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Abstract 
Extreme value theory describes the behavior of random variables at 

extremely high or low levels.  The application of extreme value theory to 
statistics allows us to fit models to data from the upper tail of a distribution.  This 
paper presents a statistical analysis of advanced age mortality data, using 
extreme value models to quantify the upper tail of the distribution of human life 
spans. 

Our analysis focuses on mortality data from two sources.  Statistics 
Canada publishes the annual number of deaths in Canada, broken down by 
gender and age.  We use the deaths data from 1949 to 1997 in our analysis. The 
Japanese Ministry of Health, Labour and Welfare also publishes detailed annual 
mortality data, including the 10 oldest reported ages at death in each year.  We 
analyze the Japanese data over the period from 1980 to 2000. 

Using the r-largest and peaks-over-threshold approaches to extreme value 
modeling, we fit generalized extreme value and generalized Pareto distributions 
to the life span data. Changes in distribution by birth cohort or over time are 
modeled through the use of covariates.  We then evaluate the appropriateness of 
the fitted models, and discuss reasons for their shortcomings.  Finally, we use 
our findings to address the existence of a finite upper bound on the life span 
distribution, and the behavior of the force of mortality at advanced ages. 
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1  Introduction 
Over the last decade, several papers have been published using extreme 

value theory to model human mortality at extremely high ages.  Aarssen and de 
Haan (1994) estimated a finite upper bound on the distribution of human life 
spans, while Galambos and Macri (2000) argued that such an upper bound could 
not exist.  In this paper, we have used extreme value techniques to analyze 
Canadian and Japanese mortality data.  Using the peaks-over-threshold 
approach, we fit generalized Pareto distributions to future lifetimes of survivors 
to a fixed age obtained from the Canadian data. The fitted distributions suggest 
that there is a finite upper bound, ω , on the distribution of human life spans. We 
believe that the finite estimate of ω  results from the fact that our data extend 
only to age 100, and is not true evidence of a finite upper bound. For the 
Japanese data, we fit generalized extreme value distributions to the maximum 
age at death using the r-largest approach. While some estimates of ω  are finite 
for the Japanese data, the confidence intervals for ω  suggest that an infinite 
upper bound is very plausible. The Japanese parameter estimates also suggest an 
upward shift over time in the distribution of the annual maximum age at death. 
 
2  Methodology 

The application of extreme value theory to statistics allows us to 
investigate the behavior of a stochastic process at very high or very low levels.  
In this paper, we will use extreme value models to quantify the upper tail of the 
life span distribution. 

Extreme value analyses depend on finite-sample approximations to 
several asymptotic results.  In this paper, we will use the definitions and notation 
of Coles (2001).  Suppose that },,max{ 1 nn XXM …=  where nXX ,,1 …  is a 
sequence of independent random variables having common distribution function 
F. Suppose, for some sequences of constants }0{ >na  and }{ nb , 
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where )(zG  is a non-degenerate distribution function.  It follows that G  is a 
member of the generalized extreme value (GEV) family of distributions, given by 
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parameter ∞<<∞− μ , a scale parameter 0>σ , and a shape parameter 
∞<<∞− ξ .  When 0=ξ , the distribution function is the limit of (1) as 0→ξ , ie. 
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For large enough n , )( zMP n ≤  can be approximated by some member of 
the GEV family.  That approximation is the basis of the block maxima approach 
to extreme value modeling.  If we have a set of data where each observation is 
the maximum over a sufficiently large block of time, then we can fit a GEV 
distribution to the data and obtain estimates for μ , σ , and ξ . 

Occasionally, we have data on several high order statistics for each block, 
and not just the block maxima.  This extra information can aid us in obtaining 
better estimates of the GEV parameters μ , σ , and ξ  in (1).  Suppose there exist 
sequences of constants }0{ >na  and }{ nb  such that 
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for some μ , σ , and ξ .  Then the joint limiting distribution of 
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As well as describing the behavior of the maximum of a sequence of 
random variables, extreme value theory can be used to characterize the 
distribution above some large threshold u .  If, for large n , )()( zGzMP n ≈≤  for 
some μ , σ , and ξ , then for sufficiently large u , the distribution function of 
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exceedance of the threshold u.  The family of distributions given by (3) is called 
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the generalized Pareto (GP) family. Again, the 0=ξ  case is interpreted as the 
limit, 
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an exponential distribution function.  If we have observed all of the values above 
some high threshold u , we can use the peaks-over-threshold approach to fit a 
generalized Pareto distribution to the exceedances of u , and obtain estimates of 
σ~  and ξ .  If we have instead fit a GEV distribution to a set of data using the 
block maxima or r-largest approach, then we can find the corresponding GP 
parameters, given a high threshold value, u . 

For mortality data, )(yH  can be interpreted as follows:  Let X  represent 
the time-to-death random variable for a person aged 0.  Then, for some high age 
u , )(yH  represents the probability that the person will die before age yu + , 
given survival to age u , ie. uy q .  Expressions for yearly mortality rates xq  and 
forces of mortality xμ  can be derived from the GP distribution. For a high age 
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The existence of a finite upper bound, ω , on the life span distribution can also be 
addressed via the GP parameters.  When 0<ξ , there is a finite upper bound of 

ξ
σω −= u .  When 0≥ξ , there is no finite upper bound.  Thus, we can test for the 

existence of a finite ω  by testing the hypothesis 0<ξ . 
All of the above results have been given in terms of stationary sequences 

of random variables.  They can be adapted for use with data from non-stationary 
sequences, as well.  In a non-stationary sequence, characteristics of the stochastic 
process change with changes in some related random variable. For example, the 
distribution of life spans might shift upward over time. Let t  be a covariate, for 
example, the year of death or the birth cohort.  The GEV or GP parameters can be 
expressed as functions of t .  We will investigate changes in the distribution of 
extreme life spans over time through the use of such covariate functions. 

Applications of extreme value theory often deal with environmental or 
structural data.  For applications of the GEV model, see Robinson & Tawn (1995) 
and Tawn (1992).  Smith (1986) provides an example of the r-largest approach.  
Davison & Smith (1990) used the peaks-over-threshold approach to model 
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several sets of environmental data. Coles (2001) provided numerous applications 
of extreme value theory, using the block maxima, r-largest, and peaks-over-
threshold approaches. 

Extreme value theory has been applied to actuarial science, as well. 
Embrechts et al. (1999) used a peaks-over-threshold approach to model industrial 
fire insurance claims data.  They fit GP distributions to the exceedances of high 
threshold claim amounts u .  The exceedance amounts corresponded to 
reinsurance claims under an excess-of-loss treaty with retention level u . 
 
3  The Data 

Statistics Canada publishes annual numbers of deaths from the Canadian 
population. The data are provided for males and females, and are broken down 
by individual ages from 0 to 99 and grouped over age 100. Doray (2002) 
investigated the fit of several mortality models to the Statistics Canada deaths 
data from 1949 to 1997. In his analysis, Doray constructed five cohort life tables 
from the Canadian data.  The cohorts cover the birth periods 1869-72, 1873-77, 
1878-82, 1883-87 and 1888-92.  Each life table is provided for males and females 
separately, and encompasses ages 80-99 and 100+. We have used Doray's cohort 
life tables in our extreme value analysis of the Canadian data.  For ease of 
notation, we refer to the cohorts as Cohort 1 (birth years 1869-72) through Cohort 
5 (birth years 1888-92).  Figure 1 shows the empirical mortality rates for the 
Canadian data, based on Doray's life tables. 

The Japanese Ministry of Health and Welfare has published detailed 
mortality statistics since 1899.  Robine et al. (2002) examine several features of the 
Japanese data, including the maximum and tenth largest ages at death in each 
year.  In our analysis, we looked at the ten largest ages at death for each year. 

Figure 2 displays the largest, second largest, and tenth largest ages at 
death over the period from 1899 to 2000. The data for 1944 to 1946 are not 
available.  The maximum ages attained in the earlier years are often higher than 
those attained later in time.  In 1872, a Japanese national birth registration system 
was implemented.  Due to possible age misreporting, Robine et al. (2002) advise 
that the reported ages of people born before 1872 may not be accurate.  We 
therefore chose to base our analysis on the data from 1980 to 2000. In 1986, the 
maximum age at death for a male was 120, considerably higher than any other 
age at death from 1980 to 2000, and fourteen years older than the second oldest 
age at death in that year.  To attain age 120 in 1986, the person in question would 
have been born prior to 1872. We treated this point as a potential outlier, 
performing our analysis with it included and also with it replaced by a more 
plausible value. 
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4  Results 
4.1 Canadian Data 

For the Canadian data, we were not given the maximum age at death in 
each year.  Based on the life table structure of the data, we decided to take the 
peaks-over-threshold approach in our analysis.  In doing so, we assumed that the 
life spans of people within a given cohort and gender were independent and 
identically distributed random variables.  Using maximum likelihood, we fit GP 
distributions over a range of thresholds. 

Let u  be a high threshold age, and let yX  be the age at death random 
variable for a life in Cohort y , 5,,1…=y . Let y

uH  be the distribution function for 
uX y − , given that uX y > .  The peaks over threshold approach states that, for 
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1+x  is therefore y
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x 1+ .  The likelihood contribution for each age 99,,80 …=x  
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The likelihood contribution for the survivors to age 100 is the probability of 
survival to age 100, raised to the number of survivors, or 
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Combining the likelihood contributions for each cohort, the overall log-
likelihood function for a threshold of u  is: 
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where ( )51 ,, σσσ …=  and ( )51 ,, ξξξ …= .  Using the R language (R Development 
Core Team, 2004), we maximized ),( ξσl  with respect to σ  and ξ  to obtain 
maximum likelihood estimates of the parameters. We defined the log-likelihood 
function within R, and used the function optim() to perform the maximization. 

The first model we fit allowed yσ  and yξ  to differ for each cohort and 
gender combination.  We repeated the maximization for integer thresholds from 
80 to 98.  The resulting parameter estimates are given in Table 1, for several 
thresholds. 

Figure 3 displays the maximum likelihood estimates of )log( yσ versus y  
for the Canadian data, over several different thresholds.  For each threshold, 
there appears to be a linear relationship between the estimate of )log( yσ  and y .  
Based on that observation, we fitted a second GP model to the Canadian data, 
with 

[ ] 5,,1,)1(exp 10 …=−+= yyy ββσ . 
Again, we placed no restrictions on the behavior of yξ .  The parameter estimates 
for this model are shown in Tables 2 and 3, for several threshold choices. 

In order to obtain the GP maximum likelihood parameter estimates, we 
can take u  to be any integer between 80 and 98.  If the exceedances above some 
threshold 0u  follow a GP distribution, then the exceedances over any higher 
threshold are also GP.  We used several diagnostic tools to select the minimum 
threshold 0u  over which the Canadian data exceedances are GP. 

Suppose the number of deaths in Cohort y  at age 0ux ≥  is given by y
xd .  

The observed number of deaths is given by 
y
x

y
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Under the GP assumption, the expected number of deaths is 
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To test the goodness of fit of the GP distribution to exceedances of 0u , we used 
the 2χ  test statistic, 
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For the male data, according to the 2χ  statistics, the fit of the GP distribution 
was not acceptable at the 5% level for thresholds below 92=u .  For 92≥u , the 

2χ  test provided no evidence against the GP distribution.  The 2χ  tests of the 
female data suggested that a GP distribution was appropriate for exceedances of 
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thresholds 94≥u .  We will therefore take 0u  to be 92 for males and 94 for 
females.  The parameter estimates for those thresholds are listed in Table 4. 

Figure 4 displays PP and QQ plots for the fitted GP distributions for males 
and females, Cohort 1.  There are very few points on the diagnostic plots, since 
our data only went up to age 100, but there are no obvious problems with the 
existing points.  The diagnostic plots for Cohorts 2 through 5 (not shown) did not 
highlight any problems with the fits, either.  Figures 5 and 6 compare the fitted 
and observed mortality rates, xq , for 0ux ≥ . Again, the GP distributions appear 
to provide a good fit to the observed data. 

The GP distributions fit to exceedances over 92 for males and 94 for 
females had negative shape parameters for each cohort. As discussed in Section 
2, when 0<yξ , the lifespan distribution for Cohort y  has a finite upper bound, 

y

y
y u

ξ
σ

ω −= .  Figure 7 displays the estimates of yω  for each gender/cohort 

combination (the starred values), along with 95% profile confidence intervals.  
Most of the estimates fall around 110-112 years.  To find the profile confidence 
interval for yω , we first wrote the GP parameter yσ  as 

( )yyy u ωξσ −=  
We substituted that expression for yσ  into the log-likelihood function given by 
(5), so that yl  was a function of yω  and yξ .  We defined the profile log-likelihood 
for yω  as 

{ }),(max)(, yyyypy ll
y

ξωω ξ= . 

A 95 percent profile confidence interval for yω  is given by 

[ ]{ }2
05.0,1, )()ˆ,ˆ(2: χωξωω ≤− ypyyyyy ll  

where yω  and yξ̂  are the maximum likelihood estimates of yω  and yξ , and 
where 2

05.0,1χ  is the 95 percent quantile of the 2χ  distribution, on one degree of 
freedom. 
 
4.2 Japanese Data 
For the Japanese data, we were provided with the ten highest ages at death in each year, 
for males and females.  Based on the structure of the available data, we decided to take an 
r-largest approach to modeling Japanese mortality.  In order to fit a GEV using the r-
largest likelihood function, based on the pdf in (2), we needed exact observations.  The 
Japanese data is interval censored: for each death, we know only that it occurred in a one-
year interval from some age x  to age 1+x . We approximated the exact ages at death by 
assuming that deaths are uniformly distributed over the year. To obtain “exact” 
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ages, we added a random amount between zero and one to each of the integer 
ages. 

The r-largest likelihood function for one gender is: 
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where )(tμ  and )(tσ  are functions of the year of death, t , and )1()(
t

r
t zz ≤≤  are 

the r  oldest ages at death in year t .  For the Japanese data, 10=r .  To maximize 
the r-largest likelihood and obtain parameter estimates, we used the R function 
rlarg.fit() in the package ismev. 

The likelihood function in (6) assumes that the number of deaths from the 
Japanese population was the same in each year of data.  In reality, the number of 
deaths likely increased over time, which would lead to different values for μ  
and σ  in each year. By setting μ  and σ  to be functions of t , we have allowed 
for a change in population size.  However, it will not be possible to distinguish 
between the effect of a change in the number of deaths and actual mortality 
improvements. 

Figure 2 suggests that the ten oldest deaths are shifting upward over time.  
To account for that shift, we first let 

*
10)( tt μμμ +=  

where 

20
1980* −

=
tt  

is the standardized year of death, 10 * ≤≤ t .  The maximum likelihood estimates 
for this model are given in Table 5. 

In Table 5, the parameter estimates are given for three groups:  males, 
including the possible outlier in 1986, males, with the possible outlier replaced by 
a more plausible value, and females.  To find a plausible replacement for the 
possible male outlier, we began by fitting a GEV distribution to the original data, 
using the 10-largest approach.  We calculated the conditional expected value for 
the maximum age at death in 1986, given that the person in question was born in 
or before 1872, and would therefore be at least 114 years old in 1986.  We 
replaced the original value of 120 with the expected value, fit a GEV to the 
modified data, and repeated the procedure until the estimate for the maximum 
in 1986 converged. The final replacement for the outlier was 115.07. 

The Japanese female data showed some evidence that the variance was 
changing over time.  We investigated that possibility by allowing σ  to vary with 
the year of death.  The second r-largest model we fit set 

*
10)( tt μμμ +=  
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and 
{ }*

10exp)( tt σσσ +=  
The maximum likelihood estimates for this model are given in Table 6. 

For both sets of male data, allowing σ  to vary over time did not 
significantly improve the fitted models.  The likelihood ratio statistics comparing 
the constant σ  model to the second model were close to zero.  For the female 
data, the addition of a fifth parameter did significantly improve the fit of the 
GEV distribution.  In the remaining analysis, we have used the constant σ  
model for the male data, and the time-varying σ  model for the female data. 

To evaluate the goodness of fit of the fitted GEV models, we considered 
the corresponding GP distributions.  We chose to look at exceedances of 108=u  
for males, and 111=u  for females. Those thresholds lie above the highest tenth 
oldest ages at death, allowing us to be sure that we have all of the deaths above 
the threshold age. For each year t , the GP parameters were ξ , the shape 
parameter from the GEV, and 

))(()()(~ tutt μξσσ −+= . 
Let )),(~(~ ξσ tGPYt  be an exceedance of u  in year t .  Since )(~ tσ  varies 

over time, the distribution of exceedances is different from year to year. We 
based the PP and QQ plots in Figures 8, 9, and 10 on the standardized variables, 
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By rearranging variables, we can show that 
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Thus, tY~  has a standard exponential distribution. 
Since the estimated shape parameters for the females and the males (with 

the outlier replaced) are negative, the fitted distributions have finite upper 
bounds, ω .  We used a parametric bootstrap to obtain lower 95 percent 
confidence bounds for ω  for the most recent year of data, 2000.  We began by 
resampling 21 years of data from each of the fitted GEV distributions.  Using the 
10-largest approach, we fit a GEV distribution to the resampled data.  We then 
used the new fitted parameters to estimate ω , setting ∞=ω̂  if the estimate of ξ  
was non-negative.  Repeating those steps 2000 times, we obtained a set of 
estimates of ω .  We took the 100th smallest value from the set of estimates to be a 
lower 95-percent confidence bound for ω . 

For the female data, 21.124ˆ =ω , with a lower 95-percent confidence bound 
of 115.51. For males, with the outlier replaced, 56.135ˆ =ω , with a lower 95-
percent confidence bound of 118.17. When the 1986 outlier is included in the 
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male data, the estimate of ξ  is positive, leading to an infinite estimate of ω . 
However, it is still possible to construct a lower 95% confidence bound using the 
parametric bootstrap.  The confidence bound in this case is 147.11. 

Table 7 gives estimates of the mortality rates, xq , and the force of 
mortality, xμ , from the fitted GEV models. The estimates are calculated using the 
values of )(tμ  and )(tσ  for the most recent year, 2000. 
 
5  Discussion 
5.1 Canadian Data 

Our analysis of the Canadian data resulted in negative estimates of the 
shape parameter for both the male and female data.  Those estimates, in turn, led 
to finite estimates of the upper bound, ω , on the life span distribution.  Despite 
the apparent statistical evidence, we do not believe that there is truly a finite 
upper bound on the distribution of human life spans.  If there was, then any 
person reaching age ω  minus one day would have a probability of one of dying 
on that one day. Such a situation seems highly unlikely.  Even if there were a 
finite ω , the values that we estimated, mostly around 110-112 years, seem far too 
low. 

Since the peaks-over-threshold approach produced unexpected results, we 
examined the assumptions that we made in fitting the GP models.  The peaks-
over-threshold approach requires that the threshold u  be set high enough that 
the distribution of exceedances of u  can be approximated by a GP distribution.  
If we knew the underlying distribution from which the data originated, then we 
could determine theoretically what the limiting distribution of exceedances 
should be.  We could also gauge how far we must move the threshold into the 
tail of the distribution for the GP approximation to be valid.  Doray (2002) looked 
at the Gompertz and Kannisto distributions as possibilities for modeling the 
distribution of human life spans. Both of those distributions fall into the “domain 
of attraction” of the 0=ξ  subset of extreme value distributions.  In other words, 
the limiting distribution of exceedances from true Gompertz or Kannisto data 
should have 0=ξ , and therefore an infinite upper bound. 

We examined the Kannisto distribution fit by Doray (2002), using 
maximum likelihood, to the Canadian male data from Cohort 1.  We found the 
“best-fitting” generalized Pareto distribution to exceedances from that Kannisto 
by minimizing the squared difference between the quantile functions. Let 
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be the generalized Pareto distribution function for exceedances of u  with 
parameters σ  and ξ , and let )(xh  be the corresponding density function.  Let 

)(xFX  be the distribution function of the Kannisto distribution, fit by maximum 
likelihood to the Canadian male data, Cohort 1.  Let 

)(1
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−
=>  

be the associated conditional distribution for values greater than u . For a series 
of thresholds, u , we minimized 
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with respect to the GP parameters, σ  and ξ .  We then examined QQ plots 
comparing the quantiles of the conditional Kannisto distribution to those of the 
best-fitting GP distribution.  There was considerable curvature in the QQ plots 
for thresholds below 110.  Since our data only allows us to look at thresholds up 
to u = 98, it is not surprising that we did not see the results we would expect for 
the upper bounds.  Although the diagnostic plots in Figure 4 show no obvious 
problems with the GP distribution, our choices of u  were too low for the results 
to be valid.  However, we did not have data at sufficiently high ages to detect 
this.  To obtain credible results from the peaks-over-threshold approach, we 
would need more detailed data above age 100, and a considerably higher 
threshold age, u . 

For low thresholds, as we have in the Canadian data, finite estimates of ω  
can actually be expected.  Suppose the true distribution is a Gompertz 
distribution.  It is possible to show that, as we move the threshold further into 
the tail of the distribution, the GP distribution that best approximates the true 
Gompertz distribution over the relevant range of values has a ξ  that approaches 
zero from the left hand side.  This is not surprising since only GPs with 0<ξ  
will yield an increasing force of mortality. 
 
5.2 Japanese Data 

The maximum likelihood estimates of the GEV parameters for the 
Japanese analysis reflect several features of the data. For both males and females, 
the maximum likelihood estimates of 1μ  are positive, leading to an increasing 

)(tμ . Given the plots of the data in Figure 2, the positive estimates of 1μ  are not 
surprising.  The data plots show an increasing trend in the ten largest order 
statistics from 1980 to 2000.  Less clear is the reason behind that increase. One 
possibility is that mortality has improved from 1980 to 2000, leading to a higher 
average value for the maximum age at death. However, over the same time 
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period, the Japanese population has grown.  The larger pool of lives may be 
allowing us to see observations further into the right tail of the distribution than 
we did in previous years. 

For the female data, the estimate of 1σ  was also positive, leading to an 
increasing function )(tσ .  From the plot of the female data in Figure 2, the 
variance of the oldest age at death appears to increase slightly from 1980 to 2000. 
The positive estimate of 1σ  reflects that increase. 

The mortality rates in Table 7 increase fairly steadily with age for both 
females and males, with the 1986 outlier replaced.  The forces of mortality for 
those two groups increase sharply as the ages approach the estimated upper 
bounds.  When the 1986 outlier is included in the analysis, the force of mortality 
and mortality rates decrease slightly by age. 

Despite the finite estimates of the upper bounds, ω , for females and males 
with the 1986 outlier replaced, it is still very plausible that the upper bounds are 
actually infinite.  In Section 4.2, we found lower 95-percent confidence bounds 
for ω  using a parametric bootstrap. In doing so, we obtained a set of estimates of 
ω .  For the female data, 307 of the 2000 estimates were infinite.  For the male 
data, with the outlier replaced, the number of infinite estimates was 1189.  With 
the 1986 male outlier included, the initial estimate of ω  was infinite, as were 1769 
of the parametric bootstrap estimates.  Based on those counts, two-sided 95% 
confidence intervals for ω  would extend to ∞  for all three of the data sets. 

The PP and QQ plots for the r-largest fits are shown in Figures 8, 9 and 10. 
The points on the female plots lie very close to the unit diagonal, and show no 
major difficulties.  The possible outlier from 1986 shows up clearly on the QQ 
plot in Figure 8.  In Figure 9, the maximum age at death in 1986 lies closer to the 
QQ plot unit diagonal than in Figure 8, but it is still obvious.  Our restriction that 
the replacement value be greater than 114 has kept the point significantly higher 
than the rest of the data in the 1980-2000 interval. 
 
6  Conclusion 

Extreme value theory provides useful tools for analyzing data at very high 
levels.  Unfortunately, our Canadian mortality data did not extend far enough 
into the tail of the life span distribution for the extreme value approximations to 
be valid.  To effectively 
use the extreme value techniques, we would need more detailed information 
about mortality after age 100.  For the Japanese data, the GEV distribution fit by 
an r-largest approach provided a reasonable fit.  For that data set, confidence 
intervals for ω  supported our belief that there is no finite upper bound on the 
distribution of human life spans. 
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