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Abstract

Based on recent work by Kevin Dowd on investor loss aversion
preferences and work by Benoit Mandelbrot on Stable Paretian distributions with
Huston McCulloch’s parameter estimation procedures, this paper recommends
the practical application of new portfolio risk/return measurements to achieved
and back tested stock portfolio performance. This new risk measurement process
addresses the issue of infinite variances empirically observed in most stock
return distributions.



1. Introduction

To statistically justify portfolio diversification, Harry Markowitz wrote the
classic book? on portfolio selection. Markowitz employed a mean variance
framework, but recognized the variance risk measure does not fully recognize
investor wishes to avoid losses. Benoit Mandelbrot’s® empirical analysis strongly
suggested actual stock returns follow fat tailed Stable Paretian distributions with
infinite variances. J. Huston McCulloch* recommended a quantile method for
estimating the four parameters of the Stable distribution with significance
statistics to measure how distant from Gaussian Normal they lie. Kevin Dowd
suggested a utility function to reflect observed investor loss aversion over the
entire distribution of anticipated returns.> To the author’s knowledge, these
significant empirical realities have not been carried forward into common
practice.

If, as Mandelbrot suggests, stocks follow Stable Paretian distributions of
returns with infinite variances, then traditional risk measures of variance,
standard deviation, CAPM Beta and Sharpe ratios do not exist. Index tracking
error statistics also do not exist. Consequently, the profession needs to find new,
statistically valid, replacement risk measures for portfolio diversification
applications.

As a proposed replacement risk measurement process, this paper applies
McCulloch’s parameter estimation procedure to achieved back tested portfolio
performance results to estimate the four parameters of the Stable Paretian
distribution. The results derive from both the universe of returns and a subset of
undervalued firms. Applying the Kevin Dowd loss aversion utility function
enables the calculation and graphical display of risk adjusted mean portfolio
returns for both the universe and the subset of undervalued stocks. The display
determines over what regions of investor loss aversion risk preferences each
portfolio dominates. This proposed risk adjusted mean portfolio return replaces

2 Harry M. Markowitz, Portfolio Selection: Efficient Diversification of Investments, Cowles Foundation
Monograph, 1959.

3 Benoit Mandelbrot, “The Variation of Certain Speculative Prices,” in Paul Cootner, The Random Character of
Stock Prices, MIT Press, 1964, pp. 307-332.

Benoit Mandelbrot and Richard L. Hudson, The (Mis)Behavior of Markets: A Fractal View of Risk, Ruin, and
Reward, Basic Books, 2004.

4]. Huston McCulloch, “Simple Consistent Estimators of Stable Distribution Parameters,” Commun. Statist. —
Simula., 15(4), 1986, pp. 1109-1136. Programmed with the help of Paul Kettler and Terry Heiland.

5 Kevin Dowd, Measuring Market Risk, 2" ed., Wiley, 2005.
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traditional risk measures which rely on an indeterminate variance of the
distributions.

2. Empirical Work on Intrinsic Valuation and Excess Returns

On March 23, 2006, the author presented empirical work to the Midwest
Finance Association on “Advanced DCF Valuation Measurement Methodology:
Predictive Capability, Accuracy and Robustness.” The slides and link below
come from that presentation. The NACVA paper link below describes the
intrinsic valuation methodology in more detail.

www.lcrt.com/Updates/MidwestFinance3-24-06.pps http://www.LCRT.com/Updatess NACVA PAPER
LCRT & DCFE.pdf

The Stable distribution contains several important properties. The
Gaussian Normal distribution (the “Bell Shaped Curve”) is a special case of the
Stable Paretian distribution where the alpha peakedness parameter is 2.00. The
variance of distributions with alpha peakedness parameters less than 2.00 is
infinite. Most all the value-performance data which we analyzed show fat tailed
distributions with alpha peakedness significantly less than 2.00 with infinite
variances. Therefore, risk measures relying on variance, covariance and standard
deviation are indeterminate. This includes CAPM Beta. Consequently, portfolio
managers should consider replacement measures of portfolio risk and
diversification.

The slide below illustrates that a fat tailed Stable Paretian distribution
displays a better visual fit to total shareholder return (TSR) data than does
Gaussian Normal.® These empirical results suggest potential for the use of non-
traditional measures of risk based on fat tailed Stable instead of Gaussian
distributions.

For later reference on page 5, note the infrequent, but important large
gains in the right tail of the distribution.

6 Sources: 5,500 industrials 1994-2003, Total Shareholder Return (TSR) Relative to the S&P 500; Hemscott
Data; LCRT Platform Calculations. Similar results appear for lognormal rates of return.
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From McCulloch’s parameter estimation, the 1.39 alpha peakedness statistical
results in the table below confirm the TSR distribution is 41.4 standard errors
away from Gaussian Normal (where alpha peakedness is 2.00). This result
suggests limitations in the appropriate use of CAPM Beta as a risk measure, since
CAPM Beta relies on the existence of the indeterminate covariance statistic.

Results Value Std. Error  t-Statistic

alpha ("peakedness") 1.39 0.01 41.41 Difference from 2.00
beta ("skewness") 0.83 0.03 32.27 Difference from 0.00
c ("dispersion"”) 33.02 0.01  4,205.23 Difference from 0.00
delta ("location" or "average") 24.12 0.05 449.93 Difference from 0.00

Sources: 5,500 Industrial Firms 1994-2003, Total Shareholder Return (TSR) from FY+3 to +15 Months Relative to
S&P 500, Hemscott Data, LCRT Platform Calculations, J. Huston McCulloch, “Simple Consistent Estimators of
Stable Distribution Parameters,” Commun. Statist. — Simula., 15(4), 1986, pp. 1109-1136.

Further research presented at the Midwest Finance Association shows
how undervalued stocks perform, depending on the degree of under- and
overvaluation, as illustrated in the slide below.
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The DCF model on which these back tests rely places all the “risk” in the
certainty equivalent cash flows.” Consequently, the DCF model employs a single
real discount rate each year for all the companies in the super sector of about
5,500 firms and 17,000 company-years. A single discount rate obviously
possesses a zero correlation with company CAPM Betas. Consequently, these
zero correlation results with traditional risk measures caused the author to
rethink proper risk measurement for portfolio diversification applications.

3. Loss Aversion, Gains and Risk Measures

This paper now applies the Kevin Dowd investor loss aversion utility
function to these back test results to calculate risk adjusted mean returns.

Most people are loss averse. They hate losses. It takes more gains to offset
losses. A 50 percent loss requires a 100 percent gain to break even. Markowitz
observed that the problem with variance as a statistic is that it treats both sides of
the distribution as equally undesirable,® whereas most investors prefer to avoid
the left tail of the distribution of losses more strongly than achieving the right tail
of gains.

People have suggested various ways to measure risk to address investor
wishes to avoid losses (loss aversion). Markowitz suggested standard deviation,

7 Placing all the “risk” in the certainty equivalent constant dollar net free cash flows requires a series of
proprietary option pricing shaped functions on fading cash economic return, constant dollar gross
investment size, and percent debt-to-debt capacity leverage. The empirically selected parameters driving
these valuations produce results where 50 percent of the firms are undervalued and 50 percent are
overvalued, so the model is unbiased across the key drivers.

8 Harry Markowitz, Portfolio Selection, p. 194.



semi-variance, expected value of loss, expected absolute deviation, probability of
loss and maximum loss.” Others have suggested value at risk (VaR), expected tail
losses and other measures. Guided by the economic literature, Kevin Dowd
suggests the following utility function to reflect investor loss aversion for each
cumulative probability p in the entire distribution,

ef(lfp)/}/

#(p)=———~
( ) }/(l_e—lly)

The parameter gamma v reflects the investor’s degree of risk aversion, a smaller

v indicating greater risk aversion. Dowd suggests that this utility risk measure

possesses several very useful properties:

1. Itis non-negative: the function is always greater than or equal to zero.

2. Normalization: the probability-weighted sum of the function weights
must be 1.00.

3. Increasing weight: higher losses must have greater weights than lower
losses (technically subadditivity).

Dowd’s utility function spans the entire rate of return spectrum instead of
just the loss portion covered by VaR, expected probability of loss and expected
tail loss. As illustrated previously on page 3, since a few large gains typically add
significantly to the portfolio’s return performance, covering the entire
distribution becomes most important.

On the one hand, the author discovered that equal weighting of the
returns in the portfolio of stocks corresponds to a large gamma in the range of
100 to 10,000. These large gammas set the weights to a risk neutral value of 1.000.
On the other hand, as gamma approaches zero from values below 0.3, the
weighted average of returns of empirical distributions approach zero—a less
than useful result. Consequently, the analyses displayed in this paper employ a
practical range of gamma of [0.3, 100]."

° Harry Markowitz, Portfolio Selection, p. 287.

10 Kevin Dowd, Measuring Market Risk, p. 40. Also, “Spectral Risk Measures” in Financial Engineering News at
www.fenews.com/fen42/risk-reward/risk-reward.htm.

1 The actual points used of [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2, 4, 6, 8, 10, 50, 100] cover the full range with
good resolution. A natural log In transform compresses the utility scale for better visualization, making the
range [-1.20, -0.92, -0.69, -0.51, -0.36, -0.22, -0.11, 0.00 0.69 1.39 1.79 2.08 2.30 3.91 4.61]. Taking 10 — In(gamma
risk) or [11.20, 10.92, 10.69, 10.51, 10.36, 10.22, 10.11, 10.00 9.31, 8.61, 6.21, 7.92, 7.70, 6.09, 5.39] makes the x-
axis reflect increasing loss aversion from a risk neutral position.
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The chart below displays the gamma loss aversion parameters versus a
cumulative probability distribution. On the one extreme, a gamma risk of 100
treats all returns as equal with a weight of 1.000, i.e.,, no loss aversion. On the
other extreme, a gamma of 0.30 weights the losses to the right of the distribution
substantially more than the gains to the left. A gamma risk of 1.00 falls in the
middle of the two extremes.
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4. Risk Measurement Applied to Portfolios

The chart below employs the data for both the universe and the top 5
percent of undervalued firms from the back tested portfolio performance on page
4. The x-axis is the measure of loss aversion from Kevin Dowd’s gamma risk
parameter, charted on the previous page. With zero loss aversion, the
calculations use a 100 gamma risk parameter and weigh all returns equally by
the 1.00 weighting factor. The result is the mean return for the portfolio: 43
percent for the top 5 percent of undervalued stocks (862 company-years) and 13
percent for the universe (17,095 company-years). As the investor’s loss aversion
increases, the risk adjusted weighted average returns decline.

As we shall see, sometimes the two lines cross, meaning that the portfolio
of choice depends on the degree of loss aversion. However, in this case, the lines
never cross. No matter what the investor’s degree of loss aversion, the investor
should prefer the portfolio of top 5 percent of undervalued stocks over the
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universe. In statistical terms, the top 5 percent dominate the universe (stochastic

dominance).
LCRT Risk Adjusted Mean Versus Loss Aversion
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5. Risk Measurement Applied to the Number of Stocks in the
Portfolio

This risk measurement methodology also aids in determining the number
of stocks to provide sufficient diversification for the portfolio.

The number of stocks required for a diversified portfolio is a most
controversial subject. Meir Statman wrote an excellent summary'? of the
traditional research based on a Gaussian distribution view of the world. Evans
and Archer® suggested that 10 stocks would do for diversification. Many
academics reflect the Evan/Archer view in finance text books:

Francis!4 10-15 stocks

Stevenson and Jennings' 8-16 stocks

12 Meir Statman, “How Many Stocks Make a Diversified Portfolio?” Journal of Financial and Quantitative
Analysis (September 1987), reprinted in Keith V. Smith, Case Problems and Readings: A Supplement for
Investments in Portfolio Management, McGraw-Hill, 1990, pp. 161-171.

13 J.L. Evans and S.H. Archer, “Diversification and the Reduction of Dispersion: An Empirical Analysis,”
Journal of Finance, 23 (December 1968), pp. 761-767.

14].C. Francis, Investments: Analysis and Management, 4" ed. McGraw-Hill (1986)

15 R.A. Stevenson and E.H. Jennings, Fundamentals of Investments, 3 ed., West Publishing (1984).
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Gup?® 9 stocks
Reilly?"” 12-18 stocks

Statman recommends 30 stocks as the minimum for a buy portfolio.

In sharp contrast to these recommendations, Mandelbrot'® suggests 90-120
stocks based on Fama research!® with Fat Tailed Stable Paretian distributions.

Just to confound the views, Statman summarizes empirical evidence on
how many stocks individuals actually own:

Evidence, however, suggests that the typical investor’s stock
portfolio contains only a small fraction of the available
securities. Blume Crockett and Friend? found that in 1971,
34.1 percent of investors in their sample held only one
dividend paying stock, 50 per cent held no more than 2
stocks, and only 10.7 per cent held more than 10 stocks. A
1967 Federal Reserve Board Survey of Financial
Characteristics of Consumers? showed that the average
number of stocks in the portfolio was 3.41. A survey of
investors who held accounts with a major brokerage
company revealed that the average number of stocks in a
portfolio ranged from 9.4 to 12.1, depending on the
demographic group.?

Hopefully, this paper may help to make some sense out of these divergent
points of view and empirical evidence on actual individual holdings.

The chart below overlays different sized portfolios from one to 200 stocks
from the list of top 5 percent of undervalued stocks against the results from the

16 B.E. Gup, The Basics of Investing, Wiley, (1983).

17 F K. Reilly, Investment Analysis and Portfolio Management, 24, Dryden (1985).

18 Benoit Mandelbrot, The (Mis)Behavior of Markets, p. 266.

19 Eugene F. Fama, “Portfolio Analysis in A Stable Paretian Market,” Management Science, Vol. II, No. 3,
January 1965, pp. 404-419, especially p. 415,

20 ML.E. Blume, J. Crockett, and I. Friend, “Stock Ownership in the United States: Characteristics and Trends,”
Survey of Current Business, 54 (Nov. 1974), pp. 16—40.

2 M.E. Blume and I. Friend, “The Asset Structure of Individual Portfolios and Some Implications for Utility
Functions,” Journal of Finance, 30 (May 1975), pp. 585-603.

2 R.C. Lease, W. Lewellen, and G. Schlarbaum, “Market Segmentation: Evidence on the Individual
Investor,” Financial Analyst Journal, 32 (September 1976), pp. 53-60.
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previous chart on page 7. The one, 20, 50 and 100 stock portfolio lines cross the
universe line, but at negative risk adjusted returns. As long as the investor
wishes to make a positive return, the investor should prefer the undervalued
strategy to the universe. From this risk-return point of view, the number of
stocks seems to make less of a material difference, but remains an excellent
method for comparing portfolio investing strategies to a universe. As the spread
between the strategy and the universe narrows, the number of stocks in the
portfolio becomes increasingly important.

LCRT Risk Adjusted Mean Versus Loss Aversion
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One major difference between the points of view relates to the distribution
assumptions. The Statman summary assumes a Gaussian distribution of returns,
while Fama and Mandelbrot assume a Stable Paretian distribution. Fama further
quantifies the effect of portfolio size on the dispersion of the distribution:*

1Y | ae
)
n
where n is the number of stocks in the portfolio, a is the alpha peakedness
parameter and (3 is the beta skewness parameter of the Stable distribution.
Instead of the dispersion declining with the square of the number of securities as

in a Gaussian world, the Stable dispersion declines with the alpha peakedness
power—i.e,, at a significantly slower rate.

2 Fama, “Portfolio Analysis in a Stable Paretian Market,” p. 414.
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The table below compares the Fama Stable approach to the Statman
Gaussian approach. Statman reproduces the results from the Elton-Gruber
study.? The first column displays the number of stocks in the portfolio. The
second column shows the “c” dispersion from the McCulloch estimation
procedure adjusted by the Fama equation above. The third column shows the
ratio of the Stable Dispersion from column 2 to the dispersion for a single stock.
The fourth column shows the ratio of the standard deviation for multiple stocks
to the standard deviation of one stock from the Elton-Gruber study. Note how
much faster the ratio declines for the Gaussian ratio, coming close to the
minimum at 20-30 stocks. In contrast, to the Gaussian ratio, the Stable ratio
continues to decline even at 100 stocks in the portfolio. Stable distributions are
simply more risky than Gaussian. These results help to explain Statman’s
recommendation of 30 stocks to the portfolio and Mandelbrot’s recommendation

of 90-120 stocks.

Stable Stable Gaussian
# Stocks | Dispersion Ratio Ratio

1 70.88 1.00 1.00
2 63.74 0.90 0.76
4 58.04 0.82 0.60
10 52.23 0.74 0.49
20 48.85 0.69 0.44
30 47.20 0.67 0.42
40 46.15 0.65 0.42
50 45.40 0.64 041
100 43.40 0.61 0.40
200 41.79 0.59 0.39
862 39.40 0.56 0.39

2 E.J. Elton and M.]. Gruber, “Risk Reduction and Portfolio Size, An Analytical Solution,” Journal of Business,
50 (October 1977), pp. 415-417. Meir Statman in Keith Smith, Case Problems, p. 163.
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The table below shows how the number of stocks affects the range of
likely average returns. The rows in the table calculate the mean of the
distribution +/- 3 or 4 standard errors of return of the delta location parameter of
the Stable distribution.®® Twenty stocks still display a rather large range of
possible average returns. That range narrows materially at 100 stocks and even
narrows up to 862 stocks in the subset of undervalued firms.

Top 5%
Number of Stocks Undervalued
=> 1 20 50 100 200 | (862)
Mean - 3 Std.
Error(delta) (0.21) 33.42 36.98 38.78 40.05 41.63
Mean + 3 Std.
Error(delta) 86.42 52.79 49.23 47.44 46.17 44.58
Mean - 4 Std.
Error(delta) (14.64) 30.20 34.94 37.33 39.03 41.14
Mean + 4 Std.
Error(delta) 100.86 56.02 51.28 48.88 47.19 45.08

Yet individuals generally hold fewer than five stocks. Those with
brokerage accounts hold fewer than 15. Why?

Please permit the author to offer two hypotheses for this individual
behavior of few stocks in their portfolios. These hypotheses deserve more
discussion, empirical analysis and testing:

1. Managing a portfolio of 100 stocks requires much work. To manage this
many stocks, investors can pay a mutual fund or index fund manager at a
lower fee than the opportunity cost of their personal time.

2. Individual investors may invest in companies and industries in which
they are intimately familiar with the businesses. Consequently, this
information advantage makes them believe that they face substantially
lower “risk” than the simple statistics above might indicate.

How many stocks should an investor have in his portfolio? The author
cannot answer that question, because it depends on the investor’s tolerance for
risk of loss and knowledge of the companies/industries. What this analysis does
suggest is that in a Stable Paretian world with fat tails, the risks of not
diversifying are greater than the traditional 20-30 stock rule of thumb, based on a

2 McCulloch states the parameter estimates become asymptotically Gaussian Normal.
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Gaussian world. The investor should have the confidence in his superior
knowledge and devote the time to manage a portfolio of fewer stocks. The
investor needs to balance the two admonitions:

1. Don’t put all your eggs in one basket and
2. If you have fewer eggs in your basket, watch them very closely.

6. Conclusion

This article applies recent work by Kevin Dowd on investor loss aversion
preferences and work by Benoit Mandelbrot on Stable Paretian distributions with
Huston McCulloch’s parameter estimation procedures to the application of new
portfolio risk/return measurements to back tested stock portfolio performance.
This practical new risk measurement process addresses the issue of infinite
variances empirically observed in most stock return distributions.

This risk-return measurement methodology may apply to the following
practical decisions for investors:

1. Risk/return assessment of actual stock portfolio performance.

2. Risk/return assessment of back tested stock portfolio strategies.

3. How many stocks should the portfolio contain to have sufficient
diversification?

4. Risk/return assessment of new portfolio products (should, for example,
the portfolio purchase 10 percent of out of the money puts in either an
index or the individual stocks to buy insurance, lower excess alpha return,
but reduce risk?)

5. Time series risk/return measurement of portfolio returns of multiple asset
classes—stocks, bonds, commodities, etc.

6. Empirically relate risk adjusted return to the market and fundamental
factors affecting likely losses.?

2 For example: market capitalization, constant dollar gross investment, cash economic return, percent debt
to capital at market, percent debt to debt capacity, fiscal year high-low price dispersion, stock price level,
dividend payout & yield, plant life and the mix of depreciating assets versus non-depreciating assets (asset
liquidity).
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