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Abstract 

Property and casualty insurers face risks in many key areas, such as operations, natural 
catastrophes and underwriting. Among the underwriting risks is the potential financial impact of 
adverse loss reserves development. 
 

While multiple standard actuarial methods exist for evaluating the adequacy of reserves, 
little information exists on how deficiencies evolve over time. No risk models currently exist to 
make statements regarding the probability of a level of deficiency over a fixed time horizon. For 
example, the probability that current reserves will become 20 percent deficient over the next two 
years is difficult to determine. Current models only make estimates over the “lifetime of 
liability” or run-off period. 
 

The ability to analyze reserve risk over fixed time horizons is important from several 
perspectives. First, from a risk management perspective, the time horizon over which a risk will 
likely emerge is crucial. Understanding the time horizon allows for the creation of appropriate 
mitigation strategies and an understanding of interrelations with other risks. Second, most other 
financial risks (e.g., credit and market) are measured over short fixed time horizons. A 
comparable measure of reserve/underwriting risk is important and required for many emerging 
capital measuring applications, such as Solvency II. 
 

This paper illustrates a model of loss reserve risk that will incorporate how risk evolves 
over time at annual time horizons. The paper will illustrate how to build and parameterize the 
model using multiple years of financial statement data. The model produces results for a sample 
line of business for time horizons from one to 10 years.  
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1. Introduction 
 
The appropriate measurement of required capital by modeling economic capital (EC) 

levels has become an important issue for property and casualty (P&C) insurers. Regulatory 
paradigms have emerged in the United Kingdom and continental Europe, allowing companies to 
build their own EC models that can then interface with those of regulators. In the United States, 
lacking a regulatory initiative, rating agencies view internal EC models as a necessity. Company 
use of EC models is considered a key element of effective risk and capital management, both of 
which are considered in the rating process. 
 

While insurance companies seek to manage risk using EC tools, no universal 
methodology exists. The insurance standard that has emerged in all of Europe, driven by 
Solvency II, is derived from banking risk management and capital analysis paradigms. Most 
P&C insurers in the United States have relied on factor-based methodologies borrowed from 
regulatory or rating agency formulae and dynamic financial analysis (DFA) models.  
 

Under the Solvency II framework, insurers will have to establish technical provisions to 
cover future claims expected from policyholders. Technical provisions will be equivalent to the 
amount another insurer would be expected to pay to assume and meet the original insurer’s 
policyholder obligations. Insurers must also have available financial resources sufficient to cover 
both a minimum capital requirement and a solvency capital requirement (SCR). 
 

The SCR is based on a value-at-risk (VaR) measure calibrated to a 99.5 percent 
confidence level over a one-year time horizon. The SCR is meant to cover all risks that an 
insurer faces, including insurance, market, credit and operational risks. Loss reserve risk is 
usually considered a component of insurance risk, along with underwriting and catastrophe risks. 
Loss reserve risk is the risk that the amount held in reserve to pay for current policyholder 
obligations will prove inadequate.  
 

The VaR measure is commonly used in financial services to assess the risk associated 
with a portfolio of assets and liabilities. VaR attempts to answer the question of how much 
money could be lost if events develop in an adverse and unexpected way. VaR measures the 
worst expected loss over a specific time interval at a given confidence level. For example, if VaR 
is measured over a one-year period at a confidence level of 99.5 percent, then this corresponds to 
the worst loss expected to occur in a single year over the next 200 years. 
 
2. Background on Value-at-Risk Methods 

 
Traditional U.S. actuarial approaches take a much different view of insurance risk than 

the VaR approach used in Solvency II. VaR methodologies have their roots in financial risk 
management tools that were originally used on a daily basis to monitor the potential fluctuations 
of trading portfolios. VaR originally viewed risk as the fluctuation in the market values of risky 
trading positions. Over time, VaR methods have evolved into a broader set of applications, 
utilizing longer time horizons with which to analyze potential fluctuations in the market value of 
a firm.  
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In Economic Capital: A Practitioner Guide, Ashish Dev describes the background, 
rationale and elements of the VaR view of EC used in a banking environment:   
 
Market Value Definition of Risk 
 
 “Over the past decade, economic capital has steadily progressed toward market value 
models. Most commercial portfolio frameworks have by now discarded first-generation 
economic capital models based only on default risk, although these models persist in some cases 
for consumer portfolios. Given the goal of ensuring capital adequacy for a certain level of 
solvency, the volatility of market value is the best measure of a bank’s risk and, therefore, its 
capital requirement. 
 
 “Ultimately, shareholders are interested in the total return on their investment in the 
bank’s stock and its risk in market value terms. They compare the return earned on their 
investment to a required return based on its risk. Bondholders also care about market values. The 
value of their fixed-income investment is a function of the credit spread of the bank, the level of 
interest rates and the expected cash flows of the debt. Since both stockholders and bondholders 
evaluate their investments based on market values, management should evaluate its opportunities 
with the same market value discipline. Defining risk in market value terms reinforces this 
discipline by aligning the interests of business managers with those of shareholders and 
bondholders. 
 
Capitalization and Confidence Levels 
 
 “Two estimates describe a bank’s risk profile: expected loss and unexpected loss. As 
illustrated in Figure 1, expected loss is the average rate of loss expected from a portfolio. If 
losses equaled their expected levels, there would be no need for capital. Unexpected loss is the 
volatility of losses around their expected levels. Unexpected loss determines the economic 
capital requirement.  
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Figure 1 
Expected Loss Versus Unexpected Loss 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 “To prevent insolvency, economic capital must cover unexpected losses to a high degree 
of confidence. Banks often link their choice of confidence level to a standard of solvency implied 
by a credit rating of A or AA for their senior debt. The historical one-year default rates for A 
firms and AA firms are approximately 10 basis points and 3 basis points, respectively. These 
target ratings therefore require that the institution have sufficient equity to buffer losses over a 
one-year period with confidence levels of 99.90 percent and 99.97 percent (see Figure 2).” 
 

Figure 2 
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 While VaR models are viewed as risk models using a percentile or probability of ruin risk 
measure, the differentiating characteristic is at a more basic level. Differentiating requires 
answering the basic questions of what is considered an adverse event in the model and over what 
time horizon an adverse event can emerge. A VaR can be described as measuring an adverse 
change in market value over a one-year time horizon. Other risk models, such as DFA models, 
view risk as an adverse change in accounting values over longer time horizons. 
 
3. Traditional View of Reserve Risk for Property and Casualty Companies 

 
While much of the methodology discussed relating to VaR and EC models could be 

applied to an insurance enterprise, construction of a similar model requires information on how 
the prices of assets or liabilities change. An active market, in which a large volume of assets and 
liabilities is bought and sold, is needed to develop a historical profile of changes in value under 
multiple market conditions. Absent such a market, a proxy for how the market value of the asset 
or liability would change under stress conditions could also be developed.  
 

The concept of market valuation of both assets and liabilities is an emerging issue for 
insurers due to discussions regarding fair value and IFRS. Historically, insurers in the United 
States have operated through statutory accounting in which the majority of investments—fixed 
income assets—were held at amortized value and loss reserves were held at an undiscounted 
nominal value. This accounting view is a significant deviation from the “mark-to-market” 
perspective that drove the development of VaR-based EC models for other financial service 
institutions. 
 

The differences between the traditional actuarial and financial view of risk are also driven 
by the concept of time horizon. Standard actuarial models do not produce results over a discrete 
time horizon, but rather results at “ultimate” or “life of liability” basis. The actuarial methods are 
focused on the magnitude of the final value, not on how an estimate may move to its final value.  
 

The reason for ignoring the time step in actuarial methods is driven by its lack of 
relevance to its intended use. Current actuarial triangulation or chain ladder methods are used to 
produce best estimates of loss reserves for financial statement purposes. The focus is to set an 
adequate reserve value and reasonable range of potential incurred losses.  
 

The point of the actuarial loss reserve estimation methods is to set a best estimate that 
will not change, while VaR focuses on how much the estimate could change over a time horizon. 
Hybrid methods, such as the Mack method and the bootstrapping method, have been developed 
to produce estimates of reserve variability using development triangle data. Unfortunately, the 
best estimate and distributions produced by these methods are not right for the VaR calculations 
since they ignore the time horizon. 
 

Most types of assets held by insurers can be analyzed in various historic market 
conditions due to the existence of long-term, active markets. A wealth of standardized and 
consistent financial market data also exists to create a needed proxy for market values of most 
other asset types.  
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Insurance liabilities on the other end of the spectrum pose some unique challenges. No 
active market exists for insurance company liabilities. In a limited way, market prices can be 
observed through sales of companies, reinsurance transactions or securitizations. The numbers of 
transactions are small and information is not always public, so even this information is of limited 
value. 
 

Given all of the issues mentioned above, attempts have been made to extend VaR and EC 
methodology into the P&C insurance world. Some notable examples are the paper published by 
Nakada, Shah, Koyluoglu and Collignon, “P&C RAROC: A Catalyst for Improved Capital 
Management in the Property and Casualty Insurance Industry,” in The Journal of Risk and 
Finance (Fall 1999); and “White Paper of the Swiss Solvency Test” (Swiss Federal Office of 
Private Insurance, November 2004). While these papers lay out the principles of an EC 
framework, they do not define a methodology that could encompass loss reserve risk in a 
consistent manner. 
 
4. Reserve Risk Incorporating Time Horizon for Property and Casualty Companies 
 

To fully specify a VaR model for P&C insurance reserve applications, we can rely on the 
banking concepts discussed above. Reserve risk VaR (RRVaR), as in banking applications, 
focuses on the unexpected loss in net loss reserves (NLR) at some percentile, 1–α, where NLR 
equals the recorded value of NLRs as of a financial statement date.  
 

The following equations and Figure 3 specify the model. 
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 The appropriate model to satisfy the required VaR structure will have several key criteria: 
 

• Produce a distribution of potential changes in loss reserve estimates; 
• Provide a proxy for market value reserve estimates; and 
• Produce results over appropriate time horizons or time steps.  

 
The first criterion requires that the model produce a distribution of results, along with an 

expected value. Since a VaR model requires distribution percentiles, multiple model forms could 
satisfy this criterion. Those that have been used in practice include closed form distribution 
models, simulations and bootstrap sampling models; however, they will not work because they 
do not incorporate a time horizon.  
 

The second criterion requires that a market value proxy be calculated for each outcome 
that comprises the adverse reserve distribution. Extensive research has been done about stating 
fair value of insurance liabilities for the purposes of implementing International Financial 
Reporting Standards. The basic techniques involve discounting cash flows at an appropriate 
interest rate and then increasing the discounted value with a market value margin (MVM). The 
MVM is an adjustment that is meant to approximate a purchaser’s risk premium or cost of 
committed capital required in a transfer situation. 
 

The concept behind an MVM creates intriguing issues that are beyond the scope of this 
paper. One such issue is how the MVM would react in a stress situation in which a large 
adjustment to reserves is made. Most methods currently contemplated assume the MVM is a 
fixed proportion of the expected value of the reserve liability. This is obviously a simplification 
that may be acceptable in a typical situation, but is not acceptable in the extreme tail situations 
that drive the need for EC. 
 

For purposes of this paper, an adequate calculation of the fair value of reserve estimates 
will be the discounted value of the expected reserve payout cash flows at a risk-free rate. While 
this approach ignores some theoretical issues, its simplicity will aid in the discussion and 
development of a VaR model for loss reserves. 
 
5. Specifying a Value-at-Risk Model for Loss Reserve Risk 

 
To satisfy the criteria discussed above, a new type of loss reserve variability model will 

need to be specified. Prior to developing the model, it is useful to discuss and clarify some basic 
concepts regarding the composition and estimation of loss reserves and how they impact reserve 
risk.  
 

P&C loss reserves can be viewed as a portfolio of reserves that are composed of separate 
sub-portfolios from each accident year (AY). An AY is the underlying subgrouping of reserves 
used for statistical and financial statement purposes in insurance. AY contributions to a 
company’s current reserve position can be viewed as different components of reported and open 
(RO) and incurred but not reported (IBNR) claims which, when aggregated, drive the company’s 
required reserve position as of an accounting date.  
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As of any accounting date, the total reserve contribution is derived from AYs with 
different levels of maturity or seasoning. Typically, the current AY (corresponding with the 
accounting year) is seasoned by 12 months at a year-end accounting date. The first and second 
prior AYs are seasoned by 24 months and 36 months, respectively. This pattern increments by an 
additional 12 months for each older AY and continues for as many years as an insurance 
company has been in business and claims are still open. In general, the variability of an AY’s 
ultimate value should decrease as it matures since more claims are closed and more information 
is known about the RO claims the longer they have been reported to the insurer. 
 

The actuarial reserve estimation process involves analyzing AY development patterns 
from older, more mature AYs and imputing the same level of growth to less mature years. 
Development patterns are typically represented by the percentage growth observed in paid or 
case-incurred amounts by AYs as they mature. Multiple actuarial methods utilizing different 
development patterns are typically used to produce loss reserve estimates. 
 

Deciding on a reserve level to establish in company financial statements necessarily 
involves a set of judgments about the appropriate value for each AY in the face of uncertainty. 
Companies strive to reduce uncertainty by using multiple actuarial estimation methods, tracking 
price level changes, understanding operational or data issues and using expert judgment. The 
financial statement reserves are set at a point in time, therefore, are not the direct result of a 
mathematical calculation or single actuarial method; rather, they are a combination of judgments 
which weigh many factors. Along with the results of the actuarial calculations, factors such as 
future economic conditions, jury attitudes and the state of the insurance market are considered. 
The reserving process has some similarities to how prices are set in an active market for financial 
instruments; the process is not always completely rational. 
 

A true model of the volatility of reserve estimates cannot be reproduced by a simple 
mathematical method because it combines so many company business processes, judgments and 
sources of risk. Most models, like the Mack method, assume that variability in reserves can be 
estimated by using the historic variability in loss reserve triangles. While the variability in the 
data may capture some sources of risk, it ignores many others. Risk, such as process and 
parameter risk, may be captured, but model risk and operational risk are ignored. All of these 
risks can manifest themselves as adverse loss development and should be captured in a reserve 
risk model. An appropriate solution requires observation of actual changes in estimates over 
time, similar to the way a study of the market price volatility of a financial instrument requires 
observing actual price changes over time. 
 

As previously mentioned, because no open active market exists for loss reserve liabilities, 
other sources of information must be used. In the case of U.S. P&C insurers, the available data 
takes the form of the detailed information included in Schedule P of the Annual Statement. This 
schedule tracks AY reserve run-off for the prior 10 years and is available electronically from 
several sources.  
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5.1 Data Exploration and Analysis 
 
The data used to develop the VaR model were drawn from Annual Statement data from 

1995–2006 filings, as provided by Highline Media’s P&C Insurance Data product. We limited 
our analysis to the Private Passenger Auto Liability line of business, utilizing the information 
available from Schedule P, Parts 2B, Ultimate Loss and Allocated Loss Adjustment Expenses 
(ALAE) and 3B, Cumulative Paid Loss and ALAE. This line of business provided over 17,000 
data points to calculate ratios and metrics for changes between 12 and 24 months of 
development. There were over 10,000 data points available for analysis for changes between 108 
months and 120 months of development.  
 

These data were sufficient to calculate various metrics used in our data exploration, 
notably the incremental and cumulative changes in ultimate, the initial reserve, current reserve 
and reserve at interim points in time. Ratios of changes in ultimate relative to a selected reserve 
base, e.g., the cumulative change in ultimate relative to the initial reserve at the end of 12 months 
of development, were calculated. 
 

Univariate and bivariate analyses were performed on the selected metrics to identify 
suspected outlier data points and relationships between the metrics. The following two 
observations were noted: 
 

1. The spread of the metrics, related to changes in an AY ultimate, decreased with 
the size of the initial reserve, i.e., as initial reserve increases in size, the amount of 
change experienced relative to the reserve balance drops proportionally. 

 
2. The metrics for cumulative changes in an AY ultimate were strongly correlated, 

and the correlation between two consecutive periods increased the more 
developed the periods are, i.e., the incremental changes in ultimate are inversely 
related to time. 

 
We applied these observations in developing a model to estimate the future one-year 

change in ultimate. The first observation poses a problem in that any model using this data would 
have to account for this size-related variability, or the model would exhibit heteroscedasticity, or 
non-constant variance. This is illustrated in Figure 4. 
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Figure 4 
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Heteroscedasticity violates an assumption underlying linear regression that errors have a 
constant variance. We accounted for this by segmenting the data into two size categories and 
utilizing a reserve size variable in model development. The size categories were segmented in 
terms of whether or not the AY’s initial reserve was greater than or equal to $10 million. For 
data in the “greater than $10 million” category, the size of the initial reserve variable was not 
significant and was dropped from the model. For data in the smaller reserve category, the size of 
the initial reserve variable was significant for nearly every model and successfully mitigated the 
heteroscedasticity issues. 
 

The second observation is what helped formulate the model. If the cumulative changes in 
ultimates are strongly correlated, one can use the cumulative change at one point in time to 
estimate the subsequent cumulative change, and thereby estimate the total change. This thought 
process is developed further in the next section. 
 
5.2 Derivation of Model 

 
Our assumption is that for an accident year at any given point of development, the 

subsequent change in ultimate for the accident year depends on information known at the end of 
the development period, notably the initial reserve and the cumulative change in ultimate. From 
our analysis, we assume that a linear relationship exists between the cumulative change in 
ultimate through a period (k-1) relative to the initial reserve and the cumulative change in 
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ultimate through a period (k) relative to the initial reserve. The typical relationship we observed 
is displayed in Figure 5 below, relating AY changes at 36 months to the 24-month values. 
 

Figure 5 
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Algebra helps us arrive at a simple formula for the model: 
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Explanation of terms: 

0Re s  Initial reserve, i.e., reserve at the end of the first period of development 

kChgUlt  Change in ultimates from period (k-1) to period (k) 

kCChgUlt  Cumulative change in ultimates to period (k) 

kkk εββ ,, 10  Regression parameters to go from period (k-1) to period (k), noting the 
constant coefficient, the independent variable coefficient and the random 
term, respectively 

 
The random error term is scaled by the size of the initial reserve and is independent of the 

cumulative change in ultimate to period k-1. This allows the formula to be applied successively 
to estimate a series of future changes in ultimate. 
 

A significant item to address is points in development for which there are no data to 
model. For instance, given Annual Statement data, there is no means to estimate change in 
ultimate beyond 120 months of development. To estimate change from 120 months to 132 
months of development, we need to consider all parameter sets and use these to make 
assumptions for these periods. Consider the following set of parameter estimates: 

 
Time 
period 

(k) βk0 βk1 SE
108-120 -0.0008 1.0000 0.0064
96-108 -0.0010 1.0000 0.0071
84-96 -0.0017 1.0000 0.0078
72-84 -0.0035 0.9865 0.0122
60-72 -0.0032 1.0164 0.0148
48-60 -0.0038 1.0558 0.0216
36-48 -0.0043 1.0986 0.0305
24-36 -0.0100 1.1803 0.0453  
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 To simulate results, an estimate of the error is necessary. The table above shows the 
model standard error (SE) decreases as the development period increases. This does not appear 
to be a linear relationship; in fact, the relationship appears exponential when plotted, as shown in 
Figure 6. 
 

Figure 6 
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In Figure 7 are the plots of cumulative change in ultimate relative to initial reserve, 
comparing 36 months to 48 months, 60 months to 72 months, 84 months to 96 months and 108 
months to 120 months of development. 

 

Comparison of Regression Model Standard Errors
(As Noted by Months of Development for the Independent Variable 

Prior Cumulative Change in Ultimate)

R2 = 0.9701

0.0000 
0.0050 
0.0100 
0.0150 
0.0200 
0.0250 
0.0300 
0.0350 
0.0400 
0.0450 
0.0500 

0 24 48 72 96 120 144 
Months of Development for Prior Observation

St
an

da
rd

 E
rr

or
 o

f R
eg

re
ss

io
n 

M
od

el
 

Series1 Expon. (Series1)



15 

Figure 7 
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 We may also assume a constant value of 1 for the linear parameter ( 1kβ ), as it appears to 
asymptotically approach this value, and doing so implies that, beyond 120 months of 
development, the expectation for changes in ultimate should approach zero. Finally, the value for 

the constant term ( 0kβ ) appears to approach zero, so an exponential trend could be applied to 
estimate this parameter as well, as seen in the following plot in Figure 8: 
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Figure 8 

 
 

5.3 Estimating the Initial Change in Ultimate between 12 to 24 Months of Development 
 
We cannot model the first change using a linear regression model because there is no 

independent variable. However, we can fit a distribution to the data which would provide 
percentiles for use in the model. For the accident years with initial reserves greater than or equal 
to $10 million, we found the change in ultimate from 12 to 24 months of development as a 
percent of initial reserve is approximately t-distributed, with an allowance for shift and scaling 
parameters. This can be seen in Figure 9. 
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Figure 9 
 

 
 

For the accident years with initial reserves less than $10 million, we used a mixture of 
two distributions:  a t-distribution, with shift and scaling parameters, and a Fisher-Tippett 
distribution, also with shift and scaling parameters. The addition of the Fisher-Tippett 
distribution allows for the data to be skewed. This is illustrated in Figure 10. 

 
Figure 10 
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5.4 Applying Model to Subsequent Periods 
 
By using the model output along with the original inputs, one can estimate the accident 

year’s change in ultimate in the subsequent period or a series of subsequent periods. This is 
illustrated with the following model formula, extending the process another step: 

 
( ) ( ) ( ) ( )kkkkk CChgUltsChgUlt ⋅−+⋅+= ++++ 1Re 1)1(0)1(0)1()1( βεβ  

 ( ) ( ) ( )kkkkk ChgUltCChgUlts +⋅−+⋅+= −+++ )1(1)1(0)1(0)1( 1Re βεβ  
 

 So, to estimate the subsequent step, the result from the prior step is incorporated and the 
(k+1) set of parameters is applied. Carrying these formulae forward (j) periods would result in 
the following: 

 
( ) ( ) ( ) ( )1)(1)(0)(0)()( 1Re −+++++ ⋅−+⋅+= jkjkjkjkjk CChgUltsChgUlt βεβ  
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5.5 Applying Correlation between Accident Years 
 
A model must provide some means of correlating development of accident years for a 

given calendar year. In the model, this was done by using a normal copula and a correlation 
matrix. The correlation matrix is assumed to exhibit the following two behaviors.  
  

Accident years that are close together are correlated more strongly than accident years 
that are further apart, e.g., the experience for accident years 1999 and 2000 would be more 
correlated than for 1999 and 2005.  
 

The correlation between accident years close together diminishes over time, e.g., the 
correlation between accident years 1999 and 2000 is strong during the first few  periods of 
development, but begins to diminish during subsequent development periods. 
 

This correlation matrix is calibrated using incremental change in ultimate, rather than 
cumulative change in ultimate, relative to the initial reserve. The random component of the 
model is applied to the initial reserve, rather than to the cumulative change in ultimate, so the 
correlation of the errors should be on an incremental basis. The correlation matrix also required 
some adjustment, as some empirical estimates of correlation between periods were negative, and 
it is common practice to use only non-negative correlations within a model. 
 

The correlation is measured using the Annual Statement data, which only provides the 
first 120 months of development for accident years. To estimate the correlation between accident 
years beyond 120 months of development, we trended the empirical estimates using a regression 
model, where the accident year’s age and lag were used as inputs. Prior to modeling, the 
correlations were transformed using the Logit transformation, so that the dependent variable’s 
domain was all real numbers, not just the interval [0,1]; the predicted values were transformed 
back into correlation estimates using the inverse-Logit transform. Applying the regression model 
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also smoothed the correlation estimates for the first 120 months of development, so that the 
matrix did not exhibit any irregularities. 
 

The regression approach allows the creation of correlation matrices of any size. We 
created a matrix that is 21x21, which allows us to take the 11 rows of the Annual Statement 
Schedule P data and age them 10 years. For this application, we only need the 10 11x11 matrices 
falling along the diagonal. The matrix corresponding to the incremental development during the 
first future calendar period for accident years noted in the Annual Statement Schedule P is 
below: 
 

 
 

 
It should be noted that this correlation matrix may not be positive-definite, i.e., it has no 

Choleski Decomposition to use in a copula. Rather than using Choleski Decomposition, we used 
Spectral Decomposition as described by Rebonato and Jäckel. This entails finding a matrix that 
is arbitrarily close to the original which can be decomposed and used in a copula. 
 
5.6 Applying Correlation between Time-Steps of the Repeated Model 

 
If the model is applied successively, the results from successive iterations must be 

correlated; otherwise, the calendar year development would be independent. The calendar year 
correlation was estimated using accident year development aggregated by calendar year and 
measured over a series of years.  
 

Correlation for calendar year development is implemented in the model using the Iman-
Conover method. A normal copula was used to generate correlated random variables 
representing the calendar year aggregate. The rank of the variables in their respective columns 
represents the rank of the aggregate accident year change in ultimate, i.e., if the first row of the 
calendar year variable rank matrix is {500, 2401, 37, …}, then the 500th worst iteration from the 
first time-step is used, then the 2401st worst iteration from the second time-step is used, then the 
37th worst iteration from the third time-step is used, etc. 
 

Another form of correlation between years, the serial correlation of random errors, was 
considered and implemented in the model. The data suggest that errors between time-steps are 
not independent, and that prior errors should be incorporated into the model as well. This was 
accomplished by making the error in the successive terms a mixture of the random error from the 

Correlation between Accident Years of Different Annual Ages
Age of Accident Year (in Years)

11 10 9 8 7 6 5 4 3 2 1
11 1.00 0.21 0.15 0.11 0.07 0.05 0.03 0.02 0.02 0.01 0.01
10 0.21 1.00 0.22 0.16 0.11 0.08 0.05 0.04 0.03 0.02 0.01

9 0.15 0.22 1.00 0.24 0.17 0.12 0.09 0.06 0.04 0.03 0.02
8 0.11 0.16 0.24 1.00 0.25 0.19 0.13 0.09 0.06 0.04 0.03
7 0.07 0.11 0.17 0.25 1.00 0.27 0.20 0.14 0.10 0.07 0.05
6 0.05 0.08 0.12 0.19 0.27 1.00 0.29 0.21 0.15 0.11 0.07
5 0.03 0.05 0.09 0.13 0.20 0.29 1.00 0.31 0.23 0.16 0.12
4 0.02 0.04 0.06 0.09 0.14 0.21 0.31 1.00 0.32 0.24 0.18
3 0.02 0.03 0.04 0.06 0.10 0.15 0.23 0.32 1.00 0.34 0.26
2 0.01 0.02 0.03 0.04 0.07 0.11 0.16 0.24 0.34 1.00 0.36
1 0.01 0.01 0.02 0.03 0.05 0.07 0.12 0.18 0.26 0.36 1.00
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prior step and the random error generated for the current step. Analysis of the serial correlation 
of the data suggests a mixture parameter of 30 percent should be used, i.e., 70 percent random 
error generated for current step, 30 percent random error from prior step. The addition of errors 
from steps earlier in the process was considered, but the sample serial correlation from analysis 
decreased rapidly and did not seem material enough to warrant inclusion in the model. 
 

Results of the repeated model are as illustrated in the next section. 
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5.7 Illustration of Model Results 
 

Part B - Private Passenger Auto Liability
Industry Aggregate

Schedule P Part 2
(1) (2) (3)

Calendar Year
Accident 

Year 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Current Reserve Initial Reserve
Cumulative Chg 

in Ult
Prior 34,752,578 31,346,443 30,167,738 29,907,574 29,927,309 30,067,107 30,069,405 30,470,625 31,038,755 31,244,832 3,272,851 34,752,578 -3,507,746
1997 50,200,041 48,290,567 47,535,635 47,271,589 47,127,111 47,077,980 47,039,351 47,034,045 47,039,455 47,029,752 189,520 31,688,173 -3,170,289
1998 49,434,552 48,460,577 48,284,985 48,131,836 48,135,650 48,069,855 48,082,718 48,050,243 48,059,599 274,561 30,755,018 -1,374,953
1999 51,723,573 51,624,048 51,564,759 51,666,795 51,566,364 51,566,370 51,611,145 51,624,968 457,175 31,190,704 -98,605
2000 54,595,508 54,925,540 55,082,187 55,161,479 55,166,228 55,216,804 55,226,484 727,614 32,372,910 630,976
2001 57,013,900 56,780,128 56,680,946 56,719,452 56,860,754 56,819,386 1,211,797 33,946,336 -194,514
2002 60,401,184 59,704,434 59,392,363 59,454,492 59,388,076 2,408,578 36,244,781 -1,013,108
2003 61,641,577 59,671,262 58,945,904 58,712,992 5,005,421 37,495,349 -2,928,585
2004 62,261,624 59,968,158 59,065,620 9,787,887 37,851,774 -3,196,004
2005 63,194,894 61,049,536 18,288,344 38,047,147 -2,145,358
2006 62,784,420 37,101,198 37,101,198 0

78,724,946

Schedule P Part 3
Calendar Year

Accident 
Year 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
Prior 0 12,254,730 19,167,111 23,138,007 25,317,110 26,355,590 26,948,074 27,412,486 27,726,891 27,971,981
1997 18,511,868 32,741,805 39,395,546 43,154,607 45,166,895 46,091,431 46,417,086 46,654,814 46,784,768 46,840,232
1998 18,679,534 33,396,138 40,252,877 44,102,374 46,117,821 46,990,271 47,445,784 47,674,543 47,785,038
1999 20,532,869 36,312,876 43,511,959 47,436,687 49,497,795 50,453,888 50,921,028 51,167,793
2000 22,222,598 39,156,911 46,605,247 50,800,756 52,976,433 53,987,662 54,498,870
2001 23,067,564 40,240,041 47,946,837 52,270,348 54,565,025 55,607,589
2002 24,156,403 41,941,707 50,033,846 54,541,463 56,979,498
2003 24,146,228 41,478,517 49,192,971 53,707,571
2004 24,409,850 41,554,907 49,277,733
2005 25,147,747 42,761,192
2006 25,683,222  

 
These data are drawn from the 2006 Industry Aggregate for Private Passenger Auto 

Liability, as provided by Highline Media. The initial and current reserve and the cumulative 
change in ultimate are shown. 

 
Part B - Private Passenger Auto Liability Alpha
Industry Aggregate 0.005

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Accident Year
Chg in 

Ultimate
Chg in 

Ultimate
Chg in 

Ultimate
Chg in 

Ultimate
Chg in 

Ultimate
Chg in 

Ultimate
Chg in 

Ultimate
Chg in 

Ultimate
Chg in 

Ultimate
Chg in 

Ultimate
Prior 51,772 -808 21,527 57,032 -21,068 -7,784 8,878 5,285 -807 -2,453
1997 158,841 10,899 -13,997 -12,068 -4,317 4,009 -11,686 -12,573 110 751
1998 72,604 -6,936 7,900 -13,041 -8,697 21,101 -9,734 2,636 7,414 4,195
1999 -84,472 311,512 155,620 80,751 26,043 16,716 7,262 12,968 2,508 -6,987
2000 3,006 180,302 48,752 -129,117 -20,920 10,282 7,876 -38,291 -7,602 10,762
2001 455,931 -179,218 227,359 37,678 53,731 66,416 44,558 -15,545 -21,137 17,047
2002 -96,574 121,397 43,373 -80,037 -32,140 176,510 70,899 59,831 13,547 -1,871
2003 724,378 -26,197 184,642 122,917 76,437 -185,855 -59,537 56,221 -5,723 -11,541
2004 295,435 416,195 156,384 721,975 270,770 229,618 217,179 117,723 -22,502 -73,964
2005 949,268 935,922 1,535,525 998,618 319,757 81,603 -86,428 -5,594 -2,553 71,523
2006 4,479,450 3,299,583 2,502,204 19,847 374,711 216,057 -98,661 -176,983 149,042 -35,251

Incremental 7,009,638 5,062,651 4,869,288 1,804,555 1,034,308 628,674 90,606 5,677 112,298 -27,787
Cumulative 7,009,638 12,072,290 16,941,577 18,746,132 19,780,440 20,409,114 20,499,720 20,505,398 20,617,696 20,589,908

Capital Ratio * 8.90% 15.33% 21.52% 23.81% 25.13% 25.92% 26.04% 26.05% 26.19% 26.15%

* Capital Ratio is applied to reserve as of 12/31/2006  
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 The estimates for 2007 through 2016 are determined by applying the model for initial 
reserves with values greater than $10 million successively, as noted above. The cumulative 
charge, as a percentage of current reserves, increases steeply, then levels off around 26 percent. 
The development of this metric is shown in Figure 11.  
 

Figure 11 
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5.8 Applying Model to Intervening Periods 
 

As the model can produce results along annual time steps, we can generate results to 
make probability statements at different annual intervals. As suggested in the introduction, a 
relevant example is: What is the probability that current reserves will become 20 percent 
deficient over the next two years? As illustrated in Figure 12 below, the probability is around 0.3 
percent. 
 

Figure 12 

 

Simulation Output for the Two-Year Change in Ultimate Relative to the Initial Reserve 
(Total for All Accident Years)

0 

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

-0.285 -0.21 -0.135 -0.06 0.015 0.09 0.165 0.24 0.315 0.39 0.465

Two-Year Change in Ultimate (as a Percent of Initial Reserve)

In
cr

em
en

ta
l P

er
ce

nt
 o

f O
bs

er
va

tio
ns

0

0.2

0.4

0.6

0.8

1

1.2

C
um

ul
at

iv
e 

Pe
rc

en
t o

f O
bs

er
va

tio
ns

PDF for Two-year % Change in Ultimate
PDF for Normal (-0.033, 0.076)
Cumulative Empirical Distribution

An increase in Ultimate of greater than 
20% of initial reserves has a probability of 

0.3%, based on simulation output. 



24 

6. Conclusion 
 
By incorporating time horizon, we have developed a model for P&C insurer loss reserve 

risk that conforms to the structure of a VaR model. This step is necessary for insurers to be able 
to understand how loss reserve risk evolves over time and integrate risk models into existing EC 
modeling paradigms. Full integration requires that all risk sources, whether from assets or 
liabilities, are expressed in common time horizons. The common horizon, typically selected as 
one year, allows the risk distribution to be aggregated. 
  

In addition, VaR models are usually calibrated at very high percentiles that have proven 
difficult to reasonably match in insurance applications. With less available data, the tails of 
distributions are hard to parameterize with confidence at the extremes. The RRVaR method 
utilizes the data available in a way to maximize the sample size and also seems to produce 
plausible results at the extreme percentiles. 
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