ACTUARIAL RESEARCH CLEARING HOUSE
1995 VOL. 1

Manipulating Lagrangian distributions and associated
compound distributions with Maple

Rohana S. Ambagaspitiya
Department of Mathematics and Statistics
University of Calgary
Calgary, Alberta
T2N 1N4, Canada

Abstract

Applications of Lagrangian distributions to modelling claim frequency data in an insurance
portfolio is a relatively new concept. The major difficulty is that the generating functions
of these distributions cannot be expressed in terms of elementary functions. Also deriving
moments and/or cumulants is somewhat tedious. This article illustrates how to use Maple
effectively to overcome these difficulties.

Keywords:

Lagrangian distributions, Binomial distribution, Lambert’s W functionr, Negative Binomial
distribution, Poisson distribution.

1 Introduction

Lagrangian distributions of the first kind have probability functions of the form:

PriX =0] = L{g;f;0) = f(0)
1 d=!
PrX =z = Ligifiz)= oo (@O OO0, 2=12., (L1)
and Lagrangian distributions of the second kind have probability functions of the form:
1-9{(1) dF
PriX =] = _:;!(—}375 (@)Y f(®)} =0, z=0,1,2,..., (1.2)

where g(t) and f(t) are two probability generating functions (pgf) defined on nonnegative
integers such that g(0) # 0; different families are generated by making different choices of
g(t) and f(t). This method of obtaining discrete distributions has been used for many years
since Otter’s (1949) multiplicative process. The potential of this technique has been system-
atically exploited by Consul and his co-workers since the formal introduction of Lagrangian
distributions of the first kind in Consul and Shenton (1972). The Lagrangian distributions
of the second kind were formally introduced by Janadaran and Rao (1983). Recently, a few
members of these families have been used to model the claim frequency data of an insur-
ance portfolio (see Goovaerts and Kaas (1991), Kling and Goovaerts (1993), Ambagaspitiya

357

and Balakrishnan (1994)}. In general these distributions are difficult to handle, their pgf’s
can not be expressed in terms of known functions, elementary or otherwise. Consul and
Shenton (1972) provide a mechanism to obtain moments and cumulants, but il is somewhat
tedious. In this article first we present an attractive way to obtain moments and cumulants
of Lagrangian distributions using Maple. Then we discuss the manipulation of compound
Lagrangian distributions, which can be used to model the total claim amount of an insurance
portfolio, with the aid of Maple. Also we provide two inverse functions, inspired by Lam-
bert’s W functions, that can be used to manipulate two important classes of distributions
in the Lagrangian families.

2 Lagrangian distributions

The first step towards obtaining Lagrangian families is to solve

= zg(t) (21

for the numerically smallest real root ¢ in terms of z. Let us denote the function which
yields the required value of ¢ in (2.1} for various values of z by h(z). Except in a few cases
h(z) cannot be expressed in terms of elementary functions. Consul and Shenton (1972)
have shown that h(z) is a pgf of a non-zero integer value random variable; i.e. h(0) = 0
and A(1) = 1. From the definition of Lagrange distributions it can be shown that the pgf of
Lagrangian distributions of the first kind has the form:

Py(z) = f(h(z)), (2.2)
and the pgf of Lagrangian distributions of the second kind has the form:
f(h(z))

Py(z) = (1 - g'(1)) (2.3)

1 - z¢'(h(2))

The moment generating function M;(t) is

M,(t) = Pi(exp(t)), i=1,2,
and the cumulant generating function C;(¢) is

Ci(t) = log M;(t), i=1,2

One method of obtaining moments and cumulantsis to differentiate the respective generating
functions successively with respect to ¢ and evaluate the derivatives at ¢ = 0. In the general
case functional form of h(z) is unknown, but if our interest is only to calculate moments
and curnulants we need to evaluate h(z) and it is derivatives at z = 1. By differentiating
(2.1) with respect to z and simplifying we have

dh(z) _ h(z)
dz ~ z(1 - zg'(h(z)))’

(2.4)

We have programmed this information in Maple and the source codes are given in the section

1 of Appendix C. We have calculated moments and cumulants of all known Lagrangian
distributions and we are happy to provide them if anyone is interested.

358

2.1 Poisson Lagrangian distributions
These distributions are derived by taking the pgf of a Poisson distribution with mean b,
0<b<1,asgt). ie.
g(t) = exp(b(t — 1)).

In this case it can be easily shown that
W (—bexp(b)z)

b A
where W is the main branch of Lambert’s W function. A detailed account of Lambert’s
W function and its properties can be found in Coreless et al. (1994). Since Maple can

h(z)=—

handle the function W(x) and it is derivatives, we can use Maple to obtain moments and
cumulants of Poisson Lagrangian distributions. Also since Maple library function evalt/w
can evaluate W(z) for given z we can compute generating functions of Poisson Lagrangian
distributions.

2.2 Binomial Lagrangian distributions

These distributions are derived by taking pgf of a binomial distribution with parameters b
and p as g{t). i.e.
9() =(1—p+pt)’, 0<p<L

The resulting function h(z) is
1- -
h(z) = —p—”m(b,p(l —p)tlz),

where IB() is the inverse function defined in the Appendix A. Although in the binomial
distribution the parameter b is an integer, Consul and Shenton (1972) have shown that
binomial Lagrangian distributions exist for any 1 < b < 1/p. Using the Maple procedure
given in the Appendix A we can calculate moments and cumulants of binomial Lagrangian
distributions. Also we can use the procedure evalf/IB to compute the generating functions
of binomial Lagrangian distributions at any given point.

2.3 Negative binomial Lagrangian distributions

These distributions are derived by taking the pgf of a negative binomial distribution with
parameters b and P as g(t) i.e.

1

aliEyeyt b>0, bP <1,

(1)

resulting function h(z) is

1+P P
h(z) = P IG (b, ¥ Py z) ,

where the function IG() is the inverse function as defined in Appendix B. We can use the
procedure given in the Appendix B to evaluate the derivatives of IG() and hence to obtain
the moments and cumulants of negative binomial Lagrangian distributions. Also one could
use the procedure evalf/IG to compute the generating functions at any given point.

359

3 Compound Lagrangian distributions

Let N be the number of claims produced by an insurance portfolio and let X; be the ith
claim amount. Then the total claim amount S produced by the portfolio is given by

S=X;14+4X;+...+Xn. (3.1)
In risk theory two fundamental assumptions are made and they are:
1. X,,X,,...are independently and identically distributed random variables.
2. N is a discrete random variable independent of X;, i =1,2,....

In the actuarial literature the random variable S is said to have a compound distribution.
Based on these assumptions the mgf of S can be written as:

Ms(t) = Pn(Mx (1)), (3.2)

where Py (t) is the pgf of the claim number distribution and M (t) is the mgf of the claim
amount distribution. For a proof of this result see Chapter 2 of Panjer and Willmot (1992).
When a member of Lagrangian family is used to model the number of claims the resulting
distribution is called a compound Lagrangian distribution. The moments and cumulants
of compound Lagrangian distributions can be obtained using the Maple codes given in the
section 1 of Appendix C. In some cases it will be necessary to determine the density function
fs(z) of S in addition to moments. One way of obtaining the density function is to invert
the Laplace transform
L{fs(z)} = Ms(-1),

using numerical techniques. For this it is essential to calculate the Laplace transform at
various values of t. With the aid of Maple library function evalf/W and the two inverse
function evlat/IB and evalf/IG given in this paper we can calculate the Laplace transform
of compound Poisson Lagrangian , compound binomial Lagrangian and compound negative
binomial Lagrangian distributions. At present we are investigating the usage of Maple for
numerical inversion of Laplace transforms of compound Lagrangian distributions and our
findings will be submitted as a separate article.

4 Conclusion

In this article we have presented an attractive way to obtain moments and cumulants of
Lagrangian distributions and compound Lagrangian distributions. Also we have presented
two inverse functions, inspired by Lambert’s W function, that can be valuable additions to
the Maple library. However the Maple library function solve cannot be modified easily to
give solutions in terms of these functions in appropriate situations. Note that the procedures
IB(m, z) and IG(m, z) work in the Maple V Release 3 but not in the Release 2, due to the
fact that there are some differences in expression representations in two versions.

For numerical evaluation of generating functions of Lagrangian distributions and com-
pound Lagrangian distributions, one need to solve t = zg(t) for ¢t numerically. Although
it is possible to use the Maple library function £solve to obtain ¢ for given z, it would be
more efficient to implement the best iterative technique for the particular problem. If the
fsolve procedure did allow user written procedures to be invoked in specific cases, such as,
for example, the diff procedure, it would greatly reduce the user’s programming burden.

360

A The inverse function /B(m,)

Let us first consider the function

fi(m, z) =0xa m >0, (A.1)

where m is a non-negative valued parameter, It can be easily established that this function
1. has no turning points if0 < m < 1.
2. has a maximum value of (m — 1)~ Y/ m™ at z = 1/(m - 1) ifm > 1.
3. if m is not an integer » < —1 yields complex values.

4. The following results hold with respect to limits.

lim fi(m,z) = 0

zZH00

lim fi(m,z) = 0
r—=—00

li = -
i fimz) = oo

. _ -0 if m is even
Lm, film,2) = {+oo if m is odd

From these properties it can be easily seen that the inverse function of f(m, z) has at most
three branches.

Definition 1 The real valued function IB(m,z) is the inverse function of fi(m, z) or de-

fined implicitly
IB(m, x)

(1 + IB(m, z))"
If the inverse function of fi(m,) has more than one branch, the branch with the numerically
smallest ordinate is taken as IB(m, z).

=z (A2)

From the properties of the function f;(m, z} we can conclude the following.

1B(0,z) = =, (A.3)
1B(l,z) = lfz, (A.4)
IB(2,z) = I_;ZL;_I___ "1—4’”, z<i (A.5)
IB(m,0) = 0, (A.6)
- m-1

lB(m,(—mWQ——> = ﬁ for m > 1, (A7)

"N _p P]
B<m’(p+q)’") = e Swmoa (A.8)
iIB(m,::) _ IB(m, z)(1 + IB(m, z)) (A.9)

dz z(1 — (m~—1)IB(m, z)) ’

and it has a derivative singularity at £ = (m — 1)™=Y/m™, m > 1. These properties have
been coded in Maple and codes are given in Appendix C. In the actual implementation we
considered the cases where both m and r are of type numeric in the Maple sense and all
other cases separately.

361

A.1 Arguments of numeric type

Since Maple type/numeric includes integer, fraction and float we consider integer and frac-
tion (rational) and float separately. If the second arguments is a floating type to obtain a
floating point answer it calls the procedure eval?/IB. The procedure evalf/IB makes use
of the library function fsolve to solve y = (1 + y)™z. Since the function y/(1 +y)™ = =z
has only one root in the range —1 < y < 1/(m — 1) procedure specifies this range when
it calls £solve. We found the accuracy is not very high when z takes values close to
(m - 1)™=1/m™, due to the derivative singularity.

A.1.1 First Arguments is integer and second argument is rational

In this case the procedure will attempt to give a rational number as the output. For this it
first checks whether the arguments are in the acceptable range and then it checks whether
the rational z can be expressed in the form —&%;—K,; where p and ¢ are relatively prime. The
procedure factorizes the numerator of r using ifactors library routine, the resuli is in the
form

[v.{lpr, 1) P2 e2)s -y Ipised], -]

see pp. 204 of Char et al. (1990}, where, u = +1,p;,i = 1,2,... are primesand ¢;,i = 1,2. ..
are integers i.e.

numer{z) = UHP:"
i=1

Then the procedure inspects each factor [pi,e;],1 = 1,2,... and if ¢; is an integer mulitiplier
of (m — 1) then the term pf'/(m—l) becomes a factor of ¢ otherwise p{* becomes a factor of
p. Finally, if the denominator of z and (g + u * p)™ are the same the procedure will give
u * p/q as the output, otherwise it outputs the unevaluated form of IB(m, z).

A.2 Arguments not of numeric type

Application of Maple procedure 8implify to the second argument of

m-—1
1B (m, (:)’—ia;) (A.10)

yields:
(-m)
» ()
. .

Therefore to check whether the second argument of IB(m, z) can be expressed in the form
given in (A.10) the procedure works as follows: If the second argument z contains only one
operand then the procedure will return the unevaluated form of it. If the first operand of z is
—1, sgn = —1, it will start examining each operand of z from the second operand; otherwise,
sgn = 1, it will start examination from the first operand. If the operand, say p;, has only
one operand then p becomes a factor of p; otherwise if it has the form p§ or p(;b), where
b is not an integer multiplier of m, the operand becomes a factor of p or ¢, respectively.
Finally it will check whether z is equivalent to the form sgn*p/¢/(1 + sgn* p/q)™ and then
output will be sgn * p/gq; otherwise the output will be unevaluated form IB(m,z).

362

B The inverse function /G(m,z)

Consider the function
fa(m,z) =z(1—2)", m>0. (B.1)

This function has two turning points one at z = 1/(m + 1) and one at £ = 1; if m is not an
integer z > 1 yields complex values. Therefore the inverse function of fa(m,) has at most
three branches.

Definition 2 The real valued function IG(m, z) is the inverse function of fo(m, z); in cases
where more than one branch exists the branch with the numerically smallest ordinate is taken.

From the properties of fa(m, z) we can obtain the following:

IG(m,0) = 0, (B.2)
1G(0,z) = =, (B.3)
e = ST Ll (B.4)
mm 1
IG(m,(1+m)m+l> = (B.5)

PQ-P™\ _ P P 1

d _ IG{m,z)(1 - IG(m, z))

Z10m2) = R T IC(m, =)’ B7)

and it has a derivative singularity at x = m™ /(14 m)™+!,

B.1 Implementation of /G(m,z)

The implementation details are somewhat similar to that of /B(m,z) and for brevity we
have excluded them.

C Maple programs

We present three separate Maple programs that can be used to carry out the evaluations dis-
cussed in the paper. The first program can be used to compute the moments and cumulants
of Lagrangian distributions and compound Lagrangian distributions in general. The next
two procedures can be used to handle two important classes of Lagrangian distributions.

C.1 Computing moments and cumulants

The following procedures enables deriving moments and cumulants
of Lagrangian distributions of the first and second kind.

SERERARBERRRARIEARZARRRARRERARERIRSRRNDRDRRRRARRARBLARNRRRRERRRARERR
The procedure h() uses the fact that h(z) is a pgf of a positive
valued random variable. If the argument is not 0 or 1 it retwrns
the unevaluated form,]
BERIRERRRARRRRRRERARRIRERARARERRRRERERRRARAREARARARARRARERAA AR RN LAY

363

h := proc()

local x;

if nargs <>1 then ERROR(‘expecting 1 argument, got‘.nargs)
else x := args(1]
£i;

x := simplify(x);
if x=0 then C
elif x=1 then 1
else 'h’(x)

fi;

end:

REZ 222222222222 2 22222222 22 a2 22 ot od2 2 iz tezn sl st
The following procedure defines derivatives of the function
h(z) as given in (2.4). *

Rz 2222222 2 SHER 2 d

‘diff/h‘ := proc(a,x)

local t, gd;

gd := subs(t=h(a),dift(g(t),t));
h(a)/a/(1 - a*gd) » diff(a,x)
end:

The Following procedure defines the probability generating function
of Lagrangian distributions of second kind. The procedure assumes &
DG1 is a global variable as defined below, and f(t) and g(t) are 2
pgfs with g(0) <>0. '
:] LR0E SERRNE

DG1 := 1- limit(diff(g(w),v),v=1);

P_2 := proc()

global DG1;

local t,z,gd;

if nargs<>1 then ERROR(‘expecting 1 argument, got‘.nargs)
fi;

z := args[i);

gd := subs(t=h(z), diff(g(t),t));

simplify(DGief (h(z))/ (1~zegd))

end:

$ The functions mul(n), mu2(n), cmui(n) and cmu2(n) calculate

moments and cumulants for given n.

4

Function Output

$ e e

mul(n) nth moment of Lagrangian distributions of first kind.
mu2(n) nth moment of Lagrangian distributions of second kind.

364

cmul(n) nth cumulant of Lagrangian distributions of first kind.
cmu2(n) nth cumulant of Lagrangian distributions of second kind.

mul := (n) -> limit(diff(f (h{exp(s))),s$n),s=0);
mu2 := (n) -> limit(diff(P_2(exp(v)),v$n),v=0);
cmul := (n) -> limit (diff(log(f(h(exp(u)))),udn),u=0);
cmu2 := (n) -> limit(diff(log(P_2(exp(v))),v$n),v=0);

*

To use the preceding codes one has to define £(t) and g(t) in (1.1).

One can select a distributions given in Consul and Shenton (1972)

by removing the first three characters of tvo selected lines, one

of them being a line which begins with #g1, $g2, #g3 for g(t) and

the other one being a line whichs begin with #f1, #£2, #£3, #f4, 2%
for f(t).

distributions.

1. Poisson Lagrangian distributions.
g1 g = (1) > exp(be(t-1));
2. Binomial Lagrangian distributions.
#g2 g i= (t) -> (1-p + pst)°b;
3. Negative Binomial Lagrangian distributions.
8g3 g := (t) -> (14P -Pet)"(-b):
*
Possible choices of f(t) and the name of the resulting
distributions.
1. Basic Lagrangian distributions.
#11 £ o= (t) >t
2. Lagrangian delta distributions.
#£2 £ o= (t) => tha;
3. Lagrangian Poisson distributions.
3 f := (1) -> exp(ar{t-1));
4. Lagrangian binomial distributions;
#14 f = (t) -> (1-p + pst)“a;
5. Lagrangian negative binomial distributions.
#£5 £ := (t) -> (14P -P#t) " (-b);

]
4
Possible choices of g(t) and the name of the resulting
4
$

For example if one is interested in obtaining the second

moment and the fifth cumulants of Negative binomial-Poisson
distributions one first have to delete the characters ‘‘#g3’’
and ‘‘8£3'’. Then it is suffices to type aul(3), cmui(5) and
mu2(3), cmuz(5) to obtain the values for Lagrangian distributions
of first and second kind respectively.

The function M_S1(t) and M_S2{(t) are the moment generating
functions of compound Lagrangian distributions of first
kind an the compound Lagrangian distributions of second
kind, respectively.

L B B B IR BN B BEBE BN

365

M_S1 := (t) -> f(h(M_X(t)));
M_52 := (t) -> P_2(M_X(t));

The folloving codes illustrate how to obtain the moments of
compound Lagrangian distributions vhen the claim severity
is exponential.

M_X(t) is the moment generating function of exponential
distribution vith parameter beta.

mu_S_1(n) and m_S_2(n) will contains the moments of S
after calling these functiona with integer arguments.

% % % N B 0"

M_X := (t) -> beta/(beta~t);
mu_S_1 := (n) -> limit(diff(M_S1(t),t$n),t=0);
wu_S_2 := (n) -> limit(diff(M_S2(t),t$n),t=0);

C.2 The inverse function IB

SERERRRRRRERRRERIEREBESIRERNRINRRRISARNNLASNSRESERIARRR AR AR AR ASANRSRANE
The procedure IB is an implementation of the properties given s
in (A.3) -(A.4). It has been implemented following the specifications#®
given in the Appendix B. 4
SRRRRERRERERRBRALREERELELRERERENRRERARARISEIRARRRIRARALARSLERERR RSN RARRAL
IB := proc()
local m,x,t1,t2,t3,pl,el,i,st,sgnl,sgn2,p,q;
if nargs = 2 then m := args[1); x := args[2]
else ERROR(‘expecting 2 arguments, got‘.nargs)
fi;
if x = 0 then 0
elif m = 0 then x
elif m—1 = 0 and not type(x,numeric) then x/{(1-x)
elif m-2 = 0 and not type(x,numeric) then (i-2#x - (1-4#x)~(1/2))/2/x
elif type(x,numeric) and type(m,numeric) then
if m <1 then ERROR(‘First Argument has to be >= 1°)
elif x - (1-1/m)~(m-1)}/m > 0 then ERROR(‘Second argument out of range‘)
elif m-1 = O then x/(1~x)
elif m-2 = 0 then (1-2sx - (1-4#x)"~(1/2))/2/x
elif type(x,float) then evalf{’IB’(m,x))
elif type(m,integer) and type(x,rational) then
t1 := numer(x);
t2 := denom(x);
readlib(ifactors);
t3 := ifactors(tl);
p = 1; q :=%;
for i from 1 to nops{op(2,t3)) do
pl := op(1,0p(i,op(2,t3)));
el := op(2,0p(i,op(2,t3)));
if type(el/(m-1),integer) then q := q * (p1)~(el/(m-1))
else p := p * pl-el
fi
od;
if q<>1 and {q+op(1,t3)sp) m = t2 then op(1,t3)sp/q else ’IB’(m,x)

366

fi;

else 'IB’(m,x)

fi

elif nops(x) >1 then

t3 := [simplify(op(x))];
p:=1; q 1= 1;
if op(1,t3) = -1 then sgnl := -1; st := 2
else sgnl := 1; st := 1
fi;
for i from st to nops(x) do
pl := op(i,t3);
if nops(pl) =1 then p := pspl
else el := gimplify(op(2,p1)/m);
sgn2 := sign(op(2,p1));
if not type(el,integer) then
if sgn2 = -1 then q := q/pt
else p := pepl
fi
fi;
fi
od;
el := simplify(sgnisp/q/(1+sgni*p/q) "m/x)};
if el = 1 then sgnisp/q else ’IB’(m,x)
fi

else 'IB’ (m,x)

i,
end:

RERRRBARARARERRRERBRIRERARRRERNSARARIREE IR IR ERBRARURERIRARAN SRR NN RAR
The following procedure defines how to evaluate the derivatives

% of IB.

ERNERRRERERRRENRRRENRERNRNRRRARERNRRALERIRRARRERNANEARARERARRSRANANEY
‘diff/IB* := proc(m,x,y) (1+IB(m,x)) * IB(m,x)/(1 - (m-1)*IB(m,x)}/x

* diff(x,y)

end:

SERERRNRALERARERARSERRSRARERRRARERRRARESERESHERSRNRLLELLARRRERERRLIL RS
The following procedure facilitate the computation of the function

IB(m,x) when m is type/numeric and x is type/float. It uses the
Maple equation solver ‘‘fsolve’’ to obtain a soclution in the
® interval [~1,1/(m-1)] of y/(1+y)"m = x for y, when x and m is

given.

RRRRBRRARERRARRRANARRRERIRARERINBNZABRERBAFBRRERRRBRARRANRRIRZRARIRIR
‘evalf/IB* := proc()
local m,x,y;

if nargs<>2 then ERROR(‘expecting two arguments‘)

else m := evalf{(arga[1]); x := evalf(args[2]);

£i;

if (1-1/m)"(m-1)/m -x <= Float(1,-100000) then RETURN(1/(m-1))

elif x <= -Float(1,100000) then RETURN(-1)

fi;

fsolve(y=(1+y) “mex,y,~1..1/(m-1))

367

*
s
E
»

end:

C.3 The inverse function IG

SRRARERERERLISARERRERRRIRRR AR IR BB RRASRR AR ZRERRAARERASARARARSRRENE
The folloving procedure is an implementation of the inverse *
function IG(m,x) defined in Appendix B. First it tries to see t
vhether the arguments of the function would fit into arguments &
8 given in (B.3)-(B.6) and then it will output the corresponding ¥

RHSs. Otherwise it will return the unevaluated form of it.
RERRRERERRBIRIRENIRERRRRRREREREERRBERRBRERSRARRRRRRLBERANARERRRIRERS
16 := proc()

local =,x,t1,t2,t3,pl,el,i,p,q,r,st,sgnl,sgn2;
if nargs = 2 then m := args[1]; x := args[2]
else ERROR(‘expecting 2 arguments, got‘.nargs)
fi;
if x = 0 then 0
elif m = 0 then x
elif m-1=0 and not type(x,numeric) then (1-(1-4ex)-(1/2))/2
elif type(x,numeric) and type(m,numeric) then
if m <1 then ERROR(‘First Argument has to be >= 1¢)

elif x > n"m/(1+m) “(m+1) then ERROR(‘Second Argument out of range‘)

elif m-1=0 then (i-(1-4=x)-(1/2))/2
elif type(x,float) then evalf(’IG’(m,x))
elif type(x,rational) then
t1 := numer(x);
t2 := denom(x):
readlib(ifactors) ;
t3 := ifactors(t1);
p :=1; q :=1; r:=1;
for i from 1 to nops(op(2,t3)) do
pt := op(1,op(i,op(2,t3)));
el := op(2,op(i,op(2,t3))});
if type{ei/m,integer) then r :=r % (p1)~(el/m)
else p := p * pl-el
fi
od;
q := simplify(t2-(1/(m+1))})) ;
if type(q,integer) and (q-op(1,t3)sp) = r then
op(1,t3)sp/q else '1G’{(m,x)
fi;
else 'IG’(m,x)
£i
elif nops(x) >1 then
t3 := [op(x}1;
P =1, q :=1;

if op(1,t3) = -1 then sgnl := -1; st:=2 else sgni := 1; st:=1 fi;

for i from st to nopsa(x) do
pt := op(i,t3);
if nops(pi) =1 then p := pspl
else el := simplify(op(2,pl)/m);

368

sgn2 := sign{op(2,p1)):
if not type(el,integer) then
if sgn2 = -1 then q := q/pl
elge p := pepl
fi
fi
fi
od;
el := simplify(sgnisp/q+(1-sgnisp/q) "n/x);
if e1=1 then sgnisp/q
else 'IG’(m,x)

fi

else 'IG’'(m,x)

fi;

end:
BERRERRRRRRAARRERERNARRRRRERERARIREBRRRRARARIRIRRRIRERRRLRANRRNLAR R AL
Following procedure defines the derivative of IG(m,x). *
P 23222225373 : # Illgll L3R s < ERER
‘diff/IG‘ := proc(m,x,y) (1-1G{(m,x)) = IG(m,x)/{1 - (m+1)*IG(m,x))/x
* diff(x,y)

end:

The following procedure facilitate the computation of the function#
IG(m,x) wvhen m is type/numeric and x is type/float. It uses the

Maple equation solver ‘'‘fsolve’’ to obtain a solution in the *
interval [-infinity, 1/(m*+1)] of y*(i-y) m=x for y, when x and 2
m is given. *

RARERRRERERARRERRRRRERARARERERBRERBERRENREBREARRARERERRRRRARRRRBRR AN S
‘evalf/IG‘ := proc()

local m,x,y;

if nargs<>2 then ERROR(‘expecting two arguments')

else m := evalf(argsl1]); x := evalf(arga{2]);

fi;

RETURN (fsolve(y*(1-y) "m=x,y,-infinity..1/(m+1)))

end:

REFERENCES

1. Ambagaspitiya, R. 5. and Balakrishnan, N. (1994). On the compound generalized
Poisson distribution. To appear in ASTIN Bulletin.

2. Char, B. W., Geddes, K. O., Gonnet, G. H., Leong, B. L., Monagan, M. B. and Watt,
S. M. (1991). Maple V Library Reference Manual. Springer-Verlag.

3. Consul, P. C. and Shenton (1972). Use of Lagrange expansion for generating discrete
generalized probability distributions. SIAM Journal of Applied Mathematics 23(2),
239-248.

4. Corless, R. M., Gonnet, G. H., Hare, D. E. G. and Jeffrey, D. J. (1993). On Lambert’s
W function. To appear in The Advances of Computational Mathematics.

369

10.

. Goovaerts, M. J. and Kaas, R. (1991). Evaluating compound generalized Poisson

distributions recursively. ASTIN Bulletin 21, 193-197.

. Janadaran, K. G. and Rao, B. R. (1983). Lagrange distributions of the second kind

and weighted distributions. SIAM Journal of Applied Mathematics 43(2), 302-313.

. Johnson, N. L., Kotz, S. and Kemp, A. W. (1992). Univariate discrete distributions,

Second Edition, John Wiley & Sons, Inc.

. Kling, B. and Goovaerts, M. {1993). A note on compound generalized distributions.

Scandinavian Actuartial Journal | 60-72.

. Otter, R. (1949). The multiplicative process, Annals of Mathematical Statistics 20,

206-224.

Panjer, H. H. and Willmot, G. E. (1992). nsurance Risk Models. Society of Actuaries.

370

