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Abstract 

In 1993, the Chicago Board of Trade introduced a futures contract on a financial index 

that reflects the insurance claims emerging from catastrophes in a portfolio of policies. 

This article presents a valuation formula for the contract, under the assumption that 

catastrophes emerge as a Poisson process over time and that the claims from each 

catastrophe emerge as a Compound Poisson process. The formula is developed by taking 

conditional expectations with respect to a history of information that includes 

knowledge about the time of the catastrophes. 
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1 Introduct ion 

Futures contracts written on the loss ratios of preselected pools of catastrophe insurance 

contracts--aptly named catastrophe insurance futures--represent one of a number of new 

insurance-based financial instruments recently introduced, together with their respective 

put and call options, by the Chicago Board of Trade (CBOT). The valuation of such futures 

contracts, and the options written on them, might very well be of interest to insurers wishing 

to use the instruments to hedge against unexpected claims (see [4] and [6]) or, indeed, to 

speculators wishing to participate in the insurance industry in the sense these instruments 

allow (see [3]). However, valuation of the contracts and associated options is rather difficult 

without some model of the behaviour of the futures contract value. 

In this working paper, we at tempt  to develop such a model with the eventual goal of 

producing an expression for the valuation of the catastrophe insurance futures contract. In 

the earliest sections of the paper, the aggregate claims process on which the futures contract 

is based is modelled as the sum of the aggregate claims processes resulting from a random 

sequence of catastrophic events. After the development of a number of useful statistical 

results in the middle sections, the paper concludes with the valuation of the futures contract 

under the assumptions that  the occurrence of catastrophes is governed by a Poisson counting 

process and that  the aggregate claims processes associated with the individual catastrophes 

are independent compound Poisson processes with identical claim frequency parameters and 

claim amount distributions. 

While the real world is unlikely to provide us with a collection of homogeneous natural  

disasters each resulting in a Poisson claims counting process, the present result serves as 

an example of a plausible plan of attack for the development of more "realistic" models for 

the valuation of catastrophe insurance futures contracts. Additionally, the statistical results 

should be applicable in the analysis of these other models. 

The remainder of this section describes a typical catastrophe insurance futures contract 

and explains how its settlement price is calculated. The CBOT publication [1] describes 
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the technical aspects of catastrophe insurance futures contracts in some detail, and [3] also 

contains a good description ~, so it should suffice to provide a brief summary of the salient 

features of the contract here. Prior to the start of trading on a new catastrophe insurance 

futures contract, the CBOT defines and fixes a pool of insurance contracts and a time 

period (generally a quarter of the year) on which the new futures contract will be based. 

Information concerning the insurers involved, the demographic breakdown of the insurance 

pool, the weights the different types and locations of claims have been assigned, and the 

best estimate of the total  premium of the pool are provided to the investing public before 

trading commences. Following the start  of trading, claims resulting from catastrophic events 

that  occur within the assigned time period are reported by the insurance companies to the 

Insurance Services Office (ISO). Following the end of the assigned time period, the ISO 

allows additional time for insureds to report losses to the insurance companies (and for the 

insurance companies to report the losses to the ISO). This additional time period is typically 

three months. On the settlement date, the ISO calculates the total aggregate claims that  

were reported within the allowed time, and the contracts are settled at a price equal to 

$25,000 times the ratio of aggregate catastrophic losses to the original est imate of the total 

premium. Since all weights and estimated premium levels are fixed and known at the start  

of trading, the variation of the futures contract sett lement price is due wholly to changes in 

the value of aggregate claims. 

The December, 1993 catastrophe futures contract provides an example of the typical time 

periods involved [1]. The December, 1993 contract began trading at the start  of 1993. At 

that  time, the demographic breakdown of the premium pool (and an est imate of its size) was 

provided by the CBOT to the investing public. This contract covered losses on catastrophic 

events occurring between July and September, 1993. The ISO allowed insurers to report 

claims resulting from these events up to the end of December, 1993. The last trading day is 

~Please note that the description of catastrophe insurance futures contracts found in [3] is not totally 
accurate, since some aspects of the contract were changed prior to the contracCs introduction but following 
the publication of this article. 
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April 5, 1994 when the contract settlement price will be calculated and the contracts settled. 

2 Terminology 

For the futures contract under consideration, we take t = 0 to be the time at which trading 

commences. We denote the start  of the claims collection period by Q > O. This is also the 

earliest time at which catastrophes relevant to the given contract may occur. The latest date 

at which relevant catastrophes may occur is denoted R with Q < R. Claims on the contract 

premium pool that  result from the catastrophic events between times Q and R may be 

reported up to and including the end of the claims co|lection period at t ime S where R < S. 

Claims reported to insuring companies after this date are not included in the calculation of 

the sett lement price of the contract. We assume all claims reported to insurance companies 

by time S will be reported to the investing public by the sett lement time T > S. At time T, 

all trading on the contracts ceases, the sett lement price is calculated, and the contracts are 

settled on a cash basis. 

To avoid burdening our discussion with unnecessa~, details, we assume that  the catas- 

trophe insurance futures contract is written on a unit estimated premium, and we ignore the 

$25,000 multiplier in the sett lement price calculation. We write Yt as the value at time t > 0 

of the catastrophe futures contract based on a unit premium. We denote by gt the set of 

reformation available to the investing public at t ime t. Let (Xt }t>0 be the stochastic process 

representing the total nominal aggregate claims on the unit premium pool resulting from 

catastrophes occurring between times Q and R that  are reported to insurance companies 

no later than time S. Then Xt represents the aggregate claims from this pool reported to 

insuring companies as of time t. We see that,  since no claims are reported before time Q 

and no claims reported after t ime $ are included in the process {Xt}, we must necessarily 

have 

v t  < Q, X, = o; (1) 
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V t  > S. X ,  = X s .  (2) 

We note tha t  )~, the value of the futures contract  on the se t t lement  date,  will be equal to 

the se t t l ement  price, which is simply the total nominal aggregate claim amount  on tha t  date  

I'T = XT.  Let 6f be the force of interest at each time t > 0. If we assume investors are 

risk-neutral  and rational then the value to any individual investor of a futures contract  at 

t ime t < T will be its expected value at the set t lement  date T condit ioned on the available 

informat ion 3t and discounted back to the present time. Hence, we have the following 

f o r t  < T  

= e -f,r6"d'. E[XT [3,]. 
(3) 

In the special case where/Sf =/5 is constant for all t > 0, we have 

~,~ = e - ~ ¢ r - "  • E[ X r  I 2, ]. (4) 

To fur ther  characterize the aggregate claims process {Xt}, we consider the counting 

process {Nt}t_>0 for ca tas t rophes  occurring between t imes Q and R. We note that  Vt  < 

Q, Nt = 0 and Vt > R, /'el = Ns .  We will denote by T(,) for 1 < i < .Nn the  ordered t imes 

of the ca tas t rophes  so that  Q < T(lt _< Tc21 < ' "  _< T(NRt < R. 

W i t h  each catas t rophe i, we will associate the pair ({M,.,}t_>0, {X,,,},>0) where {Mis}  

is the count ing process for all reported claims on the contract  premium pool result ing from 

this ca tas t rophe  and {X,,t} is the associated aggregate claims p roces s )  We note that ,  for 

2Note that the processes {Mia} and {X,.t} include all claims on the premium pool under consideration 
that result from catastrophe i and ate eventuMly reported to the insurance companies, not merely those 
claims that are reported to the insurance companies by time S and included in the value of the futures 
contract. 
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each z = L. 2 . . . . .  N~¢, we have M,.~ = X , ,  = 0 for all t < T(,~. Hence. we have 

NR 
V 0 < t < S ,  X, = ~_X,,,:  (5) 

NR 

v t > s ,  x ,  = F_.,x,,s. (6) 

For 1 < t < N R and all j >_ 1, let us denote  by S,,3 the t ime  relative to T0) of  the  r epor t ing  

of the  j t h  t ime-ordered claim resul t ing from ca tas t rophe  i such t ha t  0 < S,,I < S,.2 < 

• .. < S,v < Sw+ l _< . . .  and with B, o its nomina l  amount .  3 Then,  for any  c a t a s t r o p h e  i 

with 1 < i < N e ,  we may  define the  s tochas t ic  processes {M,,t} and {X,,t} in t e rms  of T(~), 

S,,) ,  and B,,j as follows 

M,,, _ -  (7t 

x,,, : + s,,, <_ t )  (8) 
7=i 

Addi t ional ly ,  it may  be useful,  at  t imes,  to refer to the  e[edms processes for a par t i cu la r  

c a t a s t rophe  with respect  to a t ime scale or ig inat ing at the  ca tas t rophe  t ime.  In th is  spir i t ,  

we will define: for each 2 = 1,2 . . . . .  NR, the  s tochas t ic  processes  {M[.~}~> ° and  {X: . ,} ,>0  

where  M[, ,  = M,.T(,)+, and X~,, = X~.T(,)+,. We may  cons t ruc t  analogues  of equa t ions  (7) 

and  (8) for these  processes as follows 

M;,, = ~ ! (S,j < r) (9) 
,1=I 

j=l  

~In the case where a catastrophe i results in only a finite number of claims (i.e., where Mi.o~ = 
iimf-oo Mi,t < +oo), S~,) and Bi,) will be defined as above only for claims j _< M,,~. In this case, 
for all j > Mi.oo, we will take Bio = 0 and Si,: = +o¢ with probability 1, and the inequality 
S,.2 < Si,2 < .." <_ Si,M,.~ will hold. 
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As defined above, the stochast ic  process {X,} represents the nominal  aggregate claims 

reported to the insurance companies.  However. the claims reported to the insurance com- 

panies are not immediate ly  known to the investing public. In actuality, these claims are 

reported by the insurance companies to the Insurance Services Office ( ISO) ,  which releases 

informat ion about  the stochast ic  process {Xt} to the investing public essentially at its own 

discretion. We will denote  by {X[} the publicized aggregate claims process. This process 

represents actual aggregate claims as reported to the investing public by the ISO at t ime t. 

We will also assume that  the ISO disseminates  aggregate claims da ta  it receives from insur- 

ance companies  to the general public in such a way that  the publicized claims process {X~'} 

may be wri t ten 
NR 

x ;  = x~,~ = ~ .  x,,~,~ (11) 
I=1 

where "y(t) is, for all 0 < t < T,  a nondeereasing function that  satisfies 7(t) <_ t, 7(0) = O, 

and 7(T) = S. 4 Here, the function ",(-) itself is assumed to be completely known to the 

investing public at t ime t = 0. We will call this function "~(.) the a99regate claims publication 

schedule. 

In this paper,  we deal with informat ion sets in the formal sense. They are considered to 

be a-fields of events over some sample  space f2. If Yl and Y2 are two a-fields of events, we 

adopt  the usual convention of wri t ing ~'1 v ~'2 for the minimal  a-field containing both  of the 

*This specification allows for a larger degree of generality than might immediately be supposed. For 
example, if we take ~ >_ 0 and l e t  

{ i  f°r0<--t <7~ 
7( t )= - r /  for7 < t  < S + 7 ;  

for S ~r T) < t < T 

then, intuitivel); the ISO is assumed to provide claims data in aggregate on a continuous basis, but aher a 
constant time lag 7. Similarly, if we take Q < to < S and some t~ > to, we may let 

{ i  f ° r0<- t< t~ ;  
"~(t) = for t~ < t < T;  

for t = T. 

Intuitively. the only information the ISO releases in this case is the value of the aggregate claims reported 
to the insurance companies as of time to, where this informatio~t is released to the public at time t~ _> to 
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sets ~1 and 72, and Y~ A 5r2 for their intersection (which is necessarily the maximal o-field 

contained in each of the two sets). If {X1.X2 . . . . .  X,}  is a set of random variables (or, 

indeed, entire stochastic processes), we write a {XI,  X2 . . . . .  X,, } for the a-field generated by 

this set. 

Finally, please note that we rigorously define constructs of the following form 

t l < t  < t 2  (12) 

as shorthand for the equivalent logical construct 

(tl _<t) ^ (t < t 2 )  (13) 

where A is the logical "and" operator. In particular, when we write that  "P(t)  is true 

for t I < t _< t2", we are not asserting that  tl _< t2. When the reverse holds--when t 1 > t2 - -  

this s tatement is merely making no claim about the t ruth  of proposition P(t) for any values 

of t since no value of t satisfies (13) under these conditions. 

3 T h e  Futures  Value in M o r e  D e t a i l  

For the moment, we assume investors are risk neutral and rational and the force of interest 

is a constant ~5. We note that ,  by equation (2), XT = Xs  since T > S. Hence, we may apply 

equations (4) and (5) to obtain the following expression for the futures value Yt based on a 

unit  premium 

Y, = e - ~ c T - ' I . E [ X T  I :b]  

= c -6~r- '> .  E[ Xs I ~,] 

= e -6~r-" E[Xl.s + X=,s + ' "  + X,~.,s t 2t ]. 

(14) 
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We might divide the expression of }~ up on tile basis of tile information likely available to 

potential investors a~ time t. If we assume A;t is J~-measurable, then one possible expression 

is given by 

e6(r-')}~ t E[X'~ I J~] + { (f~= E[X,,~ I J,]) - EIX(13,]} 
Nr NR I15) 

where, on the right hand side, the first term represents claims reported to the insurance com- 

panies by claimants and publicized by the ISO, the second term represents the expectation 

of claims reported to the insurance companies that have not been reported to the public, the 

third term represents the expectation of claims incurred as a result of known catastrophes 

but not yet reported to insurers, and the final term represents the expectation of claims 

resulting from future catastrophes. 

Since it might be reasonable to suppose that the investing public's information set ~t is 

composed of information on the occurrence of all catastrophes to date as well as aggregate 

claim information publicized by the ISO (i.e., that 2t = a {X•, Nr for r < t} ), this expression 

for ]"t can be a useful tool for the calculation of futures prices under our model. 

4 Results Concerning Conditional Expectation 

In this section, we develop a number of useful statistical results dealing with conditional 
expectations. The most important of the results, Theorem 1, will be a very valuable tool in 

section 6. Intuitively. this theorem allows us to remove extraneous information from a con- 

ditional expectation when we can establish a form of independence between the information 

sets and random variables involved that is weaker than full mutual independence. 

We begin by stating the following (possibly intuitively obvious) lemma which is found as 

Theorem 9.1,3 in Chung I2]. 
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L e m m a  1 Let A be a a-field of events. Then. for any A-rneasurable random varzable W 

and any random variable Z, we have 

EIWZ I A] = W EIZ I A] (I6) 

provided both sides of the equation exist. 

Proof. Omitted. See proof of Theorem 9.1.3 in [2]. n 

We now introduce a lemma proved by Chung in [2] which we employ both in the proof 

of Theorem 1 and several times in following sections. 

L e m m a  2 Let :Yl, :~2, and ~'3 be a-fields of events such that ~l V ~'2 is independent of :~3. 

Then. for an ~-measurable random variable Z, we have 

E[Zl:hvY3] = E(ZIJ2], (17) 

ProoJ. Omitted. See [2, p. 308]. D 

We will also require Chung's Theorem 9.2.1, which we state here. 

L e m m a  3 Let A be an arbitrary indez set, and let {~o for e E A} be a collection of a- 

subfields of some a-field ~ of events. For each a ~ A, let 9 :~`~ denote the smallest a-field 

containing all ~ with ~ E A \ {a}, Then, the sets ~:o are conditionally independent relative 

to some a-subfield 9 C_ CY q and only if, Jar each a and E,, E CTo, we have 

E[I(Eo)I~ °~v 9] = E[I(Eo) ] S] (18) 

Proof. Omitted. See the proof of Theorem 9.2.1 in [2]. D 

We prove one final, trivial lemma. 
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Lamina  4 .Let A,  :B. and © be o-fields of events such that ~D C_ A v :B. If Z zs a random 

vamable such that 

E [ Z t A V T ,  I = E [ Z [ T , ]  (19) 

then 

E[Z I ~ v ~)] = E[Z i ~1. (20) 

PTvof. We see that the following holds 

s [z  ~v .D]  = E{EIZ I A v ~ ]  I :Bv:D} 

= E { E I Z I ~ ]  I ~ v : D }  

= E[Z I '~] 

(21) 

and the lamina is proved, r'l 

Finally, we prove our mare theorem, which will become an invaluable tool in section 6. 

T h e o r e m  1 Let fl,  ~, and C be a-fields of events such that A and ~ V ~ are independent. 

Suppose that 2) is a o-field such that ~ C_ A V ~. Let Z be an A V ~-measurable random 

variable. Then 

E [ Z I Z  V eV 2)] = E[Z I Z V  tD]. (22) 

Proof. Let A E A, B E 9 ,  C E e, and E E T, V '/:) be arbitrary events. Then, 

E [I(A)I(B)I(C)I(E) l 

= E{ El I(A)I(B)I(C)I(E) I -4 v ~] } 

= E{ I ( A ) I ( B ) I ( E ) E [ I ( C ) I A V ~ ] }  

(23) 

by Lemma 1. Let E1 = e, 3"2 = ~, and 3"a = A. Then, by Lemma2,  we have E l i ( C )  I 

AV2~] = E i I ( C  ) I ~1. Moreover, by Lemma4, we have E[I(C) I A V $  ] = E[I(C)  I :Bv~] .  
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Therefore, we have the following 

E [IfA)I(B)/(C)I(E)] 

= E{I(A)I(B)I(E)E[I(C)I~v:D]} 

= E{E{I(A)I(B)I(E)E[I(C)Igv23]IZv23 }} 

= E{I(B)I(E) E[I(A) IZv© ]E[/(C]IZVg]} 

= E{I(E){E[/(A)I(B) [ ~vgl E[/(C) I ~vg]}}. 

(24) 

As E[ I(A)I(B) I $ V ~D] E{ I(C) I ~ V 23] is ~ V 23-measurable, we have by the definit ion 

of conditional expectat ion that  

E[I(A)I(B)I(C)I~v~Dl=E[I(A)I(B)I~Bv23]E[I(C)IgV23] (25) 

for all A E A, B E ~ ,  and C E e. Therefore, A v ~ and e are condit ionally independent  

with respect to ~ V 23 by definition. 

By Lemma 3 applied over A = { 1,2 } with .71 = A v ~ ,  9"~ = ~, and S = ~ V D, we have, 

for all E E A V ~  

E[I(E) lSvev23] = E [ I f E )  I ~ v 9  ]. (26) 

Having establ ished tha t  the theorem holds for Z = I(E), we may generalize it to all 

A v ~B-measurable simple functions Z and, from there, to all A V ~B-measurable r andom 

variables by a monotone  convergence argument.  {:3 

5 Distribution of Interevent Times Conditioned on Number of Events 

In this section, we will examine the distr ibution of the interevent t imes of a Poisson count ing 

process {M~}t_> 0 for events occurring between t ime t = t~ and t ime t = t~ for some 0 < tl < t2 

when condit ioned on the numbers  of events Mr, and Mr2 known to have occurred at t imes 
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t~ and t2 respectively. This  result will be a useful device for the valuat ion of the futures  

contract  in section 6, where we assume the ca tas t rophes  follow a Poisson count ing  process. 

We will begin by establ ishing the fact tha t  we need consider only the case where ti = 0 

wi thout  loss of generality. Take 0 < t~ _< t2, let {M~}tz0 be a Poisson count ing process, and 

define the process {M,'},z0 by M', = M,+t,  - M~,. Let 3"i be the  informat ion  set genera ted  

by {M',.},.zo. Note tha t  31 is also the a-field generated by all increments  of {M,}t> 0 of the 

form M,= - M,~ with tl _< r~ < r2. Let 32 be the informat ion set generated by Mt= - Mt~, and 

let 3"3 be the  informat ion  set generated by Mr, alone. Note  tha t ,  as the  process {Mt}tzo has 

independent  increments  [5, p. 27}, we have 3"1 V 3"2 = 3"3 independent  of 3a. By L e m m a  2, 

we have for any 3"Fmeasurable  random variable Z, the following 

E[ZIM,,,M,=] = z [ z  I , ~ , , , M , ,  - M, ,  ] 

= EIZIM,=-M,,] 

E[ZIM' 

(27) 

Finally, note  tha t  as the increments  of { M, },>0 are s ta t ionary  [5, p. 27], the  processes { M, },_>0 

and {M'}~_> 0 have identical  (uncondi t ional)  dis tr ibut ions.  Since Z is measurab le  with  respect  

to {M'}~> 0, we can evaluate  expressions of the form E [ Z  } M,,,Mt~ ] by examin ing  E [ Z  I 

M~_t~ ] where the r a n d o m  variable Z is considered with respect  to  the evolut ion of the 

Poisson count ing  process M',. 

Having establ ished this, we will examine the d is t r ibut ion  of the interevent  t imes in the 

case where the s t a r t ing  t ime tz = 0. Let {M'~}~_>0 be a Poisson count ing  process with 

pa ramete r  ~ and ordered event t imes 0 < S(t) < S(21 < ' - '  < Sot < S(,+zl < " " .  We define 

the interevent  t imes V1 = S m and I.~ = S(il - S(,-II for all ~ > 2. We note  tha t  ~'~ are 

independent  exponent ia l  random variables each with pa ramete r  .~ [5, p. 28]. 

We will now examine  the form of the condi t ional  probabi l i ty  funct ion of M'~o = n 

given VI, r~ . . . . .  I~, for some r0 > 0 and n > 1. The  probabi l i ty  tha t  M'0 is equal to n, 
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given V ~ , ~  . . . . .  t~,, is zero if ~,~=l i,; > TO and precisely equal to the probabi l i ty  tha t  

l ' ,+~ > r0 - Vi . . . . .  "~ if ~,"=1 "~] -< r0. Hence, as V,+I has  an exponent ia l  d i s t r ibu t ion  

independent  of ~], I,~ . . . . .  V,, we have the following for the condit ional  probabi l i ty  funct ion 

of M'o = n given l ;  for z = 1 ,2 , . - -  ,n  

g(n I ~"q = vl . . . . .  "~,'~ = v . )  
{ e-a(,-o-v~ . . . . .  v.) . n l f ~ t v i <  TO; 

• n 0 if ~ v, > T o. 
(28) 

Now, the  jo int  marginal  p.d.f, of V1, V2,. • . ,  I~ is given by 

h(vl  . . . . .  v , ) =  A '~e -~ ,~  ~' for v, > 0. (29) 

The  resul t ing jo int  p.d.f, of V1, ~ . . . .  , I~:,, M ~  is given by 

{ A"e -*~° if ~ ] ' v ,  < to; 
/ (o~ . . . . .  v . , ,~ )  = 

0 if ~ vi > %. 

Since the marg ina l  p.d.f, of M'~o is given by [5, p. 27] 

(ATO)" e_a~ o g ( n ) =  ,~! 

2 ! we have the  following condi t ional  jo in t  p.d.f, of V1 . . . .  , V, given 'v/,o = n 

h(vl  . . . . .  v,~ I M ~  = n) = 
x"e . . . .  if ~Tv i  <_ to; 

if ~'~ v, > r0 
n !  n if E l y ,  < t o ;  

0 if Z] '  v, > to. 

(30)  

(31)  

(32) 

Note tha t  this  funct ion is symmet r i c  with  respect to each ordering of the variables I']. 
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Using this condi t ional  joint  p.d.f., we may calcula te  the expected value of an a rb i t ra ry  l] 

s ay  Vt) condi t ioned on M,o = n. This  expec ta t ion  is given by the following expression. 

z[ I M'0 = ~ ] 
' to  ~ o - v l  . . . . . .  . -  7 l !  

=/oZ Z . . . . . .  

_ n! foo'~ ( t o -  v l )" - ldv t  
(r0)" v~ ( n -  1)! 

n! f0"O(r0 _ ~/.-1 
= (To). y)~dy 

_ ~ [(~o~ ÷' (,o)"÷'] 
7"0 

n + l  

. d r 1  

(33) 

Now, let us generalize this  result  as follows. Let {Mr},_>0 be a Poisson count ing  process 

with pa rame te r  A and ordered event t imes 0 < T(1) < T(sl < " '  < T(i) < T~,+I) < - . . ,  

and take any t imes 0 <_ tl <__ t2, Define the interevent  t imes measured from t ime tl by 

IV~ = T ( M , , + I ) -  t~ and He. = T~M,,+i ) --T~M,,+,-~) for i _> 2. If we define the  s tochast ic  

process {M'~}.>o by M'~ = M.+~ - M,, as above, we note tha t  W1 (or indeed any He;) is 

measurab le  wi th  respect  to the  informat ion  set 3"1 as previously defined. Hence, we may 

write 

E[W,  [ M t , , M , , ]  = E[VCt I M~,_,, ] (34) 

from equat ion  (27). However, when we consider  Wt wi th  respect  to the process {M'.}, we 

see H'l = T(u,~÷ll - tl = S(1) = V~ in te rms of the  above notat ion• Since. { M ' } - - l i k e  its 

coun te rpar t  {M,} - - i s  a Poisson count ing process with  pa ramete r  .~, we can use the result  

cons t ruc ted  in equat ion (33), wi th  "co = t2 - t2 > 0, to get the  following 

te - t z  

E[W, IM , , ,M , , ]  = U , ~ - M , ,  + l (35) 
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Intuitively,. the expected value of the interevent time conditioned on M,~ - Mr, events having 

occurred in the time interval [~l, t2] is ~ t h  the length of the time interval. 

6 V a l u a t i o n  o f  F u t u r e s  C o n t r a c t  u n d e r  P o i s s o n  C l a i m  

P r o c e s s  A s s u m p t i o n s  

We consider ]~, the value of our futures contract on a unit premium at time t, We as- 

sume that the catastrophe counting process {Nt}e<_,<_R is a Poisson counting process with 

parameter A~,, the expected number of catastrophes per unit time. As above, we write 

Q < T(1) < T(2) < . . .  < T(NR) < R for the ordered times of the catastrophics between times 

Q and R, with the inequalities strict almost surely. 

For each catastrophe i = 1.2 . . . . .  NR, we have an associated claims counting pro- 

cess {Mi,t}t>o and aggregate claims process {X, a }t>0 representing the accumulated nominal 

value of claims on the contract premium pool (including those reported to the insurance 

companies after time S) resulting from catastrophe i. Let us define the stochastic processes 

° as above to represent the same  c l a m s  count ing  and ag egate 

claims processes originating at the time T0} of catastrophe i. We assume that the claims 

counting process {M~,~)~>0 is a Poisson counting process with parameter )~l..., the expected 

number of claims per unit time resulting from any individual catastrophe. We assume the 

associated aggregate claims process {X~,r)r_>0 is compound Poisson with individual claim 

amounts B~ O for j > 1 independent and identically distributed with c.d.f. F and mean #. 

Finally, we assume the aggregate claims processes { X~,~ ) ,  { X~,~) . . . . .  { X~.,~ ) . . . .  and 

the catastrophe counting process {N, } are mutually independent. Intuitively, this amounts 

to assuming that the aggregate claims process resulting from a particular catastrophe (and 

measured from the time of that catastrophe) is independent of the time of that catastro- 

phe and independent of the occurrence of all other catastrophes and the evolution of their 

respective claims processes. 
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Our information set Jt at t ime t is taken to include the t imes of all ca tas t rophes  that  

have occurred by time f and the claims process as reported to the general public by the ISO 

for all t imes prior to and including t ime t This  gives us the following explicit definition of  

our information set 

:;, = ~ { T ~ ,  T{2~ . . . . .  T~N, >, & ,  X ~ , l  for 0 < r < t} (36) 

for all t > 0. Recall that  the aggregate claims publication schedule ~'(. ) is assumed to be 

completely known to the investing public at t ime t = 0. 

We will now a t tempt  to construct  a useful, generalized expression for the value of the 

futures contract  ] i  based on information available at tha t  t ime. We wish to derive this 

expression from equation (15). Note that  this equation expresses the quant i ty  )~ in terms 

of expectat ions of specific increments  of the individual ca tas t rophes '  aggregate claims pro- 

cesses {X,,t}. For this reason, let us fix some i between 1 and NR inclusive and examine the 

general expectat ion E[X,,t~ - X,.~, { 5rto ] for any Q < to < tl < t2 _< T where the informat ion 

set 3"t0 is defined as follows 

Y,~ = a {T(~I,T(2 , . . . . .  TfNRI,NR, XI,~,X2 . . . . . . .  XNa,, forO < r < to}. (37) 

Intuitively, the information set ~'t0 includes exact informat ion concerning the occurrence 

t imes of all catas t rophes  of interest and the evolution of their  individual aggregate claims 

processes up to a certain fixed t ime to. While a potent ial  investor could never be supposed 

to have such information at his or her disposal,  this information set will prove to be a very 

convenient set on which to iterate.  

Let A be the information set generated by {X[,~},>o, let ~ be the information set gen- 

erated by T(o, and let e be the information set generated by ]VR, T~;), and {.\'~.t}o<,st~ for 

all 1 < j < NR such that  j ¢ i. If we let ~) G A V $ be the information set generated 

by . .~X/.'}O<,<,o-T,,I and T,,), then :T, o = ~ V e v ~D. Additionally. a.s we have the indepen- 
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dence of A..and ~B V ~ by hypothesis,  we may apply Theorem 1 to the A V IB-measurable 

expression X,j~ - X,.tL to get the  following 

E [ x , . , ,  - x , . , ,  I~,ol = E [ X , . , ,  - X, , , ,  I D ] .  (38) 

In the  case where to _< t~ < t~ _< T(,), we will have E [ X , . , ~  - X,.t~ I Yto ] = 9, for no claims 

will be realized on a ca tas t rophe  before tha t  ca ta s t rophe  occurs. W h e r e  to _< t1 _< T( 0 < t2, 

we see t ha t  equat ion (38) implies 

E{X,., ,  - X , . , ,  l Y,ol = E[ XI. , ,_~, , ,  - 0 1T(,)I 

),~=,.  u (t2 - TI,/) 
(39) 

f rom the d is t r ibu t ion  of the  process {X~,~}~>0. In the  case where e i ther  to < TO) < tl < t2 

or Tii ) < to < tl < t2, we have the  following 

E[X,,,, - X,,,, l a,  o] = E[X:,,~_T¢,, - X ~ , , , _ T ( , ) { T i , ) , X : , ¢  for 0 < ~" < to - T(,I] (40) 

= E[X:, ,~_T, , ,  - X~,,,_r,,, I~,~] (41) 

= Ac~=,ra I J ( t2  - t j )  (42) 

wi th  equal i ty  (41) following from the independence  of increments  [5, p. 27] 5 of the  pro- 

, X ~ cess {X,,~} and  equal i ty  (42) following from the  d i s t r ibu t ion  of { ,.,}. 

SMore exactly, equality {41) follows from the fact that the disjoint increments X~, t2_T.  ~ -- X~, , ,_T . )  and 
JV~,to-T~,~ --X~,T<,)-T~,~ &re conditionally independent with respect to T(i) allowing an application of Lemma 3. 
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Combining the cases, we may produce the following general expressioli valid for any 

Q < to < t l  < t2 _< T 

~ [ x , , , ,  - x , , , ,  t S:,ol : ~ . . . .  ~ {(,2 - , , l , ( r , , >  < ,~) 

+ (,~ - r,,,) + (,~ _< z,,, < , ~ ) )  
(43) 

Having generated this result, it will now be possible to construct a general expression for 

the value of the futures contract for any time Q < t < T Recall the generalized expression 

for }~i given in equation (15). Using equation (11), we may rewrite this expression as follows 

Ni 

i=1 
(44) 

Noting that 2t C Y~It) (because y(-) is nondecreasing), we may iterate the terms on the 

right hand side of this expression to produce an explicit general expression for ]~ under the 

assumptions made in this sectiom 

Intuitively, the second term on the right hand side of equation (44) represents the ex- 

pectation of the aggregate claims on the contract premium pool (both those that have been 

reported to insurance companies and those thai have not) that resulted from past catas- 

trophics but have not yet been publicized by the ISO. Taking this term and iterating its 
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component expectations with respect to :T~I, ), we see the following holds 

I ,l = - I 
~=1 I=1 

Nt 

imN.,(~,) + l 

i=/V~if)+l 

from equation (43). 

The third term on the right hand side of equation (44) can be interpreted intuitively as 

the expectation of aggregate claims on future catastrophes. We may iterate its component  

expectations with respect to 9"v( o and apply equation (43) as follows 

NR NR 

NR 

~ i = N l + l  

Let us define the information set 5t as follows 

S, = a {T~t),T(2) . . . . .  T(tc,),N,,X~,, for r > 0 and i =  1,2 . . . . .  N a }  (48) 

and note that  3t C_. 9t. If we let A be the a-field generated by {N,}r_> 0, ~ be the trivial 

X ~ a-field, e be the a-field generated by { ,,T}~> ° for i = 1, 2 . . . .  NR, and ~) C A v ~ be the 

o-field generated by {Nr)0_<~<,we see that St = ~ V e V ~3 and that A and ~B V e = C are 

independent by hypothesis. We may therefore iterate the right hand side of equation (47) 
N~ over St and apply Theorem 1 to the A V ~B-measurable random expression ]~t,,+l(S - T~i)) 
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to obta in  

NB 

J ~ f o r 0 < r  < t ]  ] J f}  (50) 

where (51) resul ts  from the the  Poisson count ing  process {N,}QSt<R being a Markov pro- 

cess  [5, p. 28]. 

In the  case t < R,  we may  define the  interevent t imes  I4." l = TIN.+II -- t, ~4; = Tcu,+i) - 

T~N,+,-ll for 2 _< i < NR - Nt. Our  analys is  in Section 5 allows us  to conclude tha t ,  for an), 

1 < ~ < ,'VR - Nt, the  following holds 

R - t  
E[W~ I N " N R ]  = N R -  N, + 1 (52) 

since { Nt }Q<t<R has  been a s s u m e d  to be a Poisson count ing  process.  Therefore,  the  following 

holds for t < R 

= E [ ( N R  - N, ) (S  - t) - (NR - Nt)W~ - (NR - N, - 1)Wz 

. . . . .  wN._~,, I x,,~..] f53/ 

= ( s -  - ~ )  (N . -  ..',/. 
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Finally, then, by iterating the innermost expectation of (51) with respect to the additional 

iuformation NR, we obtain the following 

~'v R 

1,} (54) 

for t _ R. In the case that  t > R~ the expectation on the left hand side of equation (54) has 

value 0, since no additional relevant catastrophes occur after time R. 

Substi tuting the expression for the second term (45) and for the third term (54) into 

equation (44), we get the following expression for the value of the futures contract ~'t for any 

time Q < t < T 

e$(T- t }~  t x . , .  + .~.,,,..,, ~, , (s  - .~(t)) - Z .  (T.~ - -~(t)) 
i = N . . , ( d + l  

+ I(t < R) .  ( S -  R + t" A R t "1 
- 

(55) 

Note that  the third term in the braces becomes 0 when t > R. 

At the present time, the ISO provides the investing public with the value of the aggregate 

claims reported to insuring companies as of times R and S. The value of XR is reported as 

soon as possible, but since some time is required to collect and summarize the information 

provided by participating insurers, this value is not actually reported until some time ~ > 

0 has elapsed beyond time R. The value of Xs (which is actually the settlement price, 

since ):~ = XT = Xs)  is not reported until the settlement time T. The resulting aggregate 
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claims publication schedule 7( ')  is given by 

! i f O < t < R + &  

"~(t) = if R 4- 6 < t < T: (56) 

i f t = T ,  

for 0 < t < T. Note that this function 3'(') is nondecreasing and satisfies the requirements 

"~(0) = O, 7(T) = S, and 7(t) _< t for all t. 

In this particular case, equation (55) gives the following expression for the value of the 

futures contract Yt for any time Q < t < T 

~,o~,.. u { X,S - E,*2~ Y(,) 

+ ifo_<,<R; 

~],=1T(i) i f R  < t < R+6; 

XR + ~o,,~/~ Nn(S - R) if R + 6 < t < T; 

Xs if t = T. 

7 C o n c l u s i o n  

Tile explicit goal of this paper has been the development of the expression for the value of 

the catastrophe insurance futures contract in equation (55) and, in particular, the result in 

equation (57), Implicitly, however, the creation of the general model of section 3 and the 

methods of attack on conditional expectation illustrated in section 6 and facilitated by the 

techniques of sections 4 and 5 may be more important  results. 

The eventual goal of our continued work in this area is the development of a valuation 

method that  can be safely applied to the options written on the catastrophe insurance futures 

contracts. While there is a significant body of literature concerned with the valuation of 

options written on futures contracts, usually called simply futures options, this existing 

literature generally restricts itself to cases where the underlying asset is a stock or stock 

market index, making assumptions about the distribution of the underlying asset on this 
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basis. However, distribution assumptions that may be appropriate when modelling the 

behaviour of a stock price are wholly inappropriate when the underlying asset is a measure 

of the aggregate insurance claims resulting from a sequence of catastrophic events. 

Whereas a much simpler model might provide reasonable approximations of the vMue of 

the catastrophe insurance futures contract for valuation in a practical setting, the nature 

of futures options generally makes options valuations techniques much more sensitive to 

the assumed probability distributions than the valuation of their underlying assets. In this 

regard, the development of a more complex and comprehensive model, as illustrated in this 

paper, seems worthwhile. 

297 



Referen c.es 

[1] Chicago Board of Trade. CAT: Catastrophe insurance futures and options. Chicago, 
1992. 

[2] Kai Lai Chang. A Course in Probability Theory. Academic Press, Inc., Toronto, 2nd 
edition, 1974. 

[3] Samuel H. Cox and Robert G. Schweback. Insurance futures and hedging insurance price 
risk. Journal of Risk and Insurance, 59(4):628-644, 1992. 

[4] Stephen P. D'Arey and Virginia G. France. Catastrophe futures: A better hedge for 
insurers. Journal of Risk and Insurance, 59(4):575-601, 1992. 

[5] Hans U. Gerber. An Introduction to Mathematical Risk Theory. Richard D. Irwin, Inc., 
Homewood, Illinois 60430, 1979. Monograph No. 8. 

{6] Greg Niehaus and Steven V Mann. The trading of underwriting risk: An analysis of 
insurance futures contracts and reinsurance. Journal o/Risk and Insurance, 59(4):601- 
627, 1992. 

298 


