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Martingales and Ruin Probability
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Abstract

The classical Lundberg’s inequality of insurance risk theory is proved by using
a martingale inequality. The method is extended to more general case. A similar
result to Willmot [5] is obtained.
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1 Introduction

In a scries papers by Willmot and Lin ( see (3], {4] and [5]), both cxpouential and
nonexponcential bounds for the tail probability of various compound distributions have
been derived. In Willmot [5], it was suggested that nonexponential bounds for the ruin
probability were difficult to obtain using martingale arguments. In this note, we show
how to use martingale inequalities to obtain some upper bounds for the ruin probability.

In this scction we first state the martingale inequality, and then use it to give a short
proof of Lundberg’s incquality.

Theorem 1.1. Let X = (X, )ner be a sub-martingale. Then for every A > 0 and
NeT,
AP(max X, > A) < E(Xy: max X, > X)) < E(X}) < E(|Xx))- (1)

0<n<N U<nd<N

and

’\P(ulgl,'fg"N X, < -A)< —E(Xo) + E(Xn Zolgl'lll.ﬁllN Xo > =) < E(|Xl) + E(JXN]). (2)

Proof: Sce Dellacherie, C. and Meyer [1].

Theorem 1.2. Let X = (X, )uer be a super-martingale. Then for every A > 0 and

NeT,
AP(nax X > 3) € E[Xo] = E(Xn : nax, Xo € 4) < BLXo] + B(X5) (3)
and
/\P(O?'x'iSuNX,, <=-A) < —~E(Xn: Jin, Xp <=X) < B(Xy). (4)

Proof: Sce Dellacherie, C. and Meyer [1].

An example of application of above mequality 1s proof of the Lundberg inequality of
risk theory.

Theorem 1.3. Suppose that {X;, X,,...} is a sequence of i.i.d. non-negative random
variables, and {Y},Y;,...} is also a sequence of 1.i.d. non-negative random variables and

independent of X. Let S, = 30, (Y; — X;), and the ruin probability
blr) = PUZ (S0 > 2}), 220 (5)
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Assume that & > 0 satisfics
E(e*"YE(e™"X) =1 (6)
Then

P(z) < (7)

Proof: Since
E(e)E(e ™) =1 (8)

Then Z, = [I%, =% is a martingale, therefore it is a sub-martingale, and from
thecorem 1.1, we have
Bla) = P(UZ,{S. > o)) = P(lim UL, {Si > 23) = lim P(U2,{5: > 2})
= Jim P( max {S,c >z}) = lim P(f?;?g( et > e"z)

—+00

= humaxHe"(Y Hi) 5 en )—hmP(maka>e )

n—co —+o0 1<k<

IA

lim e~ "’E(Zn) =™ (9)

which is the Lundberg incquality in risk theory. In the above proof, we have used the

fd(t tlldt E( ) E”" Xi) = Hi":l E(e“(yﬂ_xi) = 1

2 Main results

In this section, we will try to extend the method to give some general results. The main
result is given as:
Theorem 2.1 Suppose that By(z) is a NWU d.f.,, and By(z) is a NBU d.f.

LBy (x)} <1 (10)

E B\(Y) -

and

Bi(y —2) > By{Ba(e)} for y2= (11)
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Then

where
Ba(X [ 22
O TE-C T . mus i)
Bu(Y) ™ w5 S cocn [T, 558 <) i1 Ba(¥D)

P <1 (13)

Proof:
Let Z, = 1%, {gi:—;l} From (10) we know that Z, is a super-martingale. The ruin
probability

¥(z) = P{UZ (Sn> z)} = P{UZ( Z":Y. —XR:X.- >z

1
= hm PO ST =Y X > ) (14)
i=1 i=1
Since x > ) we have that
Ple) = Jim PUUIL (DY - LX) > 2)
=1 i=1
< Jlim P{u} (3 ! > 1 i
B A ( K—zgxm)'mu)
1
= g P{lsz:sz(*——————B v s %) D B
< hm P{ ma (B (Z‘_ X:) > !

N LGEN Bi(Th, Y T By(z ))}
< lim P{ max H(Bz(x) ! )}

Noveo o M1gndN 25 DY) T Bi(z)

< g)(,)Bl( ) (15)

A special case of the theorem is the following case:

Corollary 3.1. Suppose that B(x) is a NWU d.f. and satisfies:

i). B{y —z) > B(y)e*™ for y>= (16)

ii). E{E(ly—) E(e™¥y <1 (17)



The condition i) is true if the failure rate of B satisfies pip(2) > p.

Then
ls) < d(z)Blx) (18)
where
) = B ey~ t [ . i 1 e <1 (19)
BT T e TL, 2 ) i

Proof: Lot By(z) = ¢, then By(z) is a NBU d.f. By Theorem 2.1, the result

follows.

Next we will discusse the propertics of ¢(z). We have noticed that ¢(z) < 1, also
from the expression of ¢(z), we can casily sce that ¢(i) is a decreasing function of . The
following corollary says that in some special cases, we have that ¢(z) — 0 as z — co.

Corollary 2.2.
1). In Theorem 2.1, if E{L} < 1is replaced by E{B‘(X)} =1

B (7)
Then () < ¢l B(z) and 9(z) >
2) In Corollary 2.1, if 11} 1s replaced l)y
1
] —uX —
i) E{—B(Y)}E(e )=1 (20)

Then 4(z) < () B(z) and ¢p(z) — 0

Proof: The proof of 1) is same as the proof of 2), so we only prove 2).
Let Z, = [io 1{B(Y “#X} . From 42') we know that Z, is a wartingale. By theorem

1.1, and using the same argument as in the proof of theorem 2.1, we have
A

lim H(

N_’w[‘/;"“ﬂl( <NH ,‘, H© "x>7;——}, 1 B(X)
- H)B(e) (21)

Since Z,, 1s nouncgative, so

¥(z) ™ %)dP| B(x)

I/

|

sup B|Z,| =sup EZ,, = 1 (22)
From Theorem 2.7 of Liptscr and Shiryn.ycv [2], we have that

lim Z, = _“X‘} (23)

no oo
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exist alost surely, and also Z,, is a closed martingale, therefore Z, is uniform integrable.

Let Ay = {maxjcuen Hg;l(ﬁ(‘lﬁc‘“x') > Eﬁ}‘ by Theorem 1.1, we have that P(Ax) <

M) B(x) < B(x) = 0 as r = 00, s0
Ppla) < snp/ Zydp =50 as z — oo (24)
N JAN
The following result is a special case of our main result. A version of the following
result has been given by Willmot [5).

Corollary 2.3. Supposc that B(z) is a DFR (.f. with failure rate pg(z) =
dl} In B{a), let p = lim,_, puplx) > 0 and satisfies:

Bl ) < 1 (25)
Then
b() < ) Bl) (26)
where ¢z} is given in Corollary 2.1,

Proof: Since B(z) is a DFR .f, so B(x) is a NWU d.f., so we only need to check
the condition 1) of Cur()Uzu‘y 2.1.

By —2) = P TG T N L MU
L B S 0 5 [y
= D(y)e= (27)
this is condition 1) of Corollary 2.1. Therefore the result follows.
Example 2.1: Suppose that B(x) = (1 + kz)"%e = here k > 0, from
(L k(y = 2) "0 > (14 k) "e e for y > (28)

and by choosing « and & such that

o 1
L )Y ot
[T ke fy (y)y = Eio-) (29)
we kuow that the condition of Corollary 2.2 hold, so
Bla) < p)1 + kr) e (30)
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and $(z) — 0
. . |yt
For the inverse Gaussian case fy(y) = My* e ™ v, the a and & can be chosen by

15} e 8 1
/U (1+ ke )M My*—le "= idy = Fio) (31)
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