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Abs t rac t  

In this expository paper several comments are made with respect to ~;he statistical inde- 

pendence of the curtate future lifetime and the fl'actiona.l part of the future lifetime, both 

of a general status. In particular, the conditions for independence need to be stated care- 

fully. The last-survivor status is cited as an example. More general assumptions than the 

uniform distribution of deaths assumption are then considered, together with applications to 

insurances, annuities, and reserves. Similar results to those under the uniform distribution 

of deaths assumption are obtained. Brief comments are made with respect to contingent 

probabiiit ies in mu2tiple lives and multiple decrement theory. 
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1. I n t r o d u c t i o n  

Consider a general status (u) and its future Lifetime random variable T. Let tP~ = Pr(T > 

t), t >_ O, o.nd tq~ = 1 - t  p~, with the convention that the leading subscript t is suppressed 

when t = 1. Let the curtate future lifetime be K = [T], and the fractional portion of T be 

S = T - [T], i.e. T = K + S. Assumptions with respect to the joint distribution of K and 

,5" are critical for actuarial and demographic analysis within a life table contex-t. See Bowers 

et al. (1986, chapters 3, 8) for a detailed discussion of these ideas. See also Skiu (1982) and 

references therein. 

In particular, statistical independence of K and S leads to a much simplified analys[s of 

many problems of interest. In this case one has 

P r ( K  = k , S  <_ s) = Pr(K = k)Pr(S <_ s) (1) 

for k = 0 , 1 , 2 , . . . ,  and 0 < s < 1. Stated another way after division of both sides by 

P r (  K = k ), one has 

P ~ ( s  < ~IK = k) = P r ( S  _< ~).  (2) 

Conversely, if for some function H(a) not depending on k, the relation 

holds for all k, then 

Tha t  is, 

P r ( S  < ~li," = k) = H(s) 

P~(S < ~) = Pr(S < ~IK = k)Pr(K = k) 
k = 0  

k=O 

H(s) ~_ P r ( K = k )  
k=0  

H(s) 

H(~) = P r ( S  < s), 0 < s < 1, 

(3) 

(4) 
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and so H(s)  in (3) must be a distribution function on (0, i). Thus, if (3) holds, 

P ~ ( K  = ~ , S  < s) = P~(S  <_ ~ l f  = k ) P ~ ( f f  = k) 

= H ( s ) P ~ ( K  = k) 

= P ~ ( S  <_ s)Pr(K = k ) ,  

a n d  so I (  and S must be statistically independent. 

To summarize K and $ are independent if and only if 

e r ( S  _< slK = k) = ~p'~ -~+'P= = H( , )  (S) 
kP~ --k+t P~ 

for all k = 0,1, 2, . , a n d 0 < s < l .  One needs to be careful in some cases {n cons[deration 

of  this independence. In particular, it is not sufficient that ~q~/q~ be a fimction of s only 

without  additional conditions (exercise 3.40 of Bowers eta[ .  (1986, p. 81) considers this 

criterion). 

E z a m p l e  1 - T h e  las t  s u r v i v o r  s ta tus  

Consider the last survivor status (~y) which fails on the second death of the two lives aged 

(z) and (y). If the future lifetime~ T ( z )  and T(5') are independent and satisfy (5) with 

H ( s )  = s (i.e. the uniform distribution of deaths assumption (UDD) holds for each life), 

then ,q: = s " q=, ,q~ = s - q~, and so ,=q~ = s ~ . ~ for the last survivor status. However, 

K = K(~--gy) and S = S(~y) fail to be independent since (5) does not hold. 

To see this, note that in this case one has from (5) 

~P: "'q'- ~.J-~P7 'q'l*~-~P:V"q=+k:~ ~ 
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The difficulty in this example is that ~+,.ps~ ~ kR'*'~ " .P=+,:v,k - Cl 

We shall say that  the fractional independence (FI) assumption holds ff (5) is satisfied. 

2. T h e  f r a c t i o n a l  i n d e p e n d e n c e  assumpt ion  

Consider the ordinary life table so that the status of interest is the future lifetime T = 

T ( z )  of a life aged x. Since ~+,p= = ,  p=., p=+~, the FI assumption (5) holds if 

,q; = S(~)q~ (6) 

for aLl 0 < s <: 1,k E {0, I , 2 , . . . , } .  As shown in section 1, H(~) = P r ( S  <_ s) and the 

uniform distribution of deaths (UDD) assumption is obtained with the special case H ( s )  = .s. 

It is straightforward to verify that the following relations hold if (6) holds: 

d / / ' ( s ) q ~  
~ ÷ .  = - ~ t ~ , w  = 1 - H ( s ) q ~  ' (7)  

{ U ( ~ + t )  - H( t ) }q~ ,0  < ~,t,~ + t  < 1,~ = 0 , i , 2 , . . . ,  (S) 
"q=+' = 1 - H(t)q= 

,p=~=+, = lt'(.s)q::, (9) 

t~+, = z~ - / ~ ( ~ ) d ~  = ~ {1 - H(~)} + l , + , ~ ( ~ ) .  (10) 
t 

= / t.:+,ds = g=E(S) W g~+, {1 - E(S)} , (11) L= 
o 

~. = - -  = (i2) 
L= I - {1 - E ( S ) }  q .  ' 

a( z )  = E ( T I T  < £) = E ( S I K  = O) = E ( S )  , (13) 

o 
e:= e: + E(S )  . (14) 

It is evident from (7) that the possible shapes under the FI assumption are much more 

fle:dble over integral age ranges than is possible under the UDD assumption. Similarly, 
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(10) allows for a much more general distribution of deaths over the year of age than simply 

uniform, as the  foiiowing example indicates. 

Example 2 - The beta distribution 

A convenient  parametr ic  family of distributions for this purpose is the beta  family with 

densi ty 

s ' ( s )  = r (~  + ~) s / _  1 r ( ~ ) r ( ~ )  , o - ' ( 1  - , o < s < 1 ,  (1~) 

when ce > 0 and ~ > 0. The uniform distribution is the special case ce = ~ = I. The mean 

is E ( $ )  = ce/(a  + 3). The distr ibution function is (for general ce and/~) 

z-/(~) = S ( ~ , ~ , ~ )  ,o < ~ < z ( i 6 )  

where B(-) is the  incomplete beta  function which may be evaluated numerically using a 

series expansion (e.g. Hogg and Klugman, 1984, p. 219). Of course, (15) may be i n t e g a t e d  

directly ifce or ~ is a positive integer. For example, if/~ = I, (16) simplifies to H(a)  = s". c~ 

There  are m a n y  other examples currently used where K and S are independent  besides 

the  UDD assumpt ion .  De Moi,rre's law, for which g~ = go(1 - z / w ) ,  0 < z < w, is a special 

case of the  UDD assumption. If T has an exponential distribution, then b~: = # for z > O, 

and  the FI  assumpt ion  holds with H(s) = (1 - e - ' ) / ( 1  - e-"),  0 < s < 1. Also, discrete 

assumpt ions  such as a portion of the deaths occurring at mid-year, the beginning of the  

year, or the end of the year are all FI assumptions and are often used in multiple decrement 

theory. 

Thus,  if a port ion a of the deaths occur at time to E [0, i I and the remainder are spread 

• uniformly over the year, then 

H ( ~ )  = 

( I  - a)~,  0 <_ s < tQ 
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If all deaths occur at midyear, then a = 1 and to = 1/2, etc. 

3. I n s u r a n c e s  

Consider an insurance which pays a death benefit b-r at time rT if death occurs at time 

T. The  present value random variable is thus 

Z = b z v  "T . ( i s )  

Under (6), ~t( = [T] and S = T - [T] are independent, so if (18) may be ex'pressed as 

z = ~ v  ~ = ~ f,(K)g,(S) (~9) 
i=l 

for some functions f~(.) and gi('), then the net single premium may be obtained easily as 

r 

E(Z)  = ~,, E { f , ( K ) }  E {g,(S)} . (20) 
i=1 

This idea is utilized consistently in Bowers et al. (1986) and is useful here as well. 

Qui te  generally, for insurances with death benefit depending only on the policy year of 

death,  bT = bK+l. Moreover, i~" the benefit is payable at the end of the m-th of death, one 

has r T --- e-~K-6['~ s+'[ where [.] is the greatest integer function. This factors as a function of 

K times that of S. Thus, from (19), 

A (~1 = E(bK+,e -~K-4~s-,+l~) = ¢(m)A (21) 

w h e r e  

A = E(bK+,e -~¢'+n) (.02) 

i s  the net single premium for the corresponding insurance with death benefit payable at the 

end of the year of death, and 

(23) 
k 1 
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One has 

0 

= (1 + i) I e- '-~=' H ' ( t /m)~  
o 

m - t  j+1 
= ( t + i )  E f ~- ' - - ~ H ' ( t / ~ ) ~  

j=O j 

= ( 1 + i ) ~ ' ~ - ~ <  '~ ~ ~'(~),t~. 
j=o 

In other words, (23) may be expressed as 

¢(m) = ~ (t + i ) ' - ~  H( ) - Z~( ) . (24) 
j=o 

It is easy to show that (24) reduces to i / i  (~'l when H(s) = s, the well-known UDD formula. 

The factorization in (21) thus generalizes the UDD formula. One has, for example, 

A(: ") = ~(m)m= . (25) 

Other special cases of (21) may be found in Bowers et. al (1986, chapter 4). As m ~ c~, 

one obtains the corresponding results for insurance payable at the moment of death. From 

(23), 

¢(oc) = (1 + i ) E ( e - ' s ) ,  (26) 

and (21) becomes, in an obvious notation, 

7 = ¢(o~)A (27) 

under the FI assumption. 

Ezample  3 - Generalization of the uniform distribution 

Suppose that 

H(~) = e~+(l -o){1-(t-~)~}, O<s<l 
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where 0 < 0 < i. The uniform distribution is the special case 0 = 1/2. Then H'(s) = 

20~ + 2(1 - 0)(~ - ~) and ~om (0_6) 

~(~) = 2(I + 0 {OG~)~, + (i - 0)(~)~} . 

Thus (26) may be expressed in terms of standard actuarial functions. [] 

For an ordinary insurance of $1, i.e. gr = 1 payable at the moment of death of (z), i.e. 

T T = T,  results in 

~(~) = E(e -~T) = (1 + i)Z(~-%& (2S) 

For a fully continuous and increasing insurance with br = Te -~T, 

(7 A)= = E(Ke-aIx+l))E(e -*(s-l)) + E(Se-a(s-1))E(e -s(~c+O) 

= (1 + i)g(e -as) {(IA), - A=} + (1 + i)E(ae-aS)A=. (29) 

Other examples may be found in Bowers et al. (1986). For n-year term insurances, the 

same relationships hold as for whole life but the functions f i (K)  in (19) are replaced, by 

f i (K)t{K<,} .  This is because Z is unchanged if K <_ n but Z = 0 if K > n. Thus, for the 

n-year term benefit, (19) yields 

z = ~ {f,(K)t~,c,~}~,(s). (ao) 
i = l  

For the net single premium for (20), E {g,(S)} is unchanged and E {fi(K)} is the corre- 

sponding term expectation. For example, (21) holds for n-year term coverages with death 

benefit depending on the year of death. Similarly, (28) and (29) become, under FI 

t = (l+i)E(e-SS)A~.~l (31) 

-- t = _ t i)g(Se-SS)At=:< (32) (7 a)=:< (1 + i)E(e -ss) {(IA)L~ A.:~} + (i + 



4 .  A n n u i t i e s  

Turning now to a.aauities, it follows easily from the relation (25) and A~") = 1 - d(")A~ 

that  

a(2) = ~(m)a,  - Z(m) (33) 

w h e ~ ' e  

~ ( ~ )  = d - ~ ( ~ )  = ~ ~ ~ - \ ~  T ) - m J  o 

j=O 

and 
¢(~) 1 1 

m - I  

~(m) _ - - - ~ (1 + i ) ' - ~ H ( ~ )  . (3~) 
d( "~} m .~=o 

To see the right-hand side of (35), one may use summation by parts on (24). Thus, 

which may be rewritten as 

~ ( m ) = l +  l + ( l _ i ) d ' 4  ~.= v~H( ). 

It is interesting to note that ¢~(m) in (35) is the "average" value of (1 + i ) ~ - ~ H ( ~ ) .  

Using the average value j = (m - 1)/2 and ignoring interest this becomes H(-~-)"-t which is 

often used under UDD, i.e. when H(z) = z ( e.g. Jordan, 1967, p. 46). 

Re{ation (33) is standard under UDD, and holds for the more general FI  assumption with 

the more general definitions (34) and (35). 

Also, lett ing m - -  ec, one obtains from (26) and (33) 

~E(e-~S)a: _ (i + i )£ ( e  -6s) - 1 (36) 
" 6 

Using integration by parts and a= = h= - l, one obtains an alternative to (36), namely 

i 

f ~: = -~,. i s ( - ~ ) a :  + i ~-~" {i - H(s)} ds . (37) 
0 

92 



Note tha t  !ira i~6 = ~_mi/ln(1 + i) = ~_mo(1 + i) = 1 by L'H6pital 's  rule, and so (37) 

reduces to (14) as i --+ 0. For temporary annuities, one may write, using (33) 

=(.,) r'("~) = a~ "~) - v" ,,p~ • . . + .  
~z:n-~ 

But  i - v ~ 

where 

= o ( ~ ) a ~  - # ( , , )  {z - ~- . p : } .  

I ~p= = dfi::~ I + A : : ~ ,  and so under FI oae has 

fib (3s) 

¢(m)  = a ( m )  - d#(m)  . (39) 

Again,  (38) which is a staadaxd formula under UDD, holds more generally under  FI. Also, 

when  n = ec, (38) becomes 

a(= ~)  = ¢ ( m ) 5 ,  - fl(m)A=. 

5. Reserves  

Suppose now tha t  premiums are payable m-thly and benefits payable at the end of the 

j - t h  of the year of death.  The k-th year terminal reserve is ~V(")(AO)). From (25), one has 

easily 

kV( ' ) (A(J ) )  = ¢(J) ~V('~)(A {~)) (40) 

Th e  re!ationship for semi-continuous reserves with m = 1 and j = ~ is, from (26) and 

~(1) = 1, 

~v (~ )  = (1 + i ) E ( ~ - 6 s ) k v .  (41) 

For o rd inary  whole-life insurance, one has from 

kV(")(A(~'~)) = {A~+ I - A(. ~') } / {1 - At. =1 } 
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and (40) that under FI 

~v<~,~CA~) = 4 ~ ,  - A ~  
1 - A-  ''~ (4'2_) 

The analogous relationship to (42) does not hold for endowment insurance since (21) does 

not hold for endowments. 

Next, consider quite generally, two h-pay insurance policies issued to (x) both providing 

the same (arbitrary) benefits and differing only in the payment mode. That is, the first 

policy has annual  premiums aP payable at the beginning of the year while (x) is alive (for h 

years), and terminal reserves ~V. The second policy has premiums hP('~)/m payable at the 

beginning of each m ' th  while (z) is alive (for h years), and terminal reserves ),V ('~). Suppose 

that  hP and hP ( ' )  are both calculated according to the equivalence principle. Assume that 

k < h, and coaslder the difference between the two reserves. Since the benefits under each 

policy are the same, the difference between the two reserves (viewed prospectively) is simply 

the difference between the present values of the premiums under each. Thus, 

Clearly, since the benefits are the same, one must have 

a P / h P ( ' ~ )  = a ( '~) '-  - and so =:~I I a =:h t , 

f 
_ ao ''~ _ 1 

[ a~XI 

From (38), one has 

~, ~q .-'+ k :h -  kl ~+k:h_kl 

f AI - - - -  

~(m)  ( ~+k:V~l - pl~:~l " 
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To summarize, we have under FI the simple relationship 

= V t- (43) ~v(-,I I v  +h P ( ' ) .  Z(ra) -k ~.~l " 

Equation (43) is given by Shiu (1982, p. 596) under the UDD assumption. 

If the policy is of the whole life type, then h = c~ and (42) becomes 

~v( ' )  =~ v + P("), ~(m) .~ v , .  (,~4) 

Continuous reserves may be obtained with ra = oo. Also, as discussed in Bowers et at. (1986, 

p. 206), the terms on the fight hand side of (43) and (44) may be viewed as an "unearned 

premium" reserve. Special cases include, for example, 

~V(,'-) h,t . nt~) k ~::'1 = a vx:~ 'ra rx: ~ • ,O(ra) • ,~V~ ! , (45) 

W(~I~:~) = ~ v ( ~ )  + ~G'~:~) • ~(:¢) - ~ v & ,  (46) 

= + 

It is instructive to note that the general relationship (44) relating reserve~ with a different 

payment  mode was derived under the FI assumption but actually holds more generally. 

One can see fairly easily that (44) depends only on the linearized annuity form (33). In 

particular,  the classical formula for fi(~'~) derived via Woolhouse's formula is of the form (33) 

with a(rn)  = 1 and/J(m)  = (ra - 1)/(2m). See Jordan (1967, p. 47) for details. Thus, this 

classical approximation for 5(~ m) also leads to a reserve formula of the form (44), but with 

fl(m) replaced by (m - 1)/(2m). Also, the second term on the right hand side of (44) may 

be viewed quite generally as an "unearned premium" reserve. 

6. M u l t i p l e  Lives 

As discussed in Bowers et al. (1986, chapter 8), if T(x) and T(y) are independent and 

the UDD assumption applies to each, then the UDD assumption does not apply to tl~e joint- 

life random variable T(zy) = rnin (T(z),T(y)}. It also does not apply to the last survivor 

random variable T(~~y) = max {T(x), T(y)} (see Section 1). The same remains true for the 
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more general F[ assumption. Evaluation of quantities of interest under FI for each of the 

individual times may be handled as in Bowers et al. (1986, chapter 8, 17). 

It is instructive to note, however, tb.at certain contingent probabilities and insurances are 

invaxiant under the choice of H(s),  given that the FI assumption applies. Thus, assume that 

the future life random variables T ( x i )  are independent and satisfy ,+~p=, =~ P~i "* P=~+~ and 

, q=, = H(s)q=, for 0 < s < I. That is, the FI assumption (5) holds. 

Then, for example, 

mqx:=2...z. 0 ./=1 

k----O j=l 0 j= l  

= ~ I~ kP:: i (1 - H(s)q=,+k) H'(s)q=,+kds 
I"=-0 j= t 0 j 

where the last line follows from the change of varibles from s to r = H ( s ) .  No matter what 

H ( s )  is, the value of ,~q~,:~ . . . .  is the same as if H(s)  = s, i.e. under UDD. In fact, the same 

is true for more general probabilities such as ,~q~,n...~., or even situations where the order 

of death is restricted. See Bowers et al. (1986, chapter 17) for details. In general, these 

probabiUties involve integrals of the form 

0 l - -  $ 'q*i  7 
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which is the same ms one obtains by assuming H(s) = ~. 

7. M u l t i p l e  decrements  

Consider the probabilities ~ i )  for j = 1 ,2 , . . . ,m  in the multiple (not the associated 

single) decrement table (Bowers et aJ., 1986, chapter 9). If, for j = 1 ,2 , . . .  ,m, 

then 

Thus, 

and 

,q{i) = H(s)q(J) , 0 <_ s < 1, (48) 

~q{~') = ~ ,q(~J) = H(~)q{~ ~) . (49) 
j=1 

(j) H'(s)q( j )  
t~z+s = 

1 - H (~)q l  ") 

o 1-m4~V ~ J 

---- 1 - e x p ~ . q .  

In other words, under the FI assumption one has the well known and very general result 

(Bowers et al., 1986, pp. 274-5) 

q~J) : 1 - {~ - q~(~)}~(:'*:'. (~o) 
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