distributions, 
giving them undue influence on the resulting indexes. To adjust for this limitation, 
the age-specific rates were first weighted by the population distribution in each year, 
the 1950 rates being weighted by the 1950 population and the 2000 rates being 
weighted by the 2000 population. Then, the percent distributions of the rates in step 
(2) were calculated as preliminary to steps (3) and (4).  
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