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Abstract

In 1993, the Chicago Board of Trade introduced a futures contract on a financial index
that reflects the insurance claims emerging from catastrophes in a portfolio of policies.
This article presents a valuation formula for the contract, under the assumption that
catastrophes emerge as a Poisson process over time and that the claims from each
catastrophe emerge as a Compound Poisson process. The formula is developed by taking
conditional expectations with respect to a history of information that includes

knowledge about the time of the catastrophes.

273



Acknowledgements

This working paper was typeset using the TEX typesetting system created by Dopald E.
Knuth together with the WTgX macros by Leslie Lamport. The style used was Don
Hosek’s paper.sty which in turn referenced doublespace.sty by Stephen Page and
smaller.sty by Bernie Cosell.

As with any document preparation system, it is possible with TEX to create the ugli-
est output from the soundest macros and styles, so please attribute the typographical
asthetics of this paper to the above-mentioned people and the typographical blunders
to me. — K. B.

274



1 Introduction

Futures contracts written on the loss ratios of preselected pools of catastrophe insurance
contracts—aptly named catastrophe insurance futures—represent one of a number of new
insurance-based financial instruments recently introduced, together with their respective
put and call options, by the Chicago Board of Trade (CBOT). The valuation of such futures
contracts, and the options written on them, might very well be of interest to insurers wishing
to use the instruments to hedge against unexpected claims (see [4] and [6]) or, indeed, to
speculators wishing to participate in the insurance industry in the sense these instruments
allow (see [3]). However, valuation of the contracts and associated options is rather difficult
without some model of the behaviour of the futures contract value.

In this working paper, we attempt to develop such a model with the eventual goal of
producing an expression for the valuation of the catastrophe insurance futures contract. In
the earliest sections of the paper, the aggregate claims process on which the futures contract
is based is modelled as the sum of the aggregate claims processes resulting from a random
sequence of catastrophic events. After the development of a number of useful statistical
results in the middle sections, the paper concludes with the valuation of the futures contract
under the assumptions that the occurrence of catastrophes is governed by a Poisson counting
process and that the aggregate claims processes associated with the individual catastrophes
are independent compound Poisson processes with identical claim frequency parameters and
claim amount distributions.

While the real world is unlikely to provide us with a collection of homogeneous natural
disasters each resulting in a Poisson claims counting process, the present result serves as
an example of a plausible plan of attack for the development of more “realistic” models for
the valuation of catastrophe insurance futures contracts. Additionally, the statistical results
should be applicable in the analysis of these other models.

The remainder of this section describes a typical catastrophe insurance futures contract

and explains how its settlement price is calculated. The CBOT publication [1] describes
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the technical aspects of catastrophe insurance futures contracts in some detail, and (3] also
contains a good description?, so it should suffice to provide a brief summary of the salient
features of the contract here. Prior to the start of trading on a new catastrophe insurance
futures contract, the CBOT defines and fixes a pool of insurance contracts and a time
period {generally a quarter of the year) on which the new futures contract will be based.
Information concerning the insurers involved, the demographic breakdown of the insurance
pool, the weights the different types and locations of claims have been assigned, and the
best estimate of the total premium of the pool are provided to the investing public before
trading commences. Following the start of trading, claims resulting from catastrophic events
that occur within the assigned time period are reported by the insurance companies to the
Insurance Services Office (ISO). Following the end of the assigned time period, the ISO
allows additional time for insureds to report losses to the insurance companies (and for the
insurance companies to report the losses to the ISO). This additional time period is typically
three months. On the settlement date, the ISO calculates the total aggregate claims that
were reported within the allowed time, and the contracts are settled at a price equal to
$25,000 times the ratio of aggregate catastrophic losses to the original estimate of the total
premium. Since all weights and estimated premium levels are fixed and known at the start
of trading, the variation of the futures contract settlement price is due wholly to changes in
the value of aggregate claims.

The December, 1993 catastrophe futures contract provides an example of the typical time
periods involved [1]. The December, 1993 contract began trading at the start of 1993. At
that time, the demographic breakdown of the premium pool (and an estimate of its size) was
provided by the CBOT to the investing public. This contract covered losses on catastrophic
events occurring between July and September, 1993. The ISO allowed insurers to report

claims resulting from these events up to the end of December, 1993. The last trading day is

!'Please note that the description of catastrophe insurance futures contracts found in [3] is not totally
accurate, since some aspects of the contract were changed prior to the contract’s introduction but following
the publication of this article.
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April 5, 1994 when the contract settlement price will be calculated and the contracts settled.

2 Terminology

For the futures contract under consideration, we take t = 0 to be the time at which trading
commences. We denote the start of the claims collection period by @ > 0. This is also the
earliest time at which catastrophes relevant to the given contract may occur. The latest date
at which relevant catastrophes may occur is denoted R with @ < R. Claims on the contract
premium pool that result from the catastrophic events between times ¢ and R may be
reported up to and including the end of the claims collection period at time S where R < S.
Claims reported to insuring companies after this date are not included in the calculation of
the settlement price of the contract. We assume all claims reported to insurance companies
by time S will be reported to the investing public by the settlement time T > 5. At time T,
all trading on the contracts ceases, the settlement price is calculated, and the contracts are
settled on a cash basis.

To avoid burdening our discussion with unnecessary details, we assume that the catas-
trophe insurance futures contract is written on a unit estimated premium, and we ignore the
$25,000 multiplier in the settlement price calculation. We write Y, as the value at timet > 0
of the catastrophe futures contract based on a unit premium. We denote by J, the set of
information available to the investing public at time t. Let {Xt}tao be the stochastic process
representing the total nominal aggregate claims on the unit premium pool resulting from
catastrophes occurring between times Q and R that are reported to insurance companies
no later than time S. Then X, represents the aggregate claims from this pool reported to
insuring companies as of time t. We see that, since no claims are reported before time Q
and ne claims reported after time S are included in the process { '}, we must necessarily

have

Vi< @, X/ =0 (1)
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Yt > S, X, = Xs. (2)

We note that Y7, the value of the futures contract on the settlement date, will be equal to
the settlement price, which is simply the total nominal aggregate claim amount on that date
Yt = Xr. Let & be the force of interest at each time ¢ > 0. If we assume investors are
risk-neutral and rational then the value to any individual investor of a futures contract at
time ¢t < T will be its expected value at the settlement date T conditioned on the available
information J, and discounted back to the present time. Hence, we have the following

fort<T

Yo = e J o Blyy (1]

{3)
T
e~ J b4 E(X7]7,).
In the special case where §, = § i1s constant for allt > 0, we have
Y, = e ¥T-0 . E{ X7 |3} (4)

To further characterize the aggregate claims process {X,}, we consider the counting
process {N,},,, for catastrophes occurring between times Q and R. We note that Vt <
Q. Ny=0and Vt > R, N, = Ng. We will denote by Tj;, for 1 < 1 £ Ng the ordered times
of the catastrophes so that @ < T, < Tipy < --- £ Tivpy € K.

With each catastrophe 7, we will associate the pair ({M'~'}120 , {X'v'}tzo) where {M, .}
is the counting process for all reported claims on the contract premium pool resulting from

this catastrophe and {X,} is the associated aggregate claims process.”> We note that, for

ZNote that the processes {M;,} and {X,,} include all claims on the premium pool under consideration
that result from catastrophe i and are eventually reported to the insurance companies, not merely those
claims that are reported to the insurance companies by titne S and included in the value of the futures
contract.
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each 1 =1.2,... Ng, we have M, = X,, =0 for all t <Tj;,. Hence, we have

Np

Vo<t<S X = Y X (5)
=1
Nn

vi>S X=X (6)
i=1

For 1 < i< Ngandall j > 1, let us denote by S, the time relative to Tj;) of the reporting
of the jth time-ordered claim resulting from catastrophe ¢ such that 0 < §;, < S5 <
<+ <85 £ 8541 £+ and with B its nominal amount.* Then, for any catastrophe i
with 1 < ¢ < Ng, we may define the stochastic processes {M;} and {X,,} in terms of T},

Si;, and B, ; as follows

My = Y I({Tiy+Sy<t) (7)
=i

X..v = Z B‘-J I (T(') + Si,J < t) . (8)
=1

Additionally, it may be useful, at times, to refer to the claims processes for a particular
catastrophe with respect to a time scale originating at the catastrophe time. In this spirit,

we will define, for each i = 1,2,..., Np, the stochastic processes {}M‘,"}»o and {X"-'}oo

where M|, = M7+ and X = X1 .,. We may construct analogues of equations (7)

and (8) for these processes as follows

M, = Y I(5;57) (9)
J=1

Xl",r = EBIJI(SxJ < T)- (10)
=1

*In the case where a catastrophe i results in only a finite number of claims (i.e., where M, =
limi—ce Mir < +x), §;; and B;; will be defined as above only for claims j < M, . In this case,
for all j > My, we will take B;, = 0 and S;; = +oo with probability 1, and the inequality
§i1€8i2< - <8 m,.. will hold.
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As defined above, the stochastic process {X,} represents the nominal aggregate claims
reported to the insurance companies. However. the claims reported to the insurance com-
panies are not immediately known to the investing public. In actuality, these claims are
reported by the insurance companies to the Insurance Services Office (ISO}, which releases
information about the stochastic process {X,} to the investing public essentially at its own
discretion. We will denote by { X} the publicized aggregate clatms process. This process
represents actual aggregate claims as reported to the investing public by the ISO at time ¢.
We will also assume that the ISO disseminates aggregate claims data it receives from insur-
ance companies to the general public in such a way that the publicized claims process {X;}
may be written

Np
Xr=Xyp =3 Xiyiyy (11)

1=1

where v(t) is, for all 0 <t < T, a nondecreasing function that satisfies y(t) < t, ¥(0) = 0,

and 7(7T) = S.* Here, the function ~(-) itself is assumed to be completely known to the

investing public at time t = 0. We will call this function ~(-) the aggregate claims publication
schedule.

In this paper, we deal with information sets in the formal sense. They are considered to

be o-fields of events over some sample space (1. If F; and F, are two o-fields of events, we

adopt the usual convention of writing ¥, vV F, for the minimal o-field containing both of the

*This specification allows for a larger degree of generality than might immediately be supposed. For
example, if we take 7 > 0 and let

0 for0<t <y
'7(t)={t—n forn<t< S+
S for S4+n<t<T

then, intuitively, the ISO is assumed to provide claims data in aggregate on a continuous basis, but after a
constant time lag n. Similarly, if we take Q < t; € S and some ty > to. we may let

0 for0<t <ty
)=t forth<t<T;
S fort=T.

Intuitively. the only information the ISO releases in this case is the value of the aggregate claims reported
to the insurance companies as of time to, where this information is released to the public at time tg > tg
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sets ) and Jo, and F) A F for their intersection (which is necessarily the maximal o-field

contained in each of the two sets). If {X,.X,, ..., X,} is a set of random variables (or,
indeed. entire stochastic processes). we write o {.X|, X2,.... X} for the o-field generated by
this set.

Finally, please note that we rigorously define constructs of the following form
t <ty (12)
as shorthand for the equivalent logical construct
(tL£t) A (<) (13)

where A is the logical “and” operator. In particular, when we write that “P(#) is true
fort; <t <t,". we are not asserting that ¢; < t,. When the reverse holds—when #; > ty—
this statement is merely making no claim about the truth of proposition P(t) for any values

of t since no value of t satisfies {13) under these conditions.

3 The Futures Value in More Detail

For the moment, we assume investors are risk neutral and rational and the force of interest
is a constant é. We note that, by equation (2), X7 = Xj since T > 5. Hence, we may apply
equations (4} and (5) to obtain the following expression for the futures value Y, based on a

unit premium

Y, = e ¥TY.E[Xr ||
e"*T=0 B[ X5 | 7,] (14)

= T E[X; s+ Xos+ -+ Xngs | I].
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We might divide the expression of ¥; up on the basis of the information likely available to
potential investors at time ¢. If we assume N, is Ji-measurable, then one possible expression

is given by

ATy, = E[X,'IIJ,]-F{(iE[X.,z 13,]) —EIX{U:]}

+ZE[A‘S—J\H'3 +E[ Z /\'5‘ }

1=| t=Ny+1

where, on the right band side, the first term represents claims reported to the insurance com-
panies by claimants and publicized by the ISO. the second term represents the expectation
of claims reported to the insurance companies that have not been reported to the public, the
third term represents the expectation of claims incurred as a result of known catastrophes
but not yet reported to insurers, and the final term represents the expectation of claims
resulting from future catastrophes.

Since it might be reasonable to suppose that the investing public’s information set J, is
composed of information on the occurrence of all catastrophes to date as well as aggregate
claim information publicized by the ISO (i.e., that J, = o { X, N, for r < ¢}), this expression

for Y, can be a useful tool for the calculation of futures prices under our model.

4 Results Concerning Conditional Expectation

In this section, we develop a number of useful statistical results dealing with conditional
expectations. The most important of the results, Theorem 1, will be a very valuable tool in
section 6. Intuitively. this theorem aliows us to remove extraneous information from a con-
ditional expectation when we can establish a form of independence between the information
sets and random variables involved that is weaker than full mutual independence.

We begin by stating the following (possibly intuitively obvious) lemma which is found as

Theorem 9.1.3 in Chung {2].
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Lemma 1 Let A be a o-field of events. Then. for any A-measurable random variable 11’

and any random varieble Z, we have
E[WZ]A]:W E[Z]|A] (16)

provided both sides of the equation exist.

Proof. Omitted. See proof of Theorem 9.1.3 in [2]. O

We now introduce a lemma proved by Chung in (2] which we employ both in the proof

of Theorem 1 and several times in foliowing sections.

Lemma 2 Let 3y, Fy, and F; be o-fields of events such that F, V Fo 15 independent of F;.

Then. for an F)-measurable random variable Z, we have
E{Z1F,vTF;] = E{Z]| T (17)
Proof. Omitted. See {2, p. 308]. O

We will also require Chung's Theorem 9.2.1, which we state here.

Lemma 3 Let A be an arbitrary indez set, and let {F, for o € A} be o collection of o-
subfields of some o-field F of events. For each o € A, let F®) denote the smallest o-field
containing all Fg with € A\ {a}. Then, the sets F, are conditionally independent relative
to some o-subfield S C F if and only if, for each o and E, € F,, we have

E[/(Es) |3 v §] = E[1(E.) | §]- (18)

Proof. Omitted. See the proof of Thegrem 9.2.1 in [2]. O

We prove one final, trivial lemma.
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Lemma 4 Let A, B, and D be o-fields of events such that D C AV B. [f Z 15 a random
variable such that

E[Z|AVB|=E[Z]|B] (19)

then

E[Z|BVvD]=E[Z]|B] (20)

Proof. We see that the following holds

E[Z|BvD] = B{E[Z|AVB]|BVD)}
= E{E[Z|B]|BVD} (21)
= E(Z|B]

and the lemma is proved.0
Finally, we prove our main theorem, which will become an invaluable tool in section 6.

Theorem 1 Let A, B, and € be o-fields of events such that A and B v C are independent.
Suppose that D is a o-field such that D C AV B. Let Z be an A V B-measurable random
variable. Then

E[Z|BVEVD]|=E[Z]|BvV D] (22)

Proof. Let A€ A, B€B,C €€ and E € BV D be arbitrary events. Then,

E[I{(A)(B)I(C)I(E)}
= E{E[I(A(B)(C)I(E)| AV B]|) (23)
= E{I(A)[(B)(E)E[I(C}| AV B]}

by Lemma 1. Let F, = €, F, = B, and F; = A. Then, by Lemma 2, we have E[J(C) |
AVB]=E[I{C)| B]. Moreover, by Lemma 4, we have E{J{C) | AVB] = E[I{C) | BVD].
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Therefore, we have the following

EI(A)(B)I(C)I(E)]
= E{I{A)I(B)I(E)E[HC)|BVD]}
= E{E{I(A(BM(E)E[I(C)|BVD||BVD}} (24)
= E{I(B)I(E)E|I(A)|Bv D] E[I(C)| BVD])}
= E{I(E){E[I(A)(B) | BV D] E[I(C)| BV D]}}.

As E[I{(A)I(B) | BVD] E[I(C)| Bv D] is BV D-measurable, we have by the definition

of conditional expectation that
E(I(A)(B)I(C)| BV D] =E[I(A)I(B)|Bv D]E[I(C)]| BV D] (25}

forall A€ A, B € B, and C € C. Therefore, AV B and € are conditionally independent
with respect to B vV D by definition.
By Lemma 3 applied over A = {1,2} with F, = AV B, F, =€, and § = BV D, we have,
foral E€e AVB
E{I(E)|BveVvD]=E[I(E)|BVD] (26)

Having established that the theorem holds for Z = I(E), we may generalize it to all
A Vv B-measurable simple functions Z and, from there, to all A V B-measurable random

variables by a monotone convergence argument. O

5 Distribution of Interevent Times Conditioned on Number of Events

In this section, we will examine the distribution of the interevent times of a Poisson counting
process {M,},>0 for events occurring between timet = t, and time t = t, forsome 0 < t; <t

when conditioned on the numbers of events M, and M,, known to have occurred at times
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t; and tp respectively. This result will be a useful device for the valuation of the futures
contract in section 6. where we assume the catastrophes follow a Poisson counting process.

We will begin by establishing the fact that we need consider only the case where t; = 0
without loss of generality. Take 0 < t; < ty, let {M,},,, be a Poisson counting process, and
define the process {M,}, 5, by M; = M., — M,,. Let F; be the information set generated
by {M;},,,- Note that F, is also the o-field generated by all increments of {Af,},, of the
form M,, - M,, witht; < ry < ry. Let F; be the information set generated by M,, — M,,, and
let ¥3 be the information set generated by M,, alone. Note that, as the process {M'}rzo has
independent increments [5, p. 27}, we have ¥, V F, = 7 independent of F;. By Lemma 2,

we have for any F;-measurable random variable Z, the following

E(Z (M, M,] = E[Z{M, M,-M,]
= E[Z|M, - M,] (27)
= E[ZIM;z—u}'

Fipally, note that as the increments of { M.}, are stationary [5, p. 27], the processes { M.},
and {M;},,, have identical (unconditional) distributions. Since Z is measurable with respect
to {M]}, 5g, we can evaluate expressions of the form E[Z | M,,, M,,] by examining E[Z |
M,

t,-1, ) Where the random variable Z is considered with respect to the evolution of the

Poisson counting process M.

Having established this, we will examine the distribution of the interevent times in the
case where the starting time ¢t; = 0. Let {M;},ZD be a Poisson counting process with
parameter ) and ordered event times 0 < Sy < Si2; < -+ < Sy < Sis1y < -+ . We define
the interevent times Vi = S, and V; = 8, — S,y for all : > 2. We note that V] are
independent exponential random variables each with parameter A |5, p. 28].

We will now examine the form of the conditional probability function of M, = n

given Vi, V3, .. .|V, for some 7y > 0 and n > 1. The probability that M, is equal to n,

286



given Vi 15, ...V, iszero f T, W > 7 and precisely equal to the probability that

Visr > To=Vi— - =V, if £, V) < 7. Hence, as V54, has an exponential distribution

independent of V1, 15,...,V/,, we have the following for the conditional probability function

of M/ =ngivenV, forz=1.2---\n
{ emAmomvi—min) i Ty, £

0 if T e > np.

Now, the joint marginal p.d.f. of V1,5, ..., V, is given by
h(vl,....v,.)z)\"e"\zr"‘ for v; > 0.

The resulting joint p.d.f. of Vi, V5, ..., V,, M, is given by

Are™t i ST v €
o, van) =

0 S > 170
Since the marginal p.d.{. of M is given by {5, p. 27}

(Arp)"

- - AT
g(n) = ———e
we have the following conditional joint p.d.f. of V;,...,V, given M’,D =n

Ame—dro : n
wy— T v <7y
h(vly,.,,vn]M;o.:n) = {+¢-Aru 1 Ui 5

0 if v >
& dTugm
0 if 7 v > 7

Note that this function is symmetric with respect to each ordering of the variables 1.
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Using this conditional joint p.d.f., we may calculate the expected value of an arbitrary V|

{say V|) conditioned on M, = n. This expectation is given by the following expression.

T fTo—1| To~ U]~ " —Un—} n!
/ / / ¥ dvy, ... dy
o Jo 0 {1o)"

n!

n (19— v )"}
- / ooz v
Q

I

E[V) | M., = =]

(70)" (n~1)!
n! IS yn-l
= o /0 (To_y)(n~—1)!dy (33)
R 1E e )
T ()" { n n+l ]
T on+ 1

Now, let us generalize this result as follows. Let {M.},, be a Poisson counting process
with parameter X and ordered event times 0 < Ty < Tjg) < -+ < Ty < Tgyy < -+,
and take any times 0 < t; < t;. Define the interevent times measured from time t; by
W, = Tiag, +1p — t; and Wi = Tomy, vis — Timy, +2-1) for 1 > 2. If we define the stochastic
process {M”rzo by M. = M4, — M, as above, we note that W, (or indeed any W)} is
measurable with respect to the information set F, as previously defined. Hence, we may

write

E[W) | M, M, ] = E[W} | M;z—nl (34)

from equation (27). However, when we consider W, with respect to the process { M}, we
see W, = Tip, 41y~ i = S1) = V) in terms of the above notation. Since. {M!}—Tlike its
counterpart {M,}—is a Poisson counting process with parameter A, we can use the result

constructed in equation (33), with 7y = to — ¢; > 0, to get the following

, to —1
E{W, \M,,,M,,]:ﬁlﬁ. (35)
2 1
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Intuitively, the expected value of the interevent time conditioned on M,, — M, events having

occurred in the time interval [ty t5] is 55— th the length of the time interval.
[ )

6 Valuation of Futures Contract under Poisson Claim

Process Assumptions

We consider Y}, the value of our futures contract on a unit premium at time t. We as-
sume that the catastrophe counting process {N;}g<:<r is & Poisson counting process with
parameter Ao, the expected number of catastrophes per unit time. As above, we write
Q < Ty <Tigy <--- < Ting) < R for the ordered times of the catastrophies between times
Q and R, with the inequalities strict almost surely.

For each catastrophe ; = 1,2,..., Ng, we have an associated claims counting pro-
cess {M;},5, and aggregate claims process { X}, representing the accumulated nominal
value of claims on the contract premium pool (including those reported to the insurance
companies after time 5) resulting from catastrophe i. Let us define the stochastic processes
{M',’Y,}QO and {X""’}rzn as above to represent the same claims counting and aggregate
claims processes originating at the time Tj;) of catastrophe :. We assume that the claims
counting process {M"v’}oo is a Poisson counting process with parameter A gim, the expected
number of claims per uni—t time resulting from any individual catastrophe. We assume the
associated aggregate claims process {X,",}»o is compound Poisson with individual claim
amounts B, ; for j > 1 independent and iden;ically distributed with c.d.f. F and mean p.

Finally, we assume the aggregate claims processes {X{_,} . {X{,‘,} yeeen {, ’L‘,} ,... and
the catastrophe counting process { N,} are mutually independent. Intuitively, this amounts
to assuming that the aggregate claims process resulting from a particular catastrophe (and
measured from the time of that catastrophe) is independent of the time of that catastro-
phe and independent of the occurrence of all other catastrophes and the evolution of their

respective claims processes.
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Our information set J; at time t is taken to include the times of all catastrophes that
have occurred by time t and the claims process as reported to the general public by the ISO
for all times prior to and including time ¢t. This gives us the following explicit definition of

our information set
3, = U{T([), TZ?" e .I;N'). 1’\"(,4\'7(,] for 0 S r S t} (36)

for all ¢ > (. Recall that the aggregate claims publication schedule () is assumed to be
completely known to the investing public at time t = 0.

We will now attempt to construct a useful, generalized expression for the value of the
futures contract Y; based on information available at that time. We wish to derive this
expression from equation (15). Note that this equation expresses the quantity ¥, in terms
of expectations of specific increments of the individual catastrophes’ aggregate claims pro-
cesses {X,,}. For this reason, let us fix some 7 between 1 and Ng inclusive and examine the
general expectation E{ X, — Ay, | Ty, ] forany @ <ty <ty <ty £ T where the information

set F,, is defined as follows
Fo = o {TanTizps s Tisnis Nes X1y X2+, X fOr 0 < 7 <t (37)

Intuitively, the information set JF,, includes exact information concerning the occurrence
times of all catastrophes of interest and the evolution of their individual aggregate claims
processes up to a certain fixed time t5. While a potential investor could never be supposed
to have such information at his or her disposal, this information set will prove toa be a very
convenient set on which to iterate.

Let A be the information set generated by {X‘lv’}»o’ let B be the information set gen-
erated by T(,), and let € be the information set genera.ted by Ng, T(;), and {Nji}pe <, for
all 1 < j < Ngsuchthat j # i If welet D C AV B be the information set generated

by { -

J ”}o< CtonT and Tj,), then F,, = B v Cv D. Additionally, as we have the indepen-
! STStle— 1)
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dence of A and B Vv € by hypothesis, we may apply Theorem 1 to the A V B-measurable

expression X, ;, — X, to get the following
E[‘\'!-la - X | 3-101 = E(Xma - Xig [ D] (38)

In the case where tg < t; <1 < Ty, we will have E[ X,,, — X,, | Fo ] = 0, for no claims
will be realized on a catastrophe before that catastrophe occurs. Where to <t; < Ty < tg,

we see that equation (38) implies

E{ X,,t, - X\J) | 3—h:]

E[ X[, 1, — 0 Tl

= )‘clum H (t2 - T(l))

(39)

from the distribution of the process {X] . },;>¢. In the case where either tg < Tjyy < t; < 15

or Tiiy < tg £ 1) < ty, we have the following

B[N, = Xin | Fo) = E(XG, 7, = Xiyom, | Tn Ko, for 0 < 7 <t = Ty | (40)
= E[X{,_7, = Xioon, | Tl (41)
= )‘clulmu(tQ - tl) (42)

with equality (41) following from the independence of increments {5, p. 27]° of the pro-

cess { X!} and equality (42) following from the distribution of {X,’v.,}.

>More exactly, equality {41) follows from the fact that the disjoint increments X:,r,—m., - ){,’“,_Tm and
X'.xo-—rm "X-’,Tm—r(., are conditionally independent with respect to T{,) allowing an application of Lemma 3.

1
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Combining the cases, we may produce the following general expression valid for anv

Q<ty <ty <ty T

E[;\'l‘” - )(h(] | 3'10} = Addgm K {(t'.’ -u)! (T(l) < tl)
-+ (t? - T(,)) ! (tl < T(,‘) < ‘tg)}.

Having generated this result, it will now be possible to construct a general expression for
the value of the futures contract for any time @ <t < T. Recall the generalized expression

for Y} given in equation (15). Using equation (11}, we may rewrite this expression as foliows

N
TV = Xy + L E[Xis = Xiy | 3]
=1 (44)

Nr
+E Z Xis— Xmm
1=N+1

3,].

Noting that J, C F,) (because 7(-) is nondecreasing), we may iterate the terms on the
right hand side of this expression to produce an explicit general expression for Y, under the
assumptions made in this section.

Intuitively, the second term on the right hand side of equation (44) represents the ex-
pectation of the aggregate claims on the contract premium pool {both those that have been
reported to insurance companies and those that have not) that resulted from past catas-

trophies but have not vet been publicized by the ISO. Taking this term and iterating its
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component expectations with respect to F,,). we see the following holds

Ny
S E[Xos = Xiny 1 94]

=1

Ny
Z E[ E[X,'s - Xx,-,(!) ! 7’7“)] I J’]
1=1

N,
= ’\chum Y E[‘,V'y(l)(s - 7(t)) + Z (5 - nl)) I jl] (45)

=Ny +]
Ny

= Xelgim 4 {NI(S - 7“)) - Z (7‘(‘) - 7(t))}

=N +]

from equation (43).
The third term on the right hand side of equation (44) can be interpreted intuitively as
the expectation of aggregate claims on future catastrophes. We may iterate its component

expectations with respect to ¥, and apply equation (43) as follows

Nr Nr
E{ z Xis — Xiaeo I jr] = E[ Z E[Xis - Ximy | 3-7(1)] l 3:} (46)
i=Netl =N+
Ne
= dawmi B[ 3 (5=Ti) |2:]. (47)
i=Ng+1

Let us define the information set G, as follows
Se=o{Tw. Ty .. . Twy N, X, for 7 2 0and i = 1.2,.... Na} (48)

and note that J, C G;. If we let A be the o-field generated by {N,},Zo, B be the trivial
o-field, € be the o-field generated by {X,",}»“ fort=1,2,...,Ng,and D C AV B be the
o-field generated by {N:}o., ., we see that G, =BV CV D and that A and BV € = C are
independent by hypothesis. We may therefore iterate the right hand side of equation (47)

over G, and apply Theorem ] to the A V B-measurable random expression Ex"‘“(S - Tiyy)
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to obtain

Ng

Bl & Yus = Voo [3]
1= A4l
= Aaamn E{E [ S—Tm)[s,] |2} (49)
= d,,,mpE{ [ .5 Tiy) IJV for0<r<t]lfl} (50)
- sl £ -]

where (51) results from the the Poisson counting process {N'}QSfSR being a Markov pro-
cess [5, p. 28].

In the case t < R. we may define the interevent times Wy = Tn,41) ~ t, W, = T x4y —
Tinear-1y for 2 <1 < Ng— N, Our analysis in Section 5 allows us to conciude that, for any

1 € i € Ng~ N, the following holds

R—t

EIW NG Nel = s

(52)

since {N'}QstR has been assumed to be a Poisson counting process. Therefore, the following

holds for t < R

Ne
B[ 3 (5-Tw | NoNa| = E[(Ne= NS = 1) = (Na = NoWi = (Vg = Ne = )W,
i=Np ]
e Wiy | N0 Va] 53
R+t

(s - —2—) (Ng~ No).
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Finally, then, by iterating the innermost expectation of {51) with respect 10 the additional

information Ng, we obtain the following

E{ i IXI-S - X!.'v(f) ’ jr] = Aclam H E{(S - B—;'E) E{NR - N l N:] '31}
=N+
= Acewm E{(s,_R_"‘.t) )‘col(R-t)‘jl} (54)

t
Meam# (8= Z52) Aew (R = 1)

il

for t < R. In the case that ¢t > R, the expectation on the left hand side of equation (54) has
value 0, since no additional relevant catastrophes occur after time R.

Substituting the expression for the second term (45) and for the third term (54) into
equation {44), we get the following expression for the value of the futures contract Y, for any
time Q<t<T

Ny
7Y, = Ny + Aciaim 4 {N:(s -y~ X (T - it)
=Ny +1 (55)
+ It < R)- (5-%*—’) AW(R—t)}.

Note that the third term in the braces becomes 0 when t > R.

At the present time, the ISO provides the investing public with the value of the aggregate
claims reported to insuring companies as of times R and S. The value of Xp is reported as
soon as possible, but since some time is required to collect and summarize the information
provided by participating insurers, this value is not actually reported until some time § >
0 has elapsed beyvond time R. The value of X5 (which i1s actually the settlement price,

since Y7 = X7 = Xy) is not reported until the settlement time T. The resulting aggregate
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claims publication schedule 7(-) is given by

0 fO<t<R+§é
Ht)=(R fR+6<t<T: (56)
S ift=T.
for 0 < t < T. Note that this function (-) is nondecreasing and satisfies the requirements
Y0) =0, 4(T)=25, and 4(¢) < t for all t.
In this particular case, equation (55) gives the following expression for the value of the

futures contract Y; for any time Q <t <T

Neam 1 { NS = T2, Ti
+ (5_%)&“(34)} f0<t<R;

ST—t)y

€ )t— \ /\cmm#{N,S—E.N:'th-)} ifRSt<R+6; (57)
_X'R“"\c‘almuNR(s—R) 1fH+6st<T'
Xs ift=T.

7 Conclusion

The explicit goal of this paper has been the development of the expression for the vaiue of
the catastrophe insurance futures contract in equation (55) and, in particular, the result in
equation (57). Implicitly, however, the creation of the general model of section 3 and the
methods of attack on conditional expectation illustrated in section 6 and facilitated by the
techniques of sections 4 and 5 may be more important results.

The eventual goal of our continued work in this area is the development of a valuation
method that can be safely applied to the options written on the catastrophe insurance futures
contracts. While there is a significant body of literature concerned with the valuation of
options written on futures contracts, usually called simply futures options, this existing
literature generally restricts itself to cases where the underlying asset is a stock or stock

market index, making assumptions about the distribution of the underlying asset on this
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basis. However, distribution assumptions that may be appropriate when modelling the
behaviour of a stock price are wholly inappropriate when the underlying asset is a measure
of the aggregate insurance claims resulting from a sequence of catastrophic events.

Whereas a much simpler model might provide reasonable approximations of the value of
the catastrophe insurance futures contract for valuation in a practical setting, the nature
of futures options generally makes options valuations techniques much more sensitive to
the assumed probability distributions than the valuation of their underlying assets. In this
regard, the development of a more complex and comprehensive model, as illustrated in this

paper, seems worthwhile.
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