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Abstrac t  : 

A fairly popular and well-studied alternative to the standard Poisson distribution is the 

Lagrangian-Poisson distribution (Johnson, Kotz and Kemp 1992, p. 189), also known as the 

generalized Poisson distribution (GPD), which was introduced to the statistical literature by 

Consul and Jain (1973). The GPD is preferred over the Poisson distribution when the data 

exhibit substantial extra-Poisson variation, or overdispersion, relative to a Poisson model. 

This distribution has previously been considered within the actuarial context by Consul 

(1990), Gerber (1990), Goovaerts and Kass (1991), Kling and Goovaerts (1993), and 

Ambagaspitiya and Balakrishnan (1994). This paper considers the Bayesian analysis of the 

GPD and the generalized Poisson regression (GPR) model. Markov chain Monte Carlo 

(MCMC) methods and random variate generation strategies such as adaptive rejection sam- 

pling (ARS) for log-concave densities and adaptive rejection Metropolis sampling (ARMS) 

are discussed and then utilised in order to advance the Bayesian analysis of these general- 

ized Poisson models. 
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1. Introduction. 

The assumption of a Poisson distribution is a popular one when it is necessary to 

analyse a set of random count data. But since the equality of the mean and variance charac- 

terizes the Poisson distribution within the class of power series distributions with non-zero 

probabilities over all non-negative integers, it is sadly the case that this distribution is often- 

times a poor choice when it is known or suspected that the random counts exhibit substantial 

extra-Poisson variation, or overdispersion, relative to a Poisson model. This shortcoming of 

the Poisson distribution is also a concern in the context of Poisson regression, when the 

mean of the response variable is affected by a number of explanatory variables. For this rea- 

son, numerous authors have proposed tests for detecting overdispersion in Poisson models 

(e.g. Collings and Margolin 1985; Dean and Lawless 1989; Dean 1992; Ganio and Schafer 

1992; Lambert and Roeder 1993) and others have proposed models accommodating over- 

dispersion (eg. Lawless 1987; Dean, Lawless and Willmot 1989; Consul and Famoye 1992; 

Famoye 1993). 

A fairly popular and well-studied alternative to the standard Poisson distribution is the 

Lagrangian-Poisson distribution (Johnson, Kotz and Kemp 1992, p. 189), also known as the 

generalized Poisson distribution (GPD), which was introduced to the statistical literature by 

Consul and Jain (1973). Consul (1989) provided a guide to the current state of modeling 

with the GPD at that time, and documented many real life examples. Consul and Famoye 

(1992) considered a generalized Poisson regression (GPR) model. Recently, the GPD has 

been making appearances in the actuarial literature. Consul (1990) used it in order to model 

the six data sets found in Gossiaux and Lemaire (1981) relating to the number of injuries in 

automobile accidents, and found it to perform at least as well as a number of  traditional dis- 

tributional alternatives. Gerber (1990), Goovaerts and Kass (1991), Kling and Goovaens 

(1993), and Ambagaspitiya and Balakrishnan (1994) have considered the properties of com- 

pound generalized Poisson models. 

One version of the GPD has a probability function given by 

P(Y=Y I 0 , k ) = 0 ( 0 + Y ) ~ )  y - I  (Y ! ) - l e x p ( _ 0 _ y ~ . )  (1.1) 

where 0 > 0 and 0 < L < 1 , for those values of  y on the non-negative integers, and zero 

elsewhere. When 9~ = 0 this distribution reduces to the standard Poisson. It is well-known 

that the GPD has mean 0 ( 1 - ~. ) -  l and variance 0 ( 1 - 2. ) -3  (Consul 1989), and so this 

distribution may be suitable when count data is observed with a sample variance consider- 

ably larger than the sample mean. 
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Often, the random count data are affected by a number of explanatory regressor vari- 

ables. For instance, this is the case when insurance policies are grouped according to the dif- 

ferent levels of various risk factors, and we are modelling the observed number of claims by 

class. In this case it is easy to define a GPR model based upon the GPD. For a sample of size 

n , let the i th response variable be denoted Y i and let x i denote the associated p x 1 

vector of explanatory variables. Given its covariate vector x i ,  let the distribution of Y i be 

that of the GPD with probability function (1.1) with mean E ( Y i [  x i  ;~J, ~,) = 

la ( x i ; I ~ ) = 1 a i > 0 ,  and with secondary parameter ;L. Our assumption is that la ( x i ; ~ ) 

is a known function of x i and an associated p x 1 vector ~ of regression parameters. 

Taking into account that the mean of the GPD is given by p i = 0 ( 1 - Z ) - ~ = 0 ~ ,  the 

corresponding GPR model for the response variable Y i may be written as 

P ( Y i = y i l  xi  ;1~, X) (1.2) 

=Pi  [lai +(  d~- 1 )Y i ] y i - I  (~-Yi (Y  i ! ) - 1  exp { - - [ la i  + ( ~ - -  1 )Yi  ] / (~ } 

where la i > 0 and 0 < X < 1 , for those values o f y  i on the non-negative integers. We note 

in passing that the parameter ¢ = ( 1 - ;L)-  1 represents the square root of the index of 

dispersion, and that the variance of Y i is Var ( Y i [ x i ; I ~ , ~- ) = ~ 2 la i > 0 .  

When we are faced with a random sample that has been generated according to either 

the GPD or the GPR model, it is evident that the likelihood function will be formed as a pro- 

duct of terms of form (1.1) or (1.2), respectively. If we simply combine this likelihood with 

the Bayesian practitioner's prior for the model parameters using Bayes'  theorem, then the 

result will be the posterior distribution. In general, unless the size of the data set is very 

small and the prior density also has a very convenient form, the resulting posterior will not 

have a particularly tractable form for analytical analysis. This is illustrated by Shoukri and 

Consul (1989), who considered a Bayesian analysis of the basic GPD model. At the time, 

the best those authors could supply was a limited form of approximate Bayesian analysis for 

the GPD model requiring the use of Pearson curves along with the assumption that the ratio 

~. / 0 was supported on a finite number of values. 

The purpose of the present paper will be twofold. In the first place, we wish to demon- 

strate how a fully Bayesian analysis of the models presented above may proceed using 

today's very popular Markov chain Monte Carlo (MCMC) procedures. In the second place, 

we wish to take this opportunity to introduce a number of these MCMC procedures to the 

actuarial readership at large. The format of the paper is as follows. In Section 2, basic 
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elements of MCMC methods will be reviewed. In Section 3 we will apply MCMC methods 

in order to conduct illustrative Bayesian analyses of two insurance data sets, one data set for 

each of the GPD and the GPR model. In Section 4 we conclude our presentation, and pro- 

vide directions to a useful storehouse of  information relating to MCMC methods. 

2. Markov chain Monte Carlo and the Gibbs sampler. 

A MCMC method is a sampling-based procedure that may be used in order to generate 

a dependent sample from a certain distribution of  interest. Such a method proceeds by first 

specifying an irreducible and aperiodic Markov chain with unique invariant distribution 

r~ ( x ) equal to the desired distribution of interest (or target distribution), and then simulat- 

ing one or more realisations of this Markov chain on a fast computer. Each path will form a 

dependent random sample from lhe distribution of interest, provided that certain regularity 

conditions are satisfied. These dependent sample paths may then be utilised for inferential 

purposes in a variety of  ways. Specifically, if the Markov chain is aperiodic and irreducible, 

with unique invariant distribution rt ( x ) ,  and X r , X 2 . . . . .  is a realisation of this chain, 

then available asymptotic results (see Tierney 1994 or Roberts and Smith 1994, for exam- 

ple) tell us that 

X t d x  - r ~ ( x )  as t --) oo (2.1) 

and 

1 
h ( X l ) ._.) E n [ h ( X ) ] as t --~ oo , almost surely . (2.2) 

! i = 1  

In the second result above, h is an arbitrary n -integrable real-valued function. Notice that 

if h ( X ) is taken to be the conditional density for some random variable Y given X ,  then 

(2.2) suggests that the marginal density of Y may be estimated at the point y by averaging 

the conditional density f ( y  I X over the realised values X t (see Gelfand and Smith 

1990, pages 402-403). 

The Gibbs sampler is a special kind of MCMC method. It was introduced by Geman 

and Geman (1984) in the context of image restoration, and its suitability for a wide range of 

problems in the field of Bayesian inference was recognised by Gelfand and Smith (1990). 

An elementary introduction to the Gibbs sampler is given in Casella and George (1992), and 
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those readers unfamiliar with the methodology are encouraged to peruse this reference. 

More sophisticated discussions of the Gibbs sampler and MCMC methods in general are 

given in Chib and Greenberg (1994b), Neal (1993), Smith and Roberts (1993), and Tierney 

(1994). Basically, the Gibbs sampler constructs a Markov chain by using the full conditional 

distributions associated with the target distribution to define the transition probabilities in 

the Markov chain. Specifically, let us now interpret the target distribution as a joint distribu- 

tion for k blocks of random variables, that is, /t ( x )  corresponds to 

g ( x l , x 2 ,  " ' "  , x k ) .  Let the notation ~t ( x j I x t , " ' "  , x j - i  , x j + l  , " "  , x k ) 

represent the full conditional distribution of the j th block of variables, x j , given the 

remaining blocks. Then when we speak of a Gibbs sampler, we are actually referring to an 

implementation of the following iterative sampling scheme : 

1. Select initial values x~°>=(x l °~ ,x~°~  . . .  , x~°~ ) .  

Set i = 0 .  

2. Simulate the sequence of random draws 

x','*' - ~ ( x ,  x~",x~ ~' . . . , x ~ " )  

x~'*' - n ( ~  x~ '+'~ x <'~ . ' . , x ~ " )  

x~ '+' - r ~ ( x , ,  x~ ' + ' ' , x ~ ' * ' ' ,  . . .  , x  ''+'~,,_, ) 

3. Set i ~ i + 1 and return to step 2. 

It may be shown to follow directly from the definition of the Gibbs sampling algorithm that 

the target distribution ~ ( x ) is an invariant distribution of the Markov chain so defined by 

any implementation of the Gibbs sampler (see Tierney 1994 or Chib and Greenberg 1994b, 

for example). In order to ensure that a particular implementation of the Gibbs sampler is 

such that results (2.1) and (2.2) hold, any one of a number of sets of sufficient conditions 

may be checked. One convenient such set is provided by T h e o r e m  2 in Roberts and Smith 

(1994). This theorem is essentially as follows below : 
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Suppose  that (i) g (  x ) = - g (  x ! , x  2 , " '" , x  k ) is domina ted  with respect  to n- 

d imens iona l  Lebesgue  measure,  1 < k < n ; (ii) ~ ( x ) > 0 implies  that there exists  

an open ne ighbourhood  N x containing x and  e > 0 such that, f o r  all  y ~ N x ,  

l ~ ( y  ) > e > O ;  (iii) S l t ( x  ) d x  j is locally bounded  f o r  j =  1,  . . .  , k  ; and  (iv) 

the suppor t  o f  x is arc  connected.  Then results (2.1) and  (2.2) obtain. 

Although the result in the paragraph above allows us to check the theoretical conver- 

gence of a Gibbs sampler, there are important practical considerations which must be taken 

into account when designing and implementing a Gibbs sampler. For one, it is apparent that 

the blocking of the variables is dependent upon the choice made by the practitioner. Intui- 

tively, the simplest and most naive implementation of a Gibbs sampler would be obtained 

by taking each block of random variables to be a single variable, so that each required draw 

from a full conditional distribution is a univariate one. However, the simplest implementa- 

tion is not necessarily the best. When a number of variables are strongly correlated, for 

example, this naive implementation will result in a Markov chain with autocorrelations that 

are slow to die out. In this case, convergence is improved by blocking highly correlated 

variables together (see Liu et al 1994). Another useful concept when implementing a Gibbs 

sampler is the idea of data augmentation (Tanner and Wong 1987) which amounts to adding 

variables to those originally in the model specification in order to simplify the form of other- 

wise intractable full conditional distributions. Finally, when implementing a Gibbs sampler, 

or any other MCMC method, it is of paramount importance to monitor the convergence of 

the algorithm. This may be done using either ad hoc methods or rather formalized tech- 

niques. As examples of the former, we might monitor empirical moments or quantiles for 

the sample paths of  several variables or functions thereof until these quantities stabilize. 

Examples of the latter include the convergence diagnostics of Gelman and Rubin (1992), 

Raftery and Lewis (1992), Ritter and Tanner (1992), and Zellner and Min (1993). The 

review paper by Cowles and Carlin (1994) describe these convergence diagnostics along 

with numerous others. 

In passing, we remark that the Gibbs sampler has already made several appearances 

within the actuarial literature to date. Carlin (1992a) utilised the Gibbs sampler in order to 

study the Bayesian state space modeling of non-standard actuarial time series, and Carlin 

(1992b) utilised the Gibbs sampler in order to develop various Bayesian approaches to gra- 

duation. Klugman and Carlin (1993) also utilised the Gibbs sampler in the arena of Bayesian 
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graduation, this time concentrating on a hierarchical version of Whittaker-Henderson gra- 

duation. Scollnik (1993) studied a simultaneous equations model for insurance rate-making, 

and conducted a Bayesian analysis of this model by making use of the Gibbs sampler. Dis- 

cussions of specific convergence diagnostics appear in Carlin (1992a) and Scollnik (1993). 

The idea of data augmentation plays a central role in Scollnik (1993) as well. 

3. Two Illustrative Analyses. 

At this juncture, we return to a consideration of the generalized Poisson models 

presented in Section 1. We will examine two actuarial data sets assumed to have been gen- 

erated according to these models, and discuss their respective Bayesian analyses using 

MCMC methods. 

3.1 Number of Injuries in Automobile Accidents. 

First of all, we turn our attention to one of the six data sets presented by Gossiaux and 

Lemaire (1981) relating to the number of injuries in automobile accidents. These data sets 

are all overdispersed, and Consul (1990) previously determined that model (1.1) fit these 

data sets at least as well as a number of traditional distributional alternatives. In this section, 

we consider a Bayesian analysis of this model for the Zaire (1974) data. This data is 

presented in Table 1 for the reader's convenience, along with the first two sample moments  

and Consul 's  (1990) maximum likelihood estimates. 

The likelihood function for a sample Y = ( y ] , 

l ( 0 , ~ 1  Y )  o, 0 n e x p ( - n 0 - Z k  

"" , Yn ) from (1.1) will be of form 

~] ( O + y i ~ ) y i - I  (3.1.1) 

i=1 Yi ! 

where Z = y j  + " "  +yn . A Bayesian analysis proceeds in the obvious manner by first 

assigning a prior distribution to 0 and ~,, and then deriving the posterior distribution for 

these parameters by means of Bayes'  theorem. If we desire our Bayesian analysis to proceed 

under a diffuse but proper prior density specification, then we might proceed as follows. 

Since the parameter 0 has as its support the real line from 0 to oo, we may assume that the 

prior information available for this parameter can be well modelled by a g a m m a  ( a , b ) 

distribution, for some values of a and b .  This is reasonable, since the shape of the 

g a m m a  density function is very flexible. If we happen to have very little prior information 

concerning 0 available, then we note that the selection ( a = 2 ,  b = 1 ) will result in a 

fairly satisfactory and relatively diffuse prior for 0 .  For most analyses it will be reasonable 
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Table  1. Zaire (1974) automobile accident injury counts. 

k Observat ions 

0 3719 

1 232 

2 38 

3 7 

4 3 

5 1 

6 0 

Total 4000 ; £ =  0.08650 ; s 2 = 0.12255 

ML est imates for the GPD parameters : 0 = 0 .072808,  ~. = O. 158290 

to assume that 0 and k are a priori independent  with k - uniform ( 0 ,  1 ) .  If we adopt 

this specification for the prior distribution, then we will have 

p ( 0 , L )  o~ b ~ 0  ~ - l  e x p ( - b 0 )  (3.1.2) 
F ( a )  

for 0 > 0 and 0 <_ ~. < 1 . Combining  (3.1.1) and (3.1.2) by means of  Bayes '  theorem yields 

the poster ior  distribution 

, , ~  _ n ~ ) y i - 1  
p 0 ~ I Y )  0 " + " - l e x p (  [ n + b ] O - Z X )  FI ( O + y  i (3.1.3) 

i = 1  

for 0 > 0 and 0 _< X < l . It will prove advantageous to make the transformation in variable 

~, = 0 ~ ,  so that we are left with 

p ( 0 , [ 3  ] Y )  • o Z + ~ e x p ( - [ n + b ] O - Z O ~ )  ~I ( l + y , [ ~ ) ) ' ~ - 1  (3.1.4) 
i = l  

for 0 > 0 and 0 _< [3 < 0 I . The form of  (3.1.4) is such that its associated full condit ional  

distr ibutions are particularly well suited for an application of  the Gibbs sampler,  as we now 

explain below. 
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In order to implement the Gibbs sampling algorithm, we need to identify the full con- 

ditional posterior distribution for each parameter, and determine whether random draws 

from these distributions are easily obtained. We observe from (3.1.4) that the full condi- 

tional distribution for 0 is described by 

p ( 0 ]  Y;15)  o~ o Z + a e x p ( - [ n + b + Z 1 5 ] O )  (3.1.5) 

for 0 _< 0 < 15-1 , which is the same as saying that p ( 0  I Y;15)  - 

g a m m a  ( Z + a + 1 , n + b + Z 15 ) but restricted to the interval ( 0 ,  ~ - 1 ) .  Generating a 

random draw from this distribution is a straightforward procedure. As for 15, it is apparent 

from (3.1.4) that this parameter's full conditional distribution is such that 

p ( ~ ]  Y ; 0 )  ~ e x p ( - Z 0 1 ] ) ,  l ~ I = l ( l + y i ~ ) y i - t  (3.1.6) 

for 0 < 15 < 0 - l  . Generating a random draw from this distribution is a slightly more 

complicated task, but it may be accomplished by making use of the procedure set out in the 

paragraph below. 

It is readily apparent that p ( 13 I Y ; 0 ) is continuous and differentiable throughout 

the support of 15, and is also such that 

~ 2 1 n [ p ( [ 3 1  V ; 0 ) ]  = _ 

0152 i = 1  

f o r 0 < [ ~ < 0 - 1  . This result tells us that p ( ~  I Y ; 0  

Yi - 1 ) y i  2 

1 +Yi  13 )2 
(3.1.7) 

is log-concave on the support of 

13, and is strictly log-concave provided that all of the yis do not take on the value 0 or 1 . 

When this is the case, it follows that adaptive rejection sampling (ARS) (Gilks 1992; Gilks 

and Wild 1992; Wild and Gilks 1993) may be utilized in order to effect random draws from 

(3.1.6). When it is the case that every Yi takes on the value 0 or 1, so that strict log- 

concavity fails for (3.1.6) , then it is very doubtful that we would be modelling within the 

GPD framework in the first place. However, let us assume for the sake of argument that we 

were. Then it is evident from (3.1.6) that p ( !3 I Y ; 0 ) - e x p o n e n t i a l  ( Z 0 ) , but trun- 

cated on the interval ( 0 , 0 -  I ) , In this case a random draw from (3.1.6) may be obtained 

by simply making use of the inversion method for truncated distributions (eg. DeVroye 

1986). 

Having determined how independent random draws may be generated from each of the 

full conditional distributions p ( 0  I Y ; ~ )  and p ( ~  I Y ; 0 ) ,  we are now ready to 
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F i g u r e  1 : Est imated Posterior Marginal Densit ies for 0 , 1 3 ,  and ~,. 

8O 

60 

4o! 
20. 

O- 

posterior mean is O.O736 

" "..  is 0.0044 

Y 
0.06 0.07 0.08 0.09 

Estimated Posterior Density for 0 

| . 0 .  

0.8. 

0.6- 

0.4. 

0.2. 

0.0. 

posterior mean is 2.2057 

lor s.d. is 0.3585 

1.0 1.5 2.0 2.5 3.0 3.5 
Estimated Posterior Density for [~ 

15 

10 

5 

0 

POSterior mean is 0.1609 
• % . tot s d is 0.0235 

0. l0 0.15 0.20 0.25 
Estimated Posterior Density for ~, 

invoke the Gibbs  sampling algorithm. For the analysis o f  the Zaire data, we assumed the 

prior densi ty specification as described above ( with a = 2 and b = l ) and then proceeded to 

initiate 20,000 independent  runs of  the Gibbs sampler  based upon the full condit ional  distri- 

but ions (3.1.5) and (3.1.6). Each replication of  the Gibbs sampler  ran for 50 iterations. In 

this s imple two parameter  problem, convergence of  the Gibbs sampler  was nearly immedi-  

ate. Only the last iteration of  each Gibbs sampler  was retained, thus providing us with 

20,000 independent  draws from the posterior distribution of  0 and 15, This random sample  

may be used in order  to make posterior inference with respect to 0 or 13 or with respect  to an 
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arbitrary function of these parameters, such as ~, = 0 15 • In order to do the latter, we need 

simply apply the function of interest to the pairs of sampled values for 0 and ~, thus generat- 

ing a random sample from the posterior distribution for the function of interest. In this way, 

we transformed each of the sampled pairs into a realization on ~, as well. Estimated poste- 

rior marginal density plots for 0 ,  ]3, and ~, based upon the 20,000 simulated draws are 

presented in Figure 1. 

3.2 Ship Damage Incident Data. 

For our next example, we turn to the Lloyd's Register of Shipping ship damage 

incident data as presented in McCullagh and Nelder (1983). This data were also analysed by 

Lawless (1987) utilising a negative binomial model; and by Consul and Famoye (1992) 

employing a GPR model and classical analysis. The ship damage incident data set has as its 

response variable the number of damage incidents for 34 individual ships over various five 

year periods. The type of damage in question is a form caused by waves to the forward sec- 

tion of cargo vessels. The qualitative factors are : ship type (A, B, C, D, or E); year of con- 

struction (1960-64, 1965-69, 1970-74 or 1975-79); period of operation (1960-74 or 1975- 

79). An exposure ( E i ) relating to the aggregate number of months in service is also avail- 

able. The GPR model (1.2) is applicable to this data set. Specifically, we consider an addi- 

tive effects model specification, with binary indicator variables used to represent the main 

effects, and a log-linear form for ~ i ,  namely 

la i = E i e x p ( x T ~ )  . (3.2.1) 

To construct our prior density, we assumed that ]3 and ~. were were a pr ior i  independent, 

with ~ assigned a noninformative constant prior and ~, assigned a uniform prior on the 

unit interval. 

Given the prior density specification described above, our Bayesian analysis then pro- 

ceeded by using adaptive rejection Metropolis sampling (ARMS) and the ARMS-within- 

Gibbs strategy described in Gilks et al (1993). Our final 'presentation' inferences were 

based upon single long runs of length 25,000, following a burn-in period consisting of 5,000 

iterations. However, these inferences were also compared to, and found to be consistent 

with, inferences based upon 5 shorter runs of 5,000 iterations each, with burn-in periods 

consisting of 1,000 iterations. These sampled paths were also monitored for indications of 

convergence through the use of several graphical aids, and the convergence diagnostic of 

Gelman and Rubin (1992). 
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Table  2. Point Estimates for the Ship Damage Incident Data. 

Parameter Posterior Mean Posterior S.D. 

)~ 0.25 0.11 

Intercept - 6.38 0.28 

Ship Type 

A 

B - 0.57 0.23 

C - 0.76 0.43 

D - 0.22 0.43 

E 0.28 0.32 

Year of 

Construction 

1960 - 64 

1965 - 69 0.68 0.20 

1960 - 74 0.80 0.23 

1975 - 79 0.45 0,32 

Service Period 

1960 - 64 

1975 - 79 0.38 0.16 

In Table 2, we provide estimated posterior means and standard deviations for the 

parameters appearing in the GPR model for the analysis described above. One great advan- 

tage and convenience of MCMC based analyses is that the simulated values generated from 

the target posterior distribution for the model parameters may be re-used in order to make 

posterior inference with respect to any function of the model parameters. In the context of 

the present analysis, we might be interested in studying the posterior distribution of the 

mean level function la i defined by (3.2.1) for ships of type A, constructed in 1975-79, 

operated in 1975-79, with 10,000 aggregate months of service. However, !ui is merely a 

function of ~ ,  and so inference with respect to its posterior distribution is readily available 

if we simply translbrm the realised values of 1~ generated by the MCMC into a series of 

realisations on (3.2.1). We have done precisely that, and a plot of the resulting estimated 
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Figure 2 : Plots for the Ship Damage  Incident Analysis  . 
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posterior density for the mean level function Pi of the ships in question is presented in Fig- 

ure 2. If we desire to make 'predictive' inference with respect to the number of damage 

incidents for ( presumably unobserved ) ships of this same class, still with 10,000 aggregate 

months of service, then we may proceed as follows. Provided that the damage incident 

count for these ships is independent of other ship's counts given the model parameters, and 

that it is generated according to the same GPR model, then an estimate of the predictive pro- 

bability mass function (pmf) is obtained by simply averaging (1.2) over the realised values 

of ~ and K generated by the MCMC. An estimate of this predictive pmf is presented in 

Figure 2. 
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4. Conclusions. 

In this paper, we considered how the Bayesian analysis of two overdispersed general- 

ized Poisson models may proceed, The analysis of both models proceeded by way of 

MCMC, making use of ARMS-within-Gibbs when the sampling densities proved to be 

inconvenient from which to implement exact draws. Those readers with access to the com- 

puter internet may wish to contact the MCMC Preprint Service via ftp 

(ftp.statslab.cam.ac.uk) or via a World Wide Web interface like Mosaic 

(www.statslab.cam.ac.uk). Several of the unpublished references mentioned in this paper are 

presently archived there. An expanded version of this paper, describing ARS and ARMS in 

more detail, is available upon request from the author. Electronic correspondence may be 

sent to either scollnik@acs.ucalgary.ca or davids@balducci.math.ucalgary.ca. 
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