
ACTUARIAL RESEARCH CLEARING HOUSE 
1995 VOL. 1 

Actuarial Approach to Option Pricing 

Hans U. Gerber 
Ecole des hautes 6tudes commerciales 

Universit6 de Lausanne 
CH-1015 Lausanne, Switzerland 

Phone: 21 692 3371 
Fax: 21 692 3305 

E-mail: hgerber @hec.unil.ch 

Elias S.W. Shiu 
Department of Statistics and Actuarial Science 

The University of Iowa 
Iowa City, Iowa 52242-1419, U.S.A. 

Phone: 319 335 2580 
Fax: 319 335 3017 

E-mail: eshiu@stat.uiowa.edu 

1. Introduction 

Actuaries measure, model and manage risks. Risk associated with the investment 

function is a major uncertainty faced by many insurance companies. Actuaries should 

have knowledge of the asset side of the balance sheet of an insurance company and how it 

relates to the liability side. Such knowledge includes the operation of financial markets, 

the instruments available to the insurance companies, the options imbedded in these 

instruments, and the methods of pricing such options and derivative securities. 

In this paper we study the pricing of financial options and contingent claims. We 

show that two time-honored concepts in actuarial science - the Esscher transform and the 

adjustment coefficient - are efficient tools for pricing many options and derivative 

securities if the logarithms of the prices of the primitive securities are certain stochastic 

processes with stationary and independent increments. An Esscher transform of such a 

security-price process induces an equivalent probability measure on the process. The 

Esscher parameter or parameter vector is determined so that the discounted price of each 

primitive security is a martingale under the new probability measure. A derivative 
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security is valued as the expectation, with respect to this equivalent martingale measure, 

of the discounted payoffs. 

We also study the pricing of American options on two stocks without expiration 

date and with payoff functions which are homogeneous with respect to the two stock 

prices. An example of such options is the perpetual Margrabe option, whose payoff is the 

amount by which one stock outperforms the other. The method is based on the 

construction of two martingales with respect to the equivalent martingale measure, and 

applying the optional sampling theorem. The martingale construction is similar to the 

determination of the adjustment coefficient in collective risk theory. This approach does 

not involve differential equations and hence is quite different from the traditional 

approach in financial literature. 

This joint work began when Hans Gerber visited to Iowa City in August, 1992, to 

attend the 27th Annual Actuarial Research Conference. The research on Esscher 

Transforms was presented in the 28th Annual Actuarial Research Conference in honor of 

Jim Hickman's retirement and has appeared as [GS94a]. Further results can be found in 

[GS94b], [GS94c], [GS94d], [GS95] and [GMS95]. 

2. The Esseher Transform of  a Random Variable  

Let Y be a given random variable and h a real number for which the expectation 

E[e bY] 

exists. The positive random variable 

ehY (2.1) 
E[e bY] 

can be used (as the Radon-Nikodym derivative) to define a new probability measure, 

which is equivalent to the old measure in the sense that they have the same null sets (sets 

of measure zero). For a measurable function W, the expectation of the random variable 

~(Y) with respect to the new measure is 
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E[~(Y)e hY] 
E[~(Y); hi - (2.2) 

E[ehY l 

We call this new measure the Esscker measure of parameter h. The corresponding 

distribution is usually called the Esscher transform in the actuarial literature ([Es32], 

[Je91]). In some statistical literature, the term exponential tilting is used to describe this 

change of measure. 

The method of Esscher transforms was developed to approximate the aggregate 

claim amount distribution around a point of interest, Y0, by applying an analytic 

approximation (the first few terms of the Edgeworth series) to the transformed 

distribution with the parameter h = h0 chosen such that the new mean is equal to Yo. Let 

c(h) = ln(E[ehY]) (2.3) 

be the cumulant-generating function. Then 

c'(h) - E[yehY] = E[Y; hl (2.4) 
E[e bY] 

and 

c"(b) - E[Y2ehY] / ~ |  E[Yehv]'2 
] = Var[Y; h]. (2,5) 

E[e bY] E[e hY] 

Since Var[Y; hi > 0 for a nondegenerate random variable Y, the function c'(h) is strictly 

increasing; thus the number h0 for which 

Y0 = c'(h0) = ElY; h0] 

is unique. In using the Esscher transform to calculate a stop-loss premium, the parameter 

ho is usually chosen such that the mean of the transformed distribution is the retention 

limit. 

3. Discrete-Time Stock-Price Models 

A purpose of this paper is show that the concept of Esscher measures is an 

effective tool for pricing stock options and other derivative securities. We need to extend 
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the change of measure for a single random variable to that for a stochastic process. In 

this section we consider the simpler case of discrete-time stochastic processes. 

For j  = O, 1,2 . . . . .  let S(j) denote the price of a stock a t imej .  Assume that there 

is a sequence of independent (but not necessarily identically distributed) random 

variables { Yk} such that 

S(j) = S(O)exp(Yl + Y2 + '" + Yj), j = 1,2, 3 .... (3.1) 

We assume that the moment generating function for each Yi exists, and write 

MYi(h) = E[ehYi]. (3.2) 

For a sequence of real numbers {hk}, define 

Zj = e x p ( ~  hkYk) / l - I  MYk(hk)- (3.3) 
k~j  k_<j 

Then {Zj } is a positive martingale which can be used to define a change of measure for 

the stock-price process. For a positive integer m, let ~(m) be a random variable that is a 

function Y I . . . . .  Ym, 

~/(m) = ~(Y1 . . . . .  Ym). (3.4) 

The expected value of ~(m) ,  with respect to the new measure, is 

E[~(m) Zm]. (3.5) 

In (3.5) the random variable Zm can be replaced by Zj, j > m, because of the martingale 

property. 

We assume that the risk-free interest rate is constant through time and the stock 

pays no dividends. Let ~ denote the risk-free force of interest. The risk-neutral  Esscher  

measure  is the measure, defined by the sequence of numbers {h~}, with respect to which 

{e-6JS(j)} (3.6) 

is a martingale. This leads to 

e 8 Mvk(1 + k)/MYk(hk), k = 1 2, 3, (3.7) 

As we pointed out at the end of the last section, the numbers {h~ } are unique. 
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Suppose that each Yk is a Bernoulli random variable, i.e., it takes on two distinct 

values, ak and bk, only. Then there is only one risk-neutral measure,  given by 

and 

e G _ eak 
Pr*(Yk = ak) - (3.8) 

ebk _ ea~ 

Pr*(Yk = bk) - 

((5 is between ak and bk for each k.) 

e 8 _ eb~ 
e ak _ e bk (3.9) 

If  we assume that the random variables {Yk} are identically distributed in addition 

to being independent ,  then all h~ are the same number. This points to an approach to 

extend the change of measure to certain continuous-t ime models,  as we shall see in 

Section 5. On the other hand, the risk-neutral Esscher  measure can also be defined for 

dependent  random variables {Yk}. In this more  general situation, each hk is a function of  

Y l, Y2 . . . . .  Yk-1 and thus a random variable itself. 

4. F u n d a m e n t a l  T h e o r e m  o f  A s s e t  P r i c i n g  

In this paper  we assume that the market is frictionless and trading is continuous.  

There are no taxes, no transaction costs, and no restriction on borrowing or short sales. 

All securities are perfectly divisible. It is now understood that, in such a security market  

model ,  the absence of  arbitrage is "essentially" equivalent to the exis tence of  a risk- 

neutral measure or an equivalent martingale measure, with respect to which the price of  

a random payment  is the expected discounted value. Dybvig and Ross [DR87] call this 

result the Fundamental Theorem of Asset Pricing. In general,  there may be more  than 

one equivalent martingale measure. The merit o f  the risk-neutral Esscher  measure  is that 

it provides a general,  transparent and unambiguous solution. 

That the condit ion of  no arbitrage is intimately related to the exis tence of  an 

equivalent  martingale measure was first pointed out in Harrison and Kreps [HK79] and 

Harrison and Pliska [HP81 ]. Their results are rooted in the idea of  risk-neutral valuation 
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of Cox and Ross [CR76]. In a finite discrete-time model, the absence of arbitrage 

opportunities is equivalent to the existence of an equivalent martingale measure 

([CMW90], [Sc92a]). In a more general setting the characterization is delicate, and we 

have to replace the term "equivalent to" by "'essentially equivalent to". It is beyond the 

scope of the present paper to discuss the details. Some recent papers are [Ba91], [BP91 ], 

[CH89], [De92], [DS94a], [DS94bl, [Mti89], [Sc92b], [Sc94], [Scw92] and [St93]. 

We note that the idea of changing the probability measure to obtain a consistent 

positive linear pricing rule had appeared in the actuarial literature in the context of 

equilibrium reinsurance markets ([Bo60], [Bo90], [BiiS0], [Bii84), [CM941, IGe87], 

[Li86], [So91]). 

5. Cont inuous-Time Stock-Price Models  

In the rest of the paper we consider continuous-time stock-price models. For 

t >_ 0, let S(t) denote the price at time t of a non-dividend-paying stock. We assume that 

there is a stochastic process {X(t)} with independent and stationary increments such that 

S(t) = S(O) e X(t), t>_O. (5.1) 

For a theoretical "justification" that stock prices should be modeled with such processes, 

see Samuelson [Sa65] or Parkinson [Pa77]. (Some authors call {X(t)} a I_~vy process.) 

We assume that the moment generating function of X(t), 

M(h, t) = E[ehX(t)], 

exists and that 

M(h, t) = M(h, 1)t. (5.2) 

The process 

{e hX(t) M(h, 1) -t } (5.3) 

is a positive martingale and can be used to define a change of probability measure, i.e., it 

be used to define the Radon-Nikodym derivative _~_, where P is the original can 
dP  
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probability measure and Q is the Esscher measure of parameter h. The risk-neutral 

Esscher measure is the Esscher measure of parameter h = h* such that the process 

{e -6t S(t)} (5.4) 

is a martingale. 

The condition 

yields 

o r  

E[e ~ t  S(t); h*] = e ~50 S(O) = S(0) 

e 8t = E[e(l+h*)x(t) M(h*, 1) -t] 

= [M(I +h* ,  l) /M(h*, 1)] t, 

e 8 = M(I  + h*, 1)/M(h*, 1), (55 )  

which is analogous to (3.7) with {Yk} being identically distributed. The parameter h* is 

unique. There may be many other equivalent martingale measures. 

Because, for t _> O, 

e hX(t) M(h, l)-t - e hx(t) - S(t)h (5.6) 
E[ehX(t)] E[S(t)h] ' 

we have the following: Let g be a measurable function and h, k and t be real numbers, 

t > 0; then 

E[S(t) k g(S(t)); hi = E[S(t) k g(S(t)) ehX(t) M(h, 1) -t] 

E[S(t) h+k g(S(t))] 

E[S(t) h] 

E[S(t) h+k] E[S(t) h+k g(S(t))] 

E[S(t) h] E[S(t) h+k] 

= E[S(t)k; hi E[gCS(t)); h + k]. (5.7) 

This factorization formula simplifies many calculations, and is a main reason why the 

method of  Esscher measures is an efficient device for valuing certain derivative 

securities. For example, applying (5.7) with k = 1, h = h* and g(x) = I(x > K) [where 

I(A) denotes the indicator random variable of an event A], we obtain 
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E[S(x) I(S(x) > K); h*l = E[S(x); h*] E[I(S(x) > K); h* + 1] 

= E[S(x); h*] Pr[S('c) > K; h* + 1] 

= S(0)eSX PrlS(x) > K; h* + 1]. (5.8) 

The  last equal i ty  holds because (5.4) is a mart ingale  with respect  to the r isk-neutral  

Esscher  measure.  Thus  we have a pricing formula for a European call option on a non-  

d iv idend-paying  stock, 

E[e ~Sx (S(~) - K)+; h*] 

= EIe -Sx iS(x) - K) I(S(z) > K); h*] 

= e~SX{EIS(x) I(S(z) > K); h*] - KE[I(S(z)  > K); h*]} 

= S(0)Pr[S(x) > K; h* + 1] - Ke-fXPr[S( '0 > K; h*]. (5.9) 

For  {X(t)} be ing  a Wiener  process, (5.9) is the celebrated Black-Scholes  formula  [BS73];  

see also (9.20) below. 

6. Representative Investor with Power Utility Function 

W h e n  there is more  than one equivalent  mart ingale  measure,  why should the 

option price be the expectat ion,  with respect to the risk-neutral Esscher  measure,  of the 

d iscounted  payoff?  This  part icular  choice may be just i f ied within a utility funct ion 

f ramework.  Consider  a s imple economy with only a stock and a risk-free bond  and their  

der ivat ive  securities.  There is a representat ive investor  who  owns m shares of  the stock 

and bases  his decis ions on a r isk-averse utility function u(x). Consider  a der ivat ive  

security that provides  a payment  of rt(x) at t ime x, x > 0; 7z(x) is a funct ion of the stock 

price process  until  t ime I:. Wha t  is the inves tor ' s  price for the der ivat ive security,  such 

that it is opt imal  for h im not to buy or sell any fraction or mult iple  of  it'? Let V(0)  denote  

this price. Then,  mathemat ical ly ,  this is the condi t ion that the funct ion 

d~(rl) = E[u(mS(~)  + q[n(x)  - e'SrV(0)])] (6.1) 

is maximal  for rl = 0. F rom 

~'(0) = 0 
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we obtain 

V(0) = e -'St E[n(x)u'(mS('c))] (6.2) 
E[u'(mS('c))] 

(as a necessary and sufficient condition, since O"(q) < 0 if u ' (x)  < 0). In the particular 

case of a power utility function with parameter c > 0, 

l--c 
X 

u(x) = l - c  

Inx 

we have u'(x) = x -c, and 

if c ~ l  

i f c = l  

V(0) = e -6~ E[n('c)[mS('c)]--c] 

El[mS(x)] --c] 

(6.3) 

= e -6~ E[TWUS('c)--c] (6.4) 

E[S(x) -c] 

Formula (6.4) must hold for all derivative securities. For rt('t:) = S(T) and therefore 

V(0) = S(0), (6.4) becomes 

S(0) = e -'Sx E[S(z)l-~] 
E[S(z) -c] 

= e -6z S(0) M(I - c ,  x) 
M(--c, x) ' 

o r  

e6 _ M ( 1 - c ,  1) (6.5) 
M(--c, I) 

On comparing (6.5) with (5.5), we see that the value of the parameter c is -h*. Hence 

V(0) is indeed the discounted expectation of the payoff rc('c), calculated with respect to 

the Esscher measure of parameter h* = -c.  

By considering different points in time z, we get a consistency requirement. This 

is satisfied if the investor has a power utility function. We conjecture that it is violated 

for any other risk-averse utility function, which implies that the pricing of an option by 

the risk-neutral Esscher measure is a consequence of the consistency requirement. Some 

related papers are Rubinstein [Ru76], Bick ([Bi87], [Bi90]), Constantinides [Co89], Naik 
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and Lee [NL90], Stapleton and Subrahmanyam [SSu90], He and Leland [HL93], Heston 

[He93] and Wang  [Wa93]. 

7. Logarithm of  Stock Price as a Shifted Poisson Process 

Here we consider  the so-called pure jump model.  The assumption is 

X(t) = kN(t) - ct, (7.1) 

where {N(t)} is a Poisson process with parameter 9~, and k and c are constants.  The price 

of  the non-div idend-paying stock is modeled as 

S(t) = S(0)e kN(t)-ct. (7.2) 

There is only one equivalent martingale measure in this model.  

Since 

E[eZN0)] = exp[)~t(e z - 1)], 

we have 

Because 

M(z, t) = E[e zx(t)} 

= E(eztkN(t)- ct]) 

= exp([k(e zk - 1) - zclt). (7.3) 

E[ezX(t); h] - M(z + h, t) 
M(h, t) 

= exp([Xehk(e zk - I) - zclt), 

we see that, under the Esscher  measure of  parameter h, the process  {X(t)} remains a 

shifted Poisson process,  but with modified Poisson parameter )k,e hk. Formula (5.5) is the 

condit ion that 

= ~k.eh*k(e k - 1) - c. (7.4) 

The equivalent  martingale measure is the measure with respect to which {N(t)} becomes  

a Poisson process  with parameter  

~.* = 3~eh*k. 

= ( 8 +  c) / (ek - I).  (7 .5)  
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W e  now show that, by a replicating portfolio argument,  the price of  a der ivat ive 

security is indeed the expectat ion of  its discounted payoff,  with the expectat ion taken 

with respect  to the equivalent  mart ingale measure.  Let V(S(t), t) be the price of  the 

der ivat ive security at t ime t. We  can form a self-f inancing portfolio of  the stock and risk- 

free bond  replicat ing the price V(S(t),  t) through time. Let 

rl = r l (S( t ) , t )  (7.6) 

be the amount  invested in the stock at t ime t and therefore the difference V(S(t),  t) - q is 

the amount  invested in the risk-free bond at t ime t. The amount  r I is such that the 

der ivat ive security price and the portfolio value have equal ins tantaneous change.  By 

consider ing whether  there will be an instantaneous j u m p  in the stock price or not, we 

have the fol lowing two conditions:  

V(Se k, t) - V(S, t) = t ie k - rl, (7.7) 

and 

Vt(S, t) - cSVs(S ,  t) = - c ~  + 8[V(S, t) - rl] 

= 6 v ( s ,  t) - (6  + c )q .  

Formula  (7.7) yields 

(7.8~ 

V(Se k, t) - V(S, t) 
rl = (7.9) 

e k -  1 

Thus  (7.8) becomes  

Vt(S, t) - cSVs(S ,  t) = 6V(S, t) - )~*[V(Se k, t) - V(S, t)], (7. I0) 

where  L* is given by (7.5). 

Now, let W(S(t) ,  t) denote the value at t ime t of  the expected discounted payof f  of 

the der ivat ive security; the expectat ion is taken with respect to the probabi l i ty  measure  

cor responding  to the Poisson parameter  )~*. Let s be a very small  posi t ive number .  By 

the Poisson process assumption,  the probabil i ty that a j u m p  in the stock price will occur  

in the t ime interval (t, t + s) is )~*s + o(s). Thus, condi t ioning on whether  there are stock- 

price j umps  in the interval (t, t + s), we have 

W(S, t) = e-~SS[(l- )~*s)W(Se --cs, t+s) + )~*sW(Se k-cs, t+s)] + o(s), (7.11) 
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o r  

(1 + 8s)W(S,  t) - W(Se  -cs, t+s) = X*s[W(Se k-cs, t+s) - W(Se  -cs, t+s)] + o(s). 

Divid ing  the last equat ion by s and letting s tend to 0 yields 

~SW(S, t) + cSWs(S ,  t) - Wt(S, t) = )~*[W(Se k, t) - W(S, t)], (7.12) 

which is identical to (7.10). Consequent ly ,  the price of the der ivat ive security, V(S(t) ,  t), 

is calculated as the expected discounted payoffs according to the provis ions  of  the 

contract ;  the expectat ion is taken with respect to the measure  cor responding  to the 

Poisson process  with parameter  X*. 

We note that, in construct ing the replicating portfolio, we did not use the 

assumpt ion  that {N(t)} is a Poisson process. Thus Nit)  in (7.1) and (7.2) may be assumed 

to come  f rom a count ing  process;  the equivalent  mart ingale measure  is the measure  with 

respect  to which {Nit)} becomes  a Poisson process  with parameter  )~* given by (7.5). A 

repl icat ing portfol io can be constructed because at each point  of t ime the stock price has 

only two possible  movements ,  both  with known magnitude.  

It is interest ing to consider  the l imiting case where k --~ 0 and c ~ ~ such that the 

variance per  unit  t ime of  {X(t)] in the risk-neutral measure is constant :  

~ . k  2 _ 8 + c k 2 = c~2. (7.13) 
e k -  1 

This  is the classical lognorma[ model.  | n  the limit (7.9) becomes  

rl = SVs(S,  t), 

showing  that the ratio, r~(S(t), t)/S(t), is given by Vs(S(t) ,  t), which is usually called delta 

in the option literature. Also, by means  of the Taylor  expansion,  we have 

?,,*[V(Se k, t) - V(S, t)] 

= X*l(e  k -  I )SVs(S,  t) + [(e k -  I )S]2Vss(S ,  0 /2  + O(k3)} 

= (8 + c)SVs(S,  t) + •2S2Vss(S,  0 /2  + O(k). 

Thus  in the l imit (7.10) becomes  
2 

Vt(S, t) = 8V(S, t) - ?bSVs(S, t) - ~"-S2Vss(S,  t). (7.14) 
Z 
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This partial differential equation was first derived by Black and Scholes [BS73] with a 

replicating portfolio argument. 

8. Extension to Dividend-Paying Stocks 

The results in Section 5 can be extended to the case where the stock pays 

dividends continuously, at a rate proportional to its price. In other words, we assume that 

there is a nonnegative number q) such that the dividend paid between time t and t+dt is 

q0 S(t) dt. (8.1) 

(The number ~ may be called the dividend-yield rate.) If all dividends are reinvested in 

the stock, each share of the stock at time 0 grows to e¢ t shares at time t. The risk-neutral 

Esscher measure is the Esscher measure of parameter h = h* such that the process 

{e-(6-~p)tS(t) } (8.2) 

is a martingale. Condition (5.5) now becomes 

e S ~  = M(I +h* ,  l)/M(h*, 1). (8.3) 

Since 

E[S('U; h*] = S(0) e( ~-  q~)~, (8.4) 

the European call option pricing formula (5.9) is generalized as 

E[e -6~ (S('r) - K)+; h*] 

= S(O)e-~ °r Pr[S(~) > K; h* + 1] - Ke -6x Pr[S(z) > K; h*]. (8.5) 

Formula (8.5) may also be used to price currency exchange options, with S(z) denoting 

the spot exchange rate at time x, 8 the domestic force of interest and q~ the foreign force 

of interest. For {S(t)} being a geometric Brownian motion, (8.5) is known as the 

Garman-Kohlhagenformula; see also (9.20) below, 

We can extend the model to more than one dividend-paying stock. For each j, 

j = I, 2 . . . . .  n, let Sj(t) denote the price of stock j at time t, t _> 0, and we assume that there 

exists a nonnegative constant tpj such that stock j pays dividends of amount 

g~j S)(t) at 
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between t ime t and t+dt. Write 

Xj(t) = In[Sj(t)/Sj(0)], 

and 

j = l , 2  . . . . .  n, 

X(t) = (Xt(t) ,  X2(t) . . . . .  Xn(t))'. 

(8.6) 

(8.7) 

Let R n denote the linear space of  column vectors with n real entries, and 

M(z, t) = E[eZ'X(t)], z e R n, (8.8) 

be the moment  generating function of  X(t). We assume that {X(t)}t_> 0 is a stochastic 

process  with independent  and stationary increments and that 

M(z, t) = [M(z, 1)] t, t > 0. (8.9) 

Let h = (hi ,  h2 . . . . .  hn)' e R n for which M(h ,  1) exists. The posit ive martingale 

{e h'X(t) M(h,  1)-t }t_>0 (8.10) 

can be used to define a new measure,  the Esscher measure of  parameter  vector h. The 

risk-neutral Esscher  measure is the Esscher  measure of  parameter vector h = h*  such that, 

for each j, j = 1, 2 . . . . .  n, 

{ e-(fi - cp~)t Sj(t) } (8.11 ) 

is a martingale.  Condit ion (8.3) is generalized as n simultaneous conditions: 

e6-q~J = M ( l j + h * ,  l ) / M ( h * , l ) ,  j = l  . . . . .  n. (8.12) 

Here 

lj = (0 . . . . .  0, 1 ,0  . . . . .  0)', (8.13) 

where the 1 in the column vector lj  is in the j-th position, 

For k = (kl . . . . .  kn)', write 
k l 

= Sl( t  ) . . . S n ( t )  kn. (8.14) S(t) k 

Then 
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E[S(t)kg(s(t)) e h'x(t)] 
E[S(t)kg(S(t)); hi = 

E[e h'x(t)] 

E[S(t)kg(s(t)) S(t) h] 

E[S(t) h] 

E[S(t) k+h] E[g(S(t)) S(t) k+h] 

E[S(t) h] E[S(t) k+h] 

= E[S(t)k; h] E[g(S(t)); k + h], (8.15) 

which generalizes the factorization formula (5.7). An immediate consequence of (8.15) 

and that (8.11) is a martingale under the risk-neutral Esscher measure is 

E[e~StSj(t)g(S(t)); h*] = E[e~StSj(t); h*] E[g(S(t)); h* + lj} 

= Sj(0) e-tP: E[g(S(t)); h* + lj]. (8.16) 

The Margrabe option [Ma78] is the option to exchange one stock for another at 

the end of a stated period, say time x, x > 0. The payoff of this European option is 

[S 1 (1:) - S2(x)]+. (8.17) 

Its value at time 0, calculated with respect to the risk-neutral Esscher measure, is 

E(eASX[S 1(I:) - $2(1:)]+; h*). (8.18) 

Since 

(Sl - s2)+ = SlI(Sl > s2) - s21(sl > s2), 

it follows from (8.16) that 

E(e-~zISl('C) - $2(1:)]+; h*) 

= SI(0)e~P:E(I[SI( 'C) > S2(x)]; h* +11) 

- S2(0)e-"~ x E(I[SI(X) > $2(1:)]; h* + 12) 

= S l ( 0 ) e ~ :  Pr[Sl(x) > S2(x); h* + 11] 

- S2(0)e~X PrISI(1:) > S2('r); h* + 12], (8.19) 

A special case of (8.19) is (8.5). 
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9. Change of Num~raire, Homogeneous Payoff Function and Wiener Process 

Consider  a European  option or derivat ive security with exercise date x and payoff  

I-I(S l('r) . . . . .  Sn(z)). (9.1) 

For example ,  the Margrabe  option has the payoff  function 

I-[(Sl, s2) = (Sl - s2)+. (9.2) 

Let E t [ ]  denote  the expecta t ion condit ional  on all information up to t ime t. For 0 _< t _< x, 

let V(t) denote  the price of the security at t ime t, calculated with respect  to the risk- 

neutral  Esscher  measure,  

V(t) = Et[e -6('t-t) FI(SI(I:) . . . . .  Sn('C)); h*]  

= Et[e-~5(x-t) Sj(z) I-[(S I(x) . . . . .  Sn('t:))/Sj('t:); h*] 

= Et[e~5(x-t) S j(l:); h*] Et[I'I(S i(z) . . . . .  SnU:))/Sj(z); h* + l j ]  

= e~0J(z-t) Sj(t) Et[1-1(S l(X) . . . . .  Sn(I:))/Sj(z); h* + lj].  

Thus  

V(t) - E t [ ~ - [ I ( S I ( ' C )  . . . .  Sn('C)); h *  + l j ] ,  
e% t Sj(t) e% x Sj(xJ ' 

f rom which  it fol lows that, with respect  to the Esscher  measure of  parameter  vector  

h*  + lj, the process  

(9.3) 

v(t) 
(9.4) 

is a mart ingale.  In particular,  with respect to the Esscher  measure  of  parameter  vector  

h*  + l j, the processes  

and 

- eSt 1 
etP: Sj(t) I 

(9.5) 

{e ~P kt Sk(t) 
(9.6) 

e~03 t Sj(t) ] 

are mart ingales.  To explain the denomina tor  e~P:Sj(t), we consider  stock j as a s tandard of  

value or a num~raire, in other  words, there is a mutual  fund consis t ing of stock j only 

and all d iv idends  are reinvested;  all other  securities are measured  in terms of  the value of  

this mutual  fund. See also [GER94].  
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Now, we assume that the payoff  function 11 is homogeneous  of degree one with 

respect  to the j - th  variable,  

1-1(sl . . . . .  sn) = sj r l ( s l / s j  . . . . .  Sj_l/Sj, 1, sj+l/sj . . . . .  Sn/Sj), (9.7) 

which  is a condi t ion  satisfied by (9.2) with both j = I and j = 2. Then  (9.3) becomes  

SI(~:) Sn('t') ); h* + lj] .  V(t) = Et[l"l( . . . .  (9.8) 
e~PJ t Sj(t) e% x Sj('~) ' e¢0i x Sj( '0 

The  r ight -hand side is a condit ional  expectat ion,  with respect  to the Esscher  measure  of  

parameter  vector  h*  + l j, o f  a function of the (n - l ) -d imensional  random vector  

(Xl (x)  - Xj(x) . . . . .  Xj-I(x)  - Xj(x), Xj+I(x) - Xj(x) . . . . .  X n ( X ) -  Xj(x))'. (9.9) 

Consider  the special case that {X(t)} is an n-dimensional  Wiener  process,  with 

1,1, = (I-tl, gt2 . . . . .  I.tn)' and V = (oij) denot ing the mean  vector and the covar iance  matr ix  of  

X(1) ,  respectively.  It is assumed that V is nonsingular .  Because 

M(z,  t) = exp[t(z 'K + l/2z'Vz)], z ~ R n, (9.10) 

we have,  for  h e R n, 

E[eZ'X(t); h] = M(z  + h, t ) /M(h,  t) 

= e x p { t [ z ' ( I J , + V h ) +  l/2z'Vz]}, z E  R n, (9.11) 

showing  that, under  the Esscher  measure  of parameter  vector  h,  {X(t)} remains  an n- 

d imensional  Wiener  process with modif ied mean  vector  per  unit  t ime 

~ +  Vh 

and unchanged  covar iance  matrix per unit t ime V. For k = 1, 2 . . . . .  n, it fol lows f rom 

(8.12) that 

8 -  ~0k = lk ' ( a  + Vh*)  + 1/21k'Vlk, (9.12) 

f rom which  we obtain 

,U,* = E[X( I ) ;  h*]  (9.13) 

= 1,1,+ Vh* (9.14) 

= 81 - ((Pl + 1/20"1 h ~2 + 1/20"22 . . . . .  q~n + 1/20"nn)', (9.15) 

where  
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Also, 

I = (1 ,  1, 1 . . . . .  1)'. ( 9 . 1 6 )  

E[X(1); h* + lk] = Id,+ V(h* + lk) = 1~* + Vlk  

= ~ l  - (q)l - O l k  + 1/2011, ({)2 - O 2 k +  1/2022 . . . . .  q)n-  O'nk + 1/20nn)'. (9.17) 

For  {X(t)} being an n-dimensional  Wiener  process,  (9.9) is a normal random 

vector under the Esscher  measure of  parameter  vector h* + l j, and it fol lows from (9.17) 

that its mean does not involve the force of  interest 8, and of  course its (n - D-dimensional  

covariance matrix, which is the same for all h, does not depend on ~5. Thus  V(t), the price 

of  a derivative security with a payoff  function which is homogeneous  with respect to one 

o f  its arguments,  does not depend on & 

For example,  consider  the European Margrabe option. Here n = 2. Let 

v 2 = Var [Xl ( l )  - X2(I)] 

= Ol1 - 2OI2 + 022, (9.18) 

ln[e-~P~xS'(O) t (9.19) & 

and • denote the standardized normal distribution function. Then (8.19) becomes 

E(e45X[Sl(X) - $2(1:)]+; h*)  

= e-~01zSl(0)O(~('t) + l/2v',/'t ) - e - ~ ' c S 2 ( 0 ) ~ ( ~ ( x ) -  t/2v~x), (9.20) 

which does not depend on ~5. For non-dividend-paying stocks (cpl = ~2 = 0), formula 

(9.20) has been given by Margrabe [Ma78]. Fischer [Fi78] has also derived (9.20) with 

qgl = 0 as a European call option formula; for him, S2(z) is the stochastic exercise price at 

t ime "t. 

R e m a r k s ,  In the model  of  n stocks, the risk-neutral Esscher  measure is the Esscher  

measure  corresponding to the n-dimensional  vector h* such that, fo r j  = 1,2 . . . . .  n, (8.11) 

is a martingale.  Let us now consider modeling only a subset o f  the n stocks, say stock I 

to stock k, k < n. Then the risk-neutral Esscher measure is the Esscher  measure 
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corresponding to the k-dimensional vector h* such that, for j  = 1, 2 . . . . .  k, (8.11) is a 
, 

martingale. To avoid confusion, we write the second h* as h! .  One may wonder how b* 

and h I are related. An explicit answer can be given when {X(t)} is a Wiener process. 

Let P denote the projection matrix from R n onto its first k coordinates, 

P = (I O), (9.21) 

where I is the k-by-k identity matrix and O is the k-by-(n-k) zero matrix. (The 

dimension of P is k by n.) Then the k-by-k matrix PVP'  is the covariance matrix of the 

random vector 

(X~(l), X 2 ( l )  . . . . .  Xk(1))'. 

It now follows from (9.14) that 

o r  

PVh* = PVP'h~,  (9.22) 

¢¢ 
b I = (PVP ' ) - IpVh  *. (9.23) 

There is another way to express the relationship between h* and h I. Let V1 

denote the covariance matrix P V P ' .  Similarly, let V2 denote the covariance matrix of the 

(n-k)-dimensional  random vector 

(Xk+l(l) ,  Xk+2(I) . . . . .  Xn(l)) ' .  

Consider the model consisting only of stock k+l to stock n; let h 2 denote the (n-k)-  

dimensional vector determining the risk-neutral measure in the model. Then 

>(/ ( V|  O h ! 
Vh* (9.24) 

0 V2 , ' 
h 2 

10. Probability of Ruin 

The idea of replacing the original probability measure by an Esscher measure with 

an appropriately chosen parameter has an elegant application in classical actuarial risk 

theory. Let {U(t)} be the surplus process, 

U(t) = u + X(t), (10.1) 
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where u > 0 is the initial surplus, and X(t) the aggregate gains (premiums minus claims) 

up to time t. We suppose that the process {X(t)} has independent and stationary 

increments, satisfies (5.2), and has a positive drift, 

E[X(I)] > O. (10.2) 

Let 

T = inf{t IU(t) < 0} (10.3) 

be the time of ruin. The probability of ruin before time m, m > 0, is 

q/(u, m) = Pr(T < m) = E[I(T < m)]. (10.4) 

Let aAb denote of the minimum of a and b. By a change of measure, 

q/(u, m) = E[I(T < m) e -hx(T^m) M(h, l)T^rn; h] 

= E[I(T < m) e-hX(T) M(h, l)W; hl, (10.5) 

which can be simplified if h is chosen as the nontrivial solution of the equation 

M ( h , I )  = I. (10,6) 

For simplicity we write 

M(h) = M(h, 1). 

It follows from 

M"(h) = E[X(l)2ehX( 1)] > 0 

that M(h) is a convex function. Thus equation (10.6) has at most one other solution 

besides h = 0. Because 

M'(0) = E[X(I)] > 0, 

the nontrivial solution for (10.6) is a negative h. Following the usual notation in risk 

theory, we write this solution of (10.6) as -R. (R is called the adjustment coefficient.) 

With h = -R,  (10.5) becomes 

~(u, m) = E[I(T < m) eRX(T); -R]. (10.7) 

The probability of ruin over an infinite horizon is 

~(u) : ~(u, oo) 

= E[I(T < oo) eRX(T); -R]. (10.8) 
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Now, 

E[X(t ) ; -RI  = E[X(l) e-e-x0)] 

= M'(-R) 

< 0, 

because M is a convex function. An aggregate gains process with a negative drift means 

that ruin is certain. Thus, under the Esscher measure of parameter-R, 

I(T < oo) = 1 

almost surely, and (10.8) simplifies as 

V(u) = E[eRX(T);-R] 

= E[eRU(T);-R]e -Ru. (10.9) 

This approach to the ruin problem can found in Chapter XII of Asmussen's book 

[As87] and he has attributed the idea to yon Bahr [vB74] and Siegmund [Si75]. Formula 

(10.9) should be compared with (12.3.4) on page 352 of Actuarial Mathematics 

[BGHJN86], 

u/(u) = e-RU 

E[e -RucI3 J T < ~o]' 

where the conditional expectation in the denominator is taken with respect to the original 

probability measure. 

11. Perpetual American Options on Two Stocks 

The actuarial concept of the adjustment coefficient turns out to be the right tool 

for pricing certain American options without expiration date. In this section we consider 

two stocks with positive dividend-yield rates. For k = (kl, k2)' ~ R 2, we write 

k I k 2 
S(t) k = Sl(t) S2(t) 

[the same notation as (8.14)]. The condition on k so that the process 

{ e~StS(t) k } t _> 0 ( 11.1 ) 

becomes a martingale under the risk-neutral Esscher measure is: 

321 



e~tE[ek 'Xtt) ;  h*] = 1. 

Actual ly,  we are only interested in k of the form 

C0, I - 0)', 

Wi th  the definit ion 

f (0 )  = e~S E(exp [ 0Xl ( l )  + ( 1 - 0 ) X 2 ( l ) J ; h * ) ,  

condi t ion  (11.2) becomes  

f (0 )  = l, 

which  is ana logous  to (10.6). Because 

f (0 )  = e-SE[e x2(l)] = e - ~  < I, 

f (1 )  = e-6E[e x~(l)] = e-tP ~ < I 

and 

(11.2) 

(11.3) 

(I i .4) 

() 1.5) 

f " (0 )  = e 4 E ( [ X I ( I )  - X2(I)]  2 exp[0Xl (1 )  + (1 - 0 ) X 2 ( I  )]; h* )  > 0, 

we gather  that equat ion (I 1.5) has, under  fairly mild regularity condit ions,  exactly two 

solutions,  00 < 0 and 01 > 1. [Equation (10.6) also has two solutions,  0 an -R. ]  Thus,  for 

i = O, 1, the process 

(Sl(t)/°'. t ~ 0} (l 1.6) { e ~ t  S2(t) ~S2(t)] ' 

is a mart ingale  with respect  to the risk-neutral Esscher  measure.  

For  the rest of  this paper  we assume that { X(t)} is a two-dimens ional  Wiene r  

process,  so that there is only one equivalent  mart ingale  measure,  and {S l(t)} and {S2(t)} 

have continuous sample paths. With ~* given by (9.13) (n = 2), we have 

E[ek 'X(1) ;h  *] = exp(k'l~* + l /2k 'Vk).  (11.7) 

Hence  (11.4) becomes  

f (0 )  = exp[- I /2v28(1 - 0) - q)10 - q~2(l - 0)], 

where  v 2 is def ined by (9.18). Equat ion (11.5) is now equivalent  to the quadrat ic  

equat ion:  

1 /2V20(1-0)  + q)lO + ( p 2 ( 1 - 0 )  = O. (11.8) 
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Again it is clear that one root is less than zero and the other greater than one. The roots 

are 

and 

where 

and 

00 = m - ,5 (11.9) 

01 = m + A, (11.10) 

1 cpl tp2 
m = 3 + (11.11) 

2 V 2 V 2 

4 c o  2tp2 ~ = 2+ ~ 

4, ( ; q~l t'P2 (Pl -(P2 
= 1 + ~ "  + ~ -  + V ~ (11.12) 

Note that A is symmetric with respect to the parameters of the two stocks, but m is not. 

The roots 00 and 01 do not depend on the force of interest 8. Also, 00 + 0l = 1 if and 

only if Cpl = ~2. 

We are interested in the pricing of a perpetual American option whose payoff is 

H(S l(t), S2(t)) if it is exercised at time t. Its price is the supremum, taken over all 

stopping times T, of 

EIe 4 T  H(S 1 (T), S2(T)); h*]. 

We assume that the payoff function l-[(st, s2) is nonnegative and homogeneous of 

degree 1. Thus 

lq(s~, s2) = s 2 r t ( ~ ) ,  

where 

re(x) = H(x ,  I). (11 .13)  

Examples are 

1-I(st, s2) = (st  - s2)+, 

which is the payoff function for the Margrabe option, 

323 



I-I(sl, s2) = Max(sl, s2), 

the payoff function for the maximum option, and 

H(sl ,  s2) = I s l - s 2 1 ,  

the payoff function for the symmetric Margrabe option. 

Because of the homogeneity assumption it suffices to consider stopping strategies 

where the decision to exercise the option or not at any time t depends only on the ratio of 

S l(t) to S2(t). Then, under some fairly general conditions, we can restrict ourselves to 

stopping times of the form 

Tb,c = inf{t[ Sl(t) Sl(t) = c} (11,14) S2(O : b or S ~  ' 

0 < b < S1(0)/$2(0) < c. For simplicity we write SI = SI(0) and $2 = $2(0). The value of 

the option-exercise strategy is 

V(SI, $2; b, c) = E[e~STb.c ]-I(S l(Tb,c), S2(Tb,c)); h*]. (11.15) 

S 
2 

S = b S  
1 2 

Exercise R e g i o n /  

FI(St' $2) / S 

/ V(S l ,S2;b,c) ] = cS 2 

/ C ° n t i n u l a t i ~ n  

Exercise Region 

S 
1 

3 2 4  



and 

With the definitions 

~(SI, $2; b, c) = E(e-SYb,c S2(Tb,c) I[Sl(Tb,c) = bS2(Yb,c)]; h*) (11.16) 

~SI ,  $2; b, c) = E(e~Tb,c S2(Tb,c) I[Sl(Tb,c) = cS2(Tb,c)]; h*), (11.17) 

(11.15) becomes 

V(S1, $2; b, c) = x(b)[3(Sl, $2; b, c) + ~:(c)~(Sl, $2; b, c). (11.18) 

To determine the expectations [3 = [~(S t, $2; b, c) and 7= ~(S1, $2; b, c), we stop the two 

martingales (11.6) at time Tb,c and apply the optional sampling theorem. This leads to 

the equations 

and 

$2(S1/$2) °o = I~bOo + 7cOo 

82(51/52) 01 = 13b 01 + "/c0J. 

~' b0~ cO, I ~S2(Sv'S2)°~] 
(11.19) 

Their solution is 

The optimal option-exercise ratios b = b and c = F. are obtained from the first order 

conditions 

Vb(Sl, $2; b, c) = 0 (11.20) 

and 

Vc(Sh $2, b,~) = 0, (11.21) 

where the subscripts denote partial differentiation. Here we assume that Vo > 0 and E < oo. 

We shall see that b and E depend on neither S 1 nor $2. Since matrix notation facilitates 

the further discussion of (11.20) and (11.21), we define the vector-valued functions: 

f(Sh $2; b, c) = (I](SI, $2; b, c), 2(S1, $2; b, c))', (11.22) 

g ( x )  = (x  0o, xO]) ' (11.23) 

and 
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h(Xl, x2) = x2g(~) .  

With these definitions, we can rewrite (1 I. 19) as 

f(Sl, $2; b, c) = (g(b) g(c))-Ih(Sb $2), 

and (11.18) as 

Hence 

V(Sl, $2; b, c) -- (~(b) ~(c))ff~l, $2; b, c). 

( 11.24) 

(11.25) 

(I 1.26) 

V(S1, $2; b, c) = (n(b) n(c))(g(b) g(c))-Ih(S1, S2). (11.27) 

To find the partial derivatives of V with respect to b and c, we need the partial 

derivatives of the inverse of the matrix (g(b) g(c)). Let A be an invertible matrix with 

elements that are functions of a parameter. If we differentiate the identity 

A-JA = I 

with respect to the parameter, we get 

(A-I)'A + A-IA ' = O, 

or 

(A ])' = -A- IA 'A  -1. 

Thus, differentiating ( 11.25) with respect to b yields 

fb(S], $2; b, c) = -(g(b) g(c))-J(g'(b) 0)(g(b) g(c))-lh(Si, $2) 

= -(g(b) g(c))-l(g'(b) O)f(S1, $2; b, c) 

= -13(Sl, $2; b, c)(g(b) g(c))-Ig'(b). (11.28) 

It now follows from ( 11.26) that 

Vb(SI, $2; b, c) = (~:'(b) O)f + (re(b) ;~(c))fb 

= 13($1, S2;b, c)[n'(b) - (r~(b) n(c))(g(b) g(c))-~g'(b)]. (11.29) 

Similarly, 

Vc(Sl, S2;b ,c)  = "/(St, S2;b,c)[n'(c) - (~(b) 7t(c))(g(b) g(c))-Ig'(c)]. (11.30) 

Because [3 > 0 and 7> O, the first order conditions (11.20) and (11.21) are equivalent to 

the matrix equation 

(n(b) rt(~))(g(]~) g(~z))-l(g,(~) g,(~)) = (rc'(b) r~'(~)). (11.31) 
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With (11.31) we can determine the optimal option-exercise ratios b and ~, which depend 

on neither SI nor $2. The price of the perpetual option is 

V(S~,S2;b,c-3 b<-SffS2-<~ 

FI(SI, $2) otherwise (11.32) 

where V is given by (11.27). 

12. High Contact or Smooth Pasting Condition 

The first order conditions (11.20) and (l 1.21) are closely related to the high 

contact condition in the finance literature [Sa65] and the smooth pasting condition in the 

optimal stopping literature ([Sh78], [SS93]). Also see Dixit [Di93]. In the present 

context, it means that the gradients of the option-price function V(-, - ; b, 6) and the 

payoff function l - I ( ,  • ) coincide on the optimal option-exercise boundaries 

S 1 = bS2 and St = ~$2, i.e., for SI > 0, $2 > 0, 

Vs,(bS2, $2; b, c) = [1sx(bS2, $2), (12.1) 

Vs2(bS2, $2; b, ~) = l-ls2(bS2, S2), (12.2) 

VS,(~'S2, $2; b, ~) = I-lS~(~S2, $2) (12.3) 

and 

Vs2(~s2, s2; b, ~) = l-Is2(eS2, S2). 

To see this, let v denote the row vector 

(rt(b) n(~))(g(b) g(~))-l, 

which depends on neither S I nor $2. Then 

V(Sj, S2; b, ~) = vh(Sl, S2), 

and ( 11.31 ) becomes 

Because 

and 

v(g'(b) g'('d)) = (~'~) g'(~)). 

FI(SI,S2) = $2~(Sl/S2) 

(12.4) 

(12.5) 

(12.6) 

(12.7) 
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we have 

and 

h(Sl, $2) = S2g(SI/S2), 

l-lsr(Sb $2) = rt'(Sl/S2) 

hs~(SI, S2) = g'(S1/S2). 

Now (12.1) and (12.3) follow from (12.6) and (12.7). 

Similarly, (12.2) and (12.4) can be obtained from (12.6), (12.7), 

[Is2(S1, S2) = rc(Sl/S2) - (S l/S~)~'(St/S2), 

hs2(Sl, $2) = g(Sl/S2) - (SI/S2)g'(SI/S2) 

and 

v(g(~) g(~)) = (~t(~) n(~)). 

Remark.  We note that the common gradient, along the line SI = bS2, is the constant 

vector 

(~'(b), ~:(b)- bTf(b))', 

and, on the line S I = ~$2, is the constant vector 

(~'(~), ~ (~ ) -  ~'(~)) ' .  

13. Perpetual Margrabe Option 

An interesting limiting case of (11.32) is the pricing formula for the perpetual 

American Margrabe option. Here, b = 0 and 

_ 0! (13.1) 
0 ! - 1  

The current price of the option is 
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V(S l, $2; O, 6) 

W(S I ,S 2) = S1 - S 2 

if SI/S 2 < 6 

if S1/S 2 > 

1 2 

S S 
2 

if < 0 - 1  
1 1 

S S 
if _JL > 2 

0 - 0 - 1  
1 1 

(13.2) 

We remark that special cases of the Margrabe option are the call and put options. 

Also, { X(t) } need not be a Wiener process for the pricing formula (13.2) to be valid: let 

{X(t)} be a process with stationary and independent increments, satisfying (8.9); if 

{Xl(t) - X2(t)} is a skip-free (jump-free) upward process, then (13.2) is a pricing formula 

for the perpetual American Margrabe option. 

14. Forward and Futures Price of the Perpetual Margrabe Option 

We conclude this paper by deriving the forward price and futures price of the 

perpetual Margrabe option. Because of the constant interest rate assumption, these two 

prices are the same. The current price of the perpetual Margrabe option is given by 

(13.2), 

~ 0 1 e l - 0 J l ( S l / S 2 <  c) + (S1-$2)I(c<Sl1S2),  (14.1) W(SI 'S2)  = ~°1 J2 

where S l and $2 are the current stock prices and 

0 = ( 0 1 - 1 )  °~-I  
(14.2) 

0101 

The m-year forward/futures price of the perpetual option is 

E[W(S l(m), S2(m)); h*] = ®E[S](m)°~S2 (m) 1 - 0~ I(S l(m)/S2(m) <- ~); h*] 

+ E[(SI(m) - S2(m)) I('6 < Sl(m)/S2(m)); h*]. (14.3) 

Applying the factorization formula (8.15) and that {e ~St S~(t) 0~ S2(t) 1 -0~ } is a martingale 

under the risk-neutral measure, we have 
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E[S l(m)°~S: (m) J - 0~ I(S i(m)/S2(nl) <_ c); h*] 

= E[SI(m)0~S2(m)I -0~; h*] E[I(SI(m)/S2(m) <_ ~); h* + t e l ,  1 - 01)'] 

r.Sm~Otc I 01 = ~ ~'f "2 Pr[Sl(m)/S2(m)_< ~ ; h * + ( 0 1 ,  1 -01) ' ] .  (14.4) 

Similarly, 

E[(SI(m) - S20n)) 1~ < Sl(m)/S2(m));  h*] 

= E[SI(m);  h*]  EII(E < Sl(m)/S2(m));  h* + (1,0) ']  

- E[S2(m}; h*] E[I(~ < Sl(m)/S2(m));  h* + (0, 1)'] 

= e (6 ~ ' n S  1Pr[c" < S I (m) /S2(m);  h* + ( I, 0)'l  

- e (~5 - tP~)mS2Pr[e < S l(m)/S2(m); h* + (0, I )']. (14.5) 

Let us illustrate (14.3), 414.4) and (14.5) with a perpetual put option on a non- 

dividend-paying stock with a constant exercise price K. Thus we consider  

Sl ( t )  ~ K, o" I = 0 , ~ o  I = 8 ,  

S2(t) ~- S(t), er e = er, q92 = 0. 

[Recall that S(t) = S(O)e x{t), where {X(t)} is a Wiener process with variance per unit t ime 

02.] Equation (11.8) simplifies as 

I /2(~20(1-0) + 80 = O, (14.6) 

yielding 

By (13.1) 

. ¢ith the definition 

equation (14,5) becomes  

O] = I + 2~. (14.7) 
er2 

- 0 2 + 2 6  (14.8) 

25 
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E[(K - S(m)) I(~ < K/S(m)); h*] 

= KPr[X(m) < ~¢; h*] - eSmS(0)Pr[X(m) < K; h* + 1 ] 
(~2 (~2 

- ( 8  - - ~ - ) m .  - ( 8  + y ) m  
= KO(- c7/-~ ) - eSms(0)O(~: ~ f ~  -)' 

where ~ is the standardized normal distribution. 

Also, 

The probability term in (14.4) is 

Pr[X(m) > ~¢; h* + 1 - 01] = Pr[X(m) > K:; h* - ~22 ] 
% J  

- ( - f i  - (r2 
= 1 - O(- m T )  ) 

o4i:i5 
o 2 

-l~ - (8  + ~ - ) m  
= o (  z ). 

0455 

OKO, S(0)I -01  = K [  K / 0 ' - 1  

01 ~ !  
_ c2K exp(26K/o2). 

o 2 + 26 

It follows from (14.3), (14.4), (14.11), (14.12) and (14.10) that the m-year 

futures/forward price of  the perpetual Margrabe option is: 

0 2 
o'2K exp[8(m + 2-K~)]qb( -K -  (8 + T)m) 

0 2 + 28 cz  oV~ 
(52 2 

1¢ - (6 - -~-)m S(0)e&n~(K - (6 + y)m~_4m_ 
+ KO( (s fro ) - )" 

Another derivation of (14.1 3) can be found in Gerber and Shiu [GS931. 

(14.10) 

(14.11) 

(14.12) 

(14.13) 
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