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Abstract 
 
 As a life reinsurer, understanding mortality risk is mission critical. Superior models of 
mortality risk lead to more competitive pricing in profitable market segments and more efficient 
use of capital. Surprisingly, modern statistical tools such as predictive modeling have not 
previously been used to model mortality data to gain this edge. In this paper, we present the use 
of a predictive modeling technique called projection pursuit regression (PPR) to model mortality 
data. We first describe the process of creating a PPR model using inter-company mortality data 
collected by the Individual Life Experience Committee of the Society of Actuaries, and present 
the resulting model. We then discuss the process of using this model as a starting point for 
creating a more detailed PPR model of internal company mortality data. 
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1. Introduction 
 
 When implementing enterprise risk management within a company, one can take a 
bottom-up or top-down perspective. From a top-down view, we need to understand our different 
types of capital (such as target or economic) as well as their management and utilization. We 
also need to understand the integrated impact of various risks such as market, credit or 
operational risk on the determination and possible consumption of our existing capital. In ERM, 
once a top-down approach has been implemented, we begin to look for the major risks that the 
enterprise is exposed to outside of the general list of market, credit, interest, operational, etc. 
From this list, then, one either improves the underlying risk models or adds new ones.   

 
Taking a bottom-up view, we would first determine all of the specific major risks, either 

by interviewing or through the use of the Delphi method within each major business function. 
Once these are determined, further analysis will lead one to either set up risk management 
strategies or, hopefully, if there is sufficient data, actual risk models, which allow the analyst the 
ability to associate financial value to these risks. If these financial models are available, then 
these would become components of the aggregate ERM models to determine the capital impact 
of these risks. 

 
In this paper, we will take a bottom-up approach, by placing emphasis on our major risk, 

which is mortality. As a life reinsurer, our need to understand mortality risk is mission critical. If 
we are able to develop superior models of mortality risk, this will allow us to competitively price 
in profitable market segments and allow us to more effectively use capital. Surprisingly, modern 
statistical tools such as predictive modeling have not previously been used to model mortality 
data to gain this edge. 

 
Predictive modeling is in general a process by which a model is created or chosen such 

that its characteristics are the best at predicting the probability of an outcome. There have been 
multiple approaches used within the casualty insurance industry such as Generalized Linear 
Models (GLM) or Generalized Additive Models (GAM) to improve various pricing models.   

 
In this paper, we present the use of a predictive modeling technique called projection 

pursuit regression (PPR) to model mortality data. PPR is a form of GAM models, but PPR has 
extra flexibility allowing one to model interactions between various predictors without requiring 
additional effort. We have found that this technique is extremely effective because of its ability 
to extract complex relationships within large datasets.   

 
To illustrate the PPR technique, we begin by constructing a model of mortality for the 

U.S. life insurance industry. The underlying data used in developing this model is the Society of 
Actuaries Individual Life Experience Committee’s 2002–2004 Intercompany Study (SOA 2002–
2004 Study). This study includes $7.4 trillion in exposure by amount, over 75 million life-years 
of exposure by policy count, and nearly 700,000 death claims from 35 contributing companies. It 
includes over 200,000 deaths in the select period and almost 500,000 deaths in the ultimate 
period. The new technology of predictive modeling is designed to yield meaningful information 
from large, complex datasets such as this. The attributes of this data are discussed further in 
Section 2.   
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From this data, we developed several PPR models to model first the ultimate mortality 
experience and, based on these results, we then modeled the select data. These models are 
discussed in Section 3.   

 
In Section 4, we then discuss the process of using these models as a starting point for 

creating more detailed PPR or other predictive models of our internal company mortality data 
and how we can use these models in business management as well as in ERM.   

 
In Section 5, we discuss the strengths and weaknesses of using PPR, our conclusions, and 

future research and development.   
 
In Appendix A, we give an outline of the projection pursuit regression algorithm.   
 
In Appendix B, we describe the use of the ppr algorithm as implemented in the statistical 

software package R. 
 
In Appendix C, we give a derivation of the Poisson weights, which are the weights used 

within the PPR models we construct. 
 

2. Data Collection 
 
The Individual Life Experience Committee (ILEC) of the Society of Actuaries (SOA) 

regularly collects data on the mortality experience of those U.S. life insurers who volunteer to 
submit their data. The data collection effort for the 2002–2004 experience period was 
particularly successful, with 35 companies contributing over 75 million life-years of exposure by 
policy count totaling $7.4 trillion in exposure by amount. This dataset includes nearly 700,000 
death claims: over 200,000 deaths in the select period and almost 500,000 deaths in the ultimate 
period. Due to the confidential nature of the contributed data, the full detail of this dataset can 
only be accessed by the SOA Research Department staff and by the staff at MIB Solutions, the 
data collection agent for the SOA. The data from which the model in this paper is built was 
prepared from the SOA 2002–2004 Study by MIB Solutions for the ILEC as two separate 
datasets: an ultimate durations dataset and a select durations dataset. 

 
The ultimate durations dataset included all of the experience at durations 26 and higher 

for all attained ages, plus all experience at durations 3 and higher for attained ages 90 and higher. 
Note that there was no experience in the study at durations 1 and 2 for attained ages 90 and 
higher. The data was grouped into cells by individual attained ages, gender and face amount 
band (five bands: under $10,000; $10,000 to $24,999; $25,000 to $49,999; $50,000 to $99,999; 
and $100,000 and up). The values provided were: policies exposed, amounts exposed, actual 
deaths, actual claim amounts, calculated qx by policy, calculated qx by amount, expected deaths 
on the 2001 VBT basis, expected claim amounts on the 2001 VBT basis, calculated actual-to-
expected ratio (A/E) by policy on the 2001 VBT basis and calculated A/E by amount on the 2001 
VBT basis. 

 
The select durations dataset included all of the experience at durations 1–25 for attained 

ages 0–89. The data was grouped into cells by individual attained ages and durations, gender, 
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smoker status and face amount band (nine bands: under $10,000; $10,000 to $24,999; $25,000 to 
$49,999; $50,000 to $99,999; $100,000 to $249,999; $250,000 to $499,999; $500,000 to 
$999,999; $1,000,000 to $2,499,999; and $2,500,000 and up). The values provided were the 
same as for the ultimate durations dataset: policies exposed, amounts exposed, actual deaths, 
actual claim amounts, calculated qx by policy, calculated qx by amount, expected deaths on the 
2001 VBT basis, expected claim amounts on the 2001 VBT basis, calculated A/E by policy on 
the 2001 VBT basis and calculated A/E by amount on the 2001 VBT basis. 

 
In Table 1, observe the fields contained within the separate select and ultimate data sets. 

Note: The ultimate data set does not contain Smoker Status since the smoker status of duration 
26+ policies is unknown. In addition, the ultimate data does not contain the duration field either. 

 
TABLE 1 

Relevant Fields of Mortality Dataset 
 

Field Name Data Type Descriptor 
Attained Age 
Face Amount Band 
Gender 
Smoker Status 
Duration 
Policies Exposed 
Actual Deaths 
AEpol 
WAEpol 

Numeric 
Categorical 
Categorical 
Categorical 
Numeric 
Numeric 
Numeric 
Numeric 
Numeric

Attained age of policy holder 
Face amount bands 
Male or Female 
Non-Smoker, Smoker, Unknown 
Duration of policy 
Number of policies exposed 
Number of deaths 
Per policy A/E ratio 
Associated weight of AEpol 

 
As previously mentioned, the data is separated into select and ultimate. First, we examine 

the underlying ultimate data, since we use the output of the ultimate model to construct the select 
model. 

 
2.1 Ultimate Data 
 
 The data to create the PPR models in Section 3.1 is restricted to attained ages (AA) 
ranging from 29 to 89.  The original data was wider, but we decided to restrict to this range due 
to the structural break in the data at age 90 and inadequate volume of data below age 29.  In the 
29 to 89 age range all of the ultimate durations data is at durations 26+.  The face amount bands 
(FAB) are: “$1–$9,999,” “$10,000–$24,999” and “$25,000+.”  All of these policies have an 
Unknown Smoker Status. 
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Table 2 contains the basic statistics on the policies within the ultimate data. The A/E 
Ratio is based on the 2001 VBT table. 

 
TABLE 2 

Ultimate Policy Statistics 
 

 Attained Age Policies Exposed Actual Deaths A/E Ratio 
Minimum 29 54.6 0.0 0.0% 
1st Quartile 44 403.5 2.2 66.3% 
Median 59 2,710.5 31.0 86.7% 
Mean 59 32,1354 695.7 88.1% 
3rd Quartile 74 40,8894 175.8 105.9% 
Maximum 89 196,441.4 12,007.0 919.1% 

 
 
In Table 3, observe the statistics of the exposed policies and total actual deaths within the 

data split by gender and face amount band.  The ultimate dataset contains 610 records 
representing 19,602,611 policies and 424,384 deaths. 

 
TABLE 3 

Ultimate Policy Statistics by Sex and Face Amount Band 
 

Gender Face Amount Exposure Actual Deaths 
Females $1–$9,999 7,052,843 141,945 
Females $10,000–$24,999 760,630 5,497 
Females $25,000 and Over 85,788 1,180 
 Females Total 7,899,261 148,622 
Males $1–$9,999 7,969,243 215,864 
Males $10,000–$24,999 3,153,884 49,995 
Males $25,000 and Over 580,223 9,903 
 Males Total 11,703,350 275,762 
 Grand Total 19,602,611 424,384 

 
 
In the next section, we examine the select data. 
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2.2 Select Data 
 

In the select data, the attained ages range from 0 to 89 and the durations range from 1 to 
25. The FAB are: “$1–$9,999,” “$10,000–$24,999,” “$25,000–$49,999,” “$50,000–$99,999,” 
“$100,000–$249,999” and “$250,000+.” 

 
In Table 4, observe the summary statistics of the policies. 
 

TABLE 4 
Select Policy Statistics 

 

 Attained 
Age Duration Policies Exposed Actual Deaths A/E Ratio 

Minimum 0 1 0.00027 0.0 0.0%
1st Quartile 30 6 8.0 0.0 0.0%
Median 50 11 80.3 0.0 0.0%
Mean 49 12 644.1 2.4 99.2%
3rd Quartile 68 18 522.8 2.0 86.3%
Maximum 89 25 20,000.0 183.0 250,000.0%
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In Table 5, observe the statistics of the exposed policies and actual deaths within the data 
split by gender, smoker status and face amount band. 

 
TABLE 5 

Select Policy Statistics by Smoker Status, Sex and Face Amount Band 
 

Smoker Status Gender Face Amount Band Exposure Actual Deaths 
Smoker Male $1–$9,999 191,512 4,505 
Smoker Male $10,000–$24,999 682,983 8,098 
Smoker Male $25,000–$49,999 721,312 6,293 
Smoker Male $50,000–$99,999 1,012,244 6,280 
Smoker Male $100,000–$249,999 1,114,460 4,269 
Smoker Male $250,000 and Over 372,254 1,048 
Smoker Male Total 4,094,765 30,493 
Smoker Female $1–$9,999 344,480 8,473 
Smoker Female $10,000–$24,999 751,849 6,469 
Smoker Female $25,000–$49,999 582,868 2,837 
Smoker Female $50,000–$99,999 708,757 2,363 
Smoker Female $100,000–$249,999 589,685 1,365 
Smoker Female $250,000 and Over 126,779 338 
Smoker Female Total 3,104,418 21,845 
  Smoker Total 7,199,183 52,338 
Non-Smoker Male $1–$9,999 439,804 6,903 
Non-Smoker Male $10,000–$24,999 2,265,277 12,245 
Non-Smoker Male $25,000–$49,999 2,775,073 12,667 
Non-Smoker Male $50,000–$99,999 4,505,110 15,638 
Non-Smoker Male $100,000–$249,999 7,071,060 15,639 
Non-Smoker Male $250,000 and Over 5,539,328 6,810 
Non-Smoker Male Total 22,595,652 69,902 
Non-Smoker Female $1–$9,999 875,068 11,435 
Non-Smoker Female $10,000–$24,999 2,789,220 10,427 
Non-Smoker Female $25,000–$49,999 2,766,953 6,332 
Non-Smoker Female $50,000–$99,999 4,009,797 6,872 
Non-Smoker Female $100,000–$249,999 5,376,581 5,604 
Non-Smoker Female $250,000 and Over 2,474,775 1,960 
Non-Smoker Female Total 18,292,394 42,630 

  Non-Smoker Total 40,888,046 112,532 
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TABLE 5 (continued) 
Select Policy Statistics by Smoker Status, Sex and Face Amount Band 

 
Smoker Gender Face Amount Band Exposure Actual Deaths 
Unknown Male $1–$9,999 545,335 8,186 
Unknown Male $10,000–$24,999 1,422,408 6,214 
Unknown Male $25,000–$49,999 727,887 1,754 
Unknown Male $50,000–$99,999 328,545 858 
Unknown Male $100,000–$249,999 157,110 560 
Unknown Male $250,000 and Over 22,603 98 
Unknown Male Total 3,203,888 17,670 
Unknown Female $1–$9,999 953,975 14,869 
Unknown Female $10,000–$24,999 1,339,343 3,328 
Unknown Female $25,000–$49,999 632,298 604 
Unknown Female $50,000–$99,999 260,837 291 
Unknown Female $100,000–$249,999 107,398 168 
Unknown Female $250,000 and Over 11,924 23 
Unknown Female Total 3,305,775 19,283 
  Unknown Total 6,509,663 36,953 
Total Male  29,894,305 118,065 
Total Female  24,702,587 83,758 
Total  $1–$9,999 3,350,174 54,371 
Total  $10,000–$24,999 9,251,080 46,781 
Total  $25,000–$49,999 8,206,391 30,487 
Total  $50,000–$99,999 10,825,290 32,302 
Total  $100,000–$249,999 14,416,294 27,605 
Total  $250,000 and Over 8,547,663 10,277 

  Grand Total 54,596,892 201,823 
 
 
The select dataset has 84,764 records representing 201,823 deaths and total policy 

exposure of 54,596,892. 
 
We now progress to the construction of the model based on the ultimate data. 
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3. Model Description 
 
3.1 Ultimate 
 

In this section, we develop the ultimate projection pursuit regression (PPR) model based 
on the ultimate data described in Section 2.1.  Please refer to Appendix A for an overall 
explanation of the various properties of PPR. 

 
The response variable will be the A/E per policy ratio.  This ratio is defined 

as VBT
xqExposedPolicies

DeathsActualAEpol
×

=
_

_ . Here the VBT
xq mortality rate is the composite 2001 

Valuation Basic Table ultimate rate. 
 
To fit the model, we used the ppr function in the R package stats, with the following 

formula: AEpol ~ AttainedAge+Gender+FaceAmountBand. This formula displays only three 
predictors, but Gender and FAB are categorical variables. The ppr algorithm in R converts 
multiple levels of categorical variables into additional predictor variables. For this specific 
model, the predictor variables are in Table 6. 

 
TABLE 6 

Ultimate PPR Predictors 
 

X1 Attained Age 
X2 Gender: Female 
X3 Gender: Male 
X4 FAB: $10K–$25K 
X5 FAB: $25K+ 

 
 
For example, for a male with attained age 40 with a face amount of $15,000, the predictor 

vector is coded as (X1 = 40, X2 = 0, X3 = 1, X4 = 1, X5 = 0). Note how the binary nature of the 
variable is indicated by 0 as absent and 1 as present. For clarity, take another example. Assume 
that there is a female with attained age 55, and a face amount of $5,000. The predictor vector 
would be coded as (X1 = 55, X2 = 1, X3 = 0, X4 = 0, X5 = 0). Note how the lowest FAB is 
considered the default setting of the model and so the higher bands are coded with a 0. 

 
In the determination of the model, ppr uses weighted least squares, and the responses are 

weighted by VBT
xqExposedPolicies ×_ . The derivation of these weights is contained in Appendix 

C. 
 
The model is described in Table 7. Observe the seven α projection vectors and the 

corresponding β weights. In Figure 1, you can observe the seven ridge functions for the ultimate 
PPR model. 
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This PPR model can produce negative A/E Ratios, and we floor the results at zero, but we 
have found this model to be extremely useful because it parameterizes and smoothes the actual 
data. 

 
Though there are seven ridge functions and one could consider the formula as too flexible 

and hard to fully understand, we can still look at the major components and gain some insight 
into what influences the responses. 

TABLE 7 
A/E Policy Ultimate PPR Parameters 
 

 
1α  2α  3α  4α  

 Attained_Age  -0.008042938  -0.028385108  -0.001469583  0.009533508  
GenderFemale   0.137395775  -0.805290783  -0.239808299  -0.260636678  
GenderMale  -0.166948620  0.551038151  0.008455668  -0.438233960  
Face_Amount$10,000-$24,999  -0.523370064  -0.131924488  -0.447968477  0.811852060  
Face_Amount$25,000 and Over -0.824178164  -0.172203156  0.861244776  0.284297140  
     
  

5α  6α  7α   

 Attained_Age   -0.033419098  -0.052332058  -0.003441216  
GenderFemale   0.438724899  0.077571604  -0.496024138  
GenderMale   0.066093973  0.378422791  -0.436555622  
Face_Amount$10,000-$24,999   0.839568700  -0.538174543  -0.193073652  
Face_Amount$25,000 and Over  0.311704365  -0.747267257  0.725320595  
     
Coefficients of ridge terms:     

1β    0.080833163     

2β    0.047155409     

3β    0.011981005     

4β    0.011425075     

5β    0.011428112     

6β    0.008777865     

7β    0.003059683     

AE    0.9676315     
     
Goodness of fit:  0.7192942     

  
 
Our ultimate PPR model is: 

∑ ∑
= =

⎟
⎠

⎞
⎜
⎝

⎛
⋅+=

7

1

5

0i k
kikii XfAEAE αβ     (1) 
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Observe that the second half of the formula is the calculation of the offset to the average 
of the A/E ratio, which is 0.9676315. Since the ppr algorithm is coded to assure 
that ( )[ ] 0=⋅ XfE ii α  and ( )[ ] 12 =⋅ XfE ii α , the magnitude of the iβ  determines which ridge 
function if  contributes the most influence on the overall PPR model. Since 0.0811 ≈β  and 

0.0472 ≈β , if we examine the terms )( 111 Xf ⋅αβ  and )( 222 Xf ⋅αβ , we should understand the 
major components that make up the model. 

 
Figure 1 

Ultimate Per Policy A/E Ratio Ridge Functions 
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Observe in Figure 1, the graph of 1f . We see that it is mostly an increasing function. It 

has a domain of .1)1.7,( −−  and a range of 3.3,4.0)(− . 
 
If one examines X⋅1α  and determines what characteristics within the data allow 

kkk
X1

5α∑  to take on different values in the domain of 1f , then the understanding of the overall 

PPR model will improve. Note that all of the k1α  are negative except for the α  that corresponds 
to the Gender:Female predictor. So, one thing that we can observe is that a male with a high FAB 
and a high AA will lower the value of X⋅1α . However, a female with a low AA and low FAB 
will make the X⋅1α  high. So )( 111 Xf ⋅αβ  will be negative for males with increasing FAB and 
AA and hence the A/E ratio is reduced from the average, whereas females with low FAB and 
low AA will augment the average A/E Ratio. 

 
Since 2β  is also significant in magnitude, we need to look at the )( 222 Xf ⋅αβ  

component as well. The domain of 2f  is 0.25)3.6,( −−  and the range is 2.8,12.1)(− . Note that 
from Figure 1 that 2f  is mostly flat with the value of 0 for 1< −x , where when 0.4]1,[ −−∈x  

2f  rises sharply to 12. As x  moves to the right of the domain the range declines to 
approximately 5.0. Since 2f  is mostly zero on the range, we need to see what the behavior of 

kkk
X21=

α∑  produces values in the subdomain .25)1,( −− . Since all of the k2α  are negative 

except the one that corresponds to Gender:Male, the value of X⋅2α  will be the highest when 
evaluating males with low FAB and lower AA. So, in this situation the average A/E ratio will be 
augmented. 
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In summary the PPR model will move the average A/E ratio down from the average for 
males with high FAB and high AA, where the value will be augmented if the policy is for a 
female with low FAB and low AA. To a lesser extent, the second component will push the PPR 
value above the average when examining male policy holders with low AA and low FAB. 

 
3.2 Adjusted Ultimate 

 
The ILEC ultimate experience contains exposures and deaths for males and females 

distinct by attained ages and five face amount bands. The PPR model was fitted onto the A/E 
ratio, where the expecteds are taken with respect to the ultimate 2001 VBT. The model was 
moreover restricted to attained ages 29 to 89, as the exposure volume was sufficiently high to 
provide acceptable fits. While the model was distinct by band, the top three bands (over $25,000) 
were consolidated into a single category to ensure that sufficient data volume was available for 
the PPR fit, while the other bands ($1–$10K, $10–$25K) appeared to have sufficient volume for 
most cells. 

 
We wish to accomplish the following: 
 
• Banding consistency: ensure that that the banding effect is consistent for every 

attained age, i.e., as face amount band increases, the mortality rate is non-
increasing. 

• Band splitting: split the top band where possible into $25–$50K, $50–$100K and 
greater than $100K bands, as seen in the original data. 

• Juvenile extension: extend the PPR model down to juvenile ages by smoothly 
blending the 2003 Social Security Administration mortality rates into the PPR 
model. 

• Older-age extension: extend the PPR model upward to attained age 120 by fitting 
a separate model to ages 89 and above and grading the rate at the terminal age of 
this model to a rate of .5 at attained age 120. 

 
In the foregoing, we aim to modify the model results as little as possible in order to arrive 

at an ultimate mortality table that is consistent with both intuition and experience.  
 

3.2.1 Ensuring Banding Consistency 
 
Experience has indicated that for a given attained age, one should see mortality rates 

decline as face amount increases. The PPR model typically exhibits this pattern, except among 
the following groups of attained age, band and gender combinations:  

 
• Males, ages 29 to 36, bands <$10K and $10–$25K 
• Females, ages 44 to 52, bands <$10K and $10–$25K  
• Males, ages 84 to 89, bands $10–$25K and $25K+  
• Females, ages 81 to 88, bands $10–$25K and $25K+  
• Females, age 89, bands <$10K, $10–$25K and $25K+  
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These groups typically had inverted banding relationships (e.g., band $10–$25K had 
higher mortality than band <$10K, etc.) To resolve this issue, the experience within the affected 
groups was blended by attained age, and the blended experience was substituted for the PPR 
rates. 

 
3.2.2 Band Splitting 

 
For males, it was discovered that credible data exists to split the top band at $50,000. To 

determine the split, we examined actual-to-PPR-expected ratios for bands $25–$50K and $50K 
and up, and applied those ratios to the top band of the male PPR model. Those ratios were 
101.72 percent and 93.9 percent respectively. 

 
For females, it was discovered that there is no credible band split above $25,000. Thus, 

females retain a three-band ultimate model. 
 

3.2.3 Juvenile Extension 
 
To extend the model to age 0, we augmented the model results with the 2003 SSA 

mortality rates. Starting with attained age 10, the SSA rates were graded into the PPR model. To 
capture the differing juvenile mortality risk profiles of males and females, we resorted to 
different interpolation methods to yield mortality rates consistent with intuition and experience. 

 
For males, we computed the ratio of the age 29 PPR mortality rate to the age 29 SSA 

mortality rate for each band. Starting with attained age 10, we linearly interpolated the ratio to 
age 29 and applied it to the SSA rate. This allowed the SSA rate to smoothly blend into the PPR 
model. 

 
For females, it was determined that linearly blending the SSA rates into age 29 of the 

PPR model created unusual and unintuitive results. Thus, the ratio was taken at age 36, and an 
exponential interpolation was used between ages 10 and 36. 

 
3.2.4 Older-Age Extension 

 
The PPR model was stopped at attained age 89 due to its being sensitive to increasing 

fluctuations above this age. The data volume is already diminishing by age 89 and thins 
considerably by attained age 100. As a guide, we expect that above age 89, mortality rates 
steadily increase and then level off after some late age. 

 
We fit two models to data for attained ages 89 and higher, excluding attained age 96 for 

males, since the data for males attained age 96 seems to exhibit anomalously low mortality 
relative to ages 95 and 97. In the first model, we constructed a model analogous to the 29–89 
PPR model by fitting a PPR model to the A/E ratios, where “E” is the expected mortality with 
respect to the 2003 SSA mortality rates. Note that band was no longer credible at these ages, as 
most experience was in the lowest face amount band. For attained age 89–93, the fit was 
excellent. Otherwise, the fitted values were prone to fluctuation, and we had to increase the 
model smoothness value (bass of 5). Increasing the smoothness is one of two departures from the 
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model parameters of the 29–89 model. The other is that on the basis of goodness-of-fit, only two 
ridge functions were employed in the model. 

 
Figure 2 compares the two PPR models. 
 

Figure 2 
PPR Model Fit Graphs 
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Our chosen model is a logistic regression model. A priori, we are aware that males with 
attained age 96 appeared to have anomalously low mortality given the exposure, and hence they 
were excluded from any modeling steps. In the course of modeling, we found that the logistic 
model including both gender and attained age fits well when restricted to ages 89 through 105, 
and moreover, the attained age variable can be modeled as a continuous predictor at the cost of a 
mild reduction in fit. This model's AIC is 452.48, while that of the saturated model with 
categorical attained age is 402.8. The drop in AIC is significant, but it appears that the saturated 
model overfits the data. 

 
Figure 3 compares the two models. 

 
Figure 3 

GLM Model Fit Graphs 
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Table 8 displays the parameters of the chosen model. 
 

TABLE 8 
GLM Parameters 

 
 Estimate Std. Error p-value 
 Intercept  -8.1353 0.1298 <  2e-16 
Attained_Age  0.0679 0.0014 <  2e-16 
Gender:Male  0.2437 0.0073 <  2e-16 

 
We obtain predicted values for attained ages 89 through 114. Since the slopes differ 

mildly between the later PPR model and early GLM model, we use an exponential blend of age 
89 in the PPR model and age 93 in the GLM to smooth the transition for ages 90 through 92. 
From attained age 115 to 120, we exponentially interpolate the last value of the GLM model to 
0.5 at attained age 120. 

 
In Table 9 and Table 10 observe the face amount banded male and female mortality rates 

for ages 0 to 89. These rates are then used to create the relative weighting used in the PPR select 
model described in the next section.  
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TABLE 9 
Ultimate Per Policy Male Mortality 

 
Attained Age FAB < 10K FAB 10–25K FAB 25–50K FAB > 50K 

0 0.00717 0.00717 0.00717 0.00717 
1 0.00049 0.00049 0.00049 0.00049 
2 0.00033 0.00033 0.00033 0.00033 
3 0.00027 0.00027 0.00027 0.00027 
4 0.00021 0.00021 0.00021 0.00021 
5 0.00019 0.00019 0.00019 0.00019 
6 0.00018 0.00018 0.00018 0.00018 
7 0.00016 0.00016 0.00016 0.00016 
8 0.00015 0.00015 0.00015 0.00015 
9 0.00012 0.00012 0.00012 0.00012 

10 0.00011 0.00011 0.00011 0.00011 
11 0.00011 0.00011 0.00011 0.00011 
12 0.00016 0.00016 0.00016 0.00016 
13 0.00027 0.00027 0.00026 0.00026 
14 0.00042 0.00042 0.0004 0.0004 
15 0.00057 0.00057 0.00055 0.00054 
16 0.00072 0.00072 0.00068 0.00066 
17 0.00085 0.00085 0.00079 0.00077 
18 0.00095 0.00095 0.00088 0.00086 
19 0.00103 0.00103 0.00094 0.00092 
20 0.00112 0.00112 0.00101 0.00097 
21 0.00119 0.00119 0.00106 0.00102 
22 0.00123 0.00123 0.00108 0.00104 
23 0.00121 0.00121 0.00106 0.00101 
24 0.00117 0.00117 0.001 0.00095 
25 0.00111 0.00111 0.00094 0.00089 
26 0.00106 0.00106 0.00089 0.00083 
27 0.00103 0.00103 0.00085 0.00079 
28 0.00102 0.00102 0.00083 0.00077 
29 0.00103 0.00103 0.00082 0.00076 
30 0.00113 0.00113 0.00088 0.00081 
31 0.00122 0.00122 0.00094 0.00087 
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TABLE 9 (continued) 
Ultimate Per Policy Male Mortality 

 
Attained Age FAB < 10K FAB 10–25K FAB 25–50K FAB > 50K 

32 0.00128 0.00128 0.00102 0.00094 
33 0.00136 0.00136 0.00106 0.00098 
34 0.00145 0.00145 0.00109 0.001 
35 0.00155 0.00155 0.00112 0.00104 
36 0.00164 0.00164 0.00117 0.00108 
37 0.00176 0.00171 0.00124 0.00114 
38 0.00191 0.00183 0.00131 0.00121 
39 0.0021 0.00197 0.0014 0.00129 
40 0.00228 0.00209 0.0015 0.00138 
41 0.00245 0.00224 0.00161 0.00148 
42 0.00262 0.00236 0.00172 0.00159 
43 0.00284 0.00243 0.00183 0.00169 
44 0.00309 0.00255 0.00196 0.00181 
45 0.00333 0.0027 0.00213 0.00197 
46 0.0035 0.00286 0.00232 0.00215 
47 0.00363 0.00297 0.0025 0.00231 
48 0.00379 0.00306 0.00263 0.00242 
49 0.00403 0.00318 0.00273 0.00252 
50 0.00432 0.00339 0.00289 0.00266 
51 0.0046 0.00367 0.00311 0.00287 
52 0.00487 0.00397 0.00337 0.00311 
53 0.00518 0.00427 0.00365 0.00337 
54 0.00551 0.00462 0.00394 0.00363 
55 0.00583 0.00498 0.00426 0.00393 
56 0.00619 0.00535 0.00462 0.00427 
57 0.00661 0.00574 0.00501 0.00462 
58 0.00718 0.00617 0.00539 0.00498 
59 0.00786 0.00676 0.00585 0.0054 
60 0.00863 0.00745 0.00643 0.00594 
61 0.00946 0.00825 0.00712 0.00658 
62 0.01037 0.00908 0.00792 0.00731 
63 0.01137 0.00998 0.00878 0.0081 
64 0.01252 0.01099 0.00972 0.00898 
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TABLE 9 (continued) 
Ultimate Per Policy Male Mortality 

 
Attained Age FAB < 10K FAB 10–25K FAB 25–50K FAB > 50K 

65 0.01384 0.01213 0.01076 0.00993 
66 0.01533 0.01347 0.01198 0.01106 
67 0.01696 0.01495 0.01337 0.01234 
68 0.01871 0.01658 0.01492 0.01377 
69 0.02072 0.01834 0.01662 0.01534 
70 0.02293 0.02033 0.0185 0.01708 
71 0.02539 0.02254 0.02063 0.01904 
72 0.02805 0.02502 0.02305 0.02128 
73 0.03096 0.02769 0.02581 0.02382 
74 0.03417 0.03064 0.02887 0.02664 
75 0.03764 0.03391 0.03231 0.02982 
76 0.04145 0.03743 0.03608 0.03331 
77 0.04549 0.04123 0.04003 0.03695 
78 0.05013 0.04532 0.04423 0.04082 
79 0.05521 0.04995 0.04854 0.0448 
80 0.06082 0.05509 0.05335 0.04925 
81 0.0667 0.06078 0.05884 0.05431 
82 0.0734 0.06677 0.06519 0.06017 
83 0.08059 0.07355 0.07247 0.0669 
84 0.0887 0.08063 0.08063 0.08063 
85 0.09718 0.08917 0.08917 0.08917 
86 0.10619 0.09826 0.09826 0.09826 
87 0.11534 0.10786 0.10786 0.10786 
88 0.12451 0.11765 0.11765 0.11765 
89 0.13368 0.12754 0.12754 0.12754 
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TABLE 10 
Ultimate Per Policy Female Mortality 

 
Attained Age FAB < 10K FAB 10–25K FAB 25–50K FAB > 50K 

0 0.00596 0.00596 0.00596 0.00596 
1 0.00041 0.00041 0.00041 0.00041 
2 0.00027 0.00027 0.00027 0.00027 
3 0.0002 0.0002 0.0002 0.0002 
4 0.00015 0.00015 0.00015 0.00015 
5 0.00014 0.00014 0.00014 0.00014 
6 0.00014 0.00014 0.00014 0.00014 
7 0.00013 0.00013 0.00013 0.00013 
8 0.00013 0.00013 0.00013 0.00013 
9 0.00012 0.00012 0.00012 0.00012 

10 0.00011 0.00011 0.00011 0.00011 
11 0.00012 0.00012 0.00012 0.00012 
12 0.00013 0.00013 0.00012 0.00012 
13 0.00014 0.00014 0.00013 0.00013 
14 0.00015 0.00015 0.00014 0.00014 
15 0.00017 0.00016 0.00015 0.00015 
16 0.00018 0.00018 0.00015 0.00015 
17 0.0002 0.00019 0.00016 0.00016 
18 0.00021 0.00021 0.00017 0.00017 
19 0.00023 0.00022 0.00018 0.00018 
20 0.00025 0.00024 0.00019 0.00019 
21 0.00028 0.00026 0.0002 0.0002 
22 0.0003 0.00028 0.00021 0.00021 
23 0.00033 0.0003 0.00023 0.00023 
24 0.00035 0.00033 0.00024 0.00024 
25 0.00038 0.00036 0.00025 0.00025 
26 0.00042 0.00039 0.00027 0.00027 
27 0.00045 0.00042 0.00028 0.00028 
28 0.00049 0.00045 0.0003 0.0003 
29 0.00054 0.00049 0.00032 0.00032 
30 0.00058 0.00053 0.00033 0.00033 
31 0.00063 0.00057 0.00035 0.00035 
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TABLE 10 (continued) 
Ultimate Per Policy Female Mortality 

 
Attained Age FAB < 10K FAB 10–25K FAB 25–50K FAB > 50K 

32 0.00069 0.00062 0.00037 0.00037 
33 0.00075 0.00067 0.0004 0.0004 
34 0.00081 0.00072 0.00042 0.00042 
35 0.00089 0.00078 0.00044 0.00044 
36 0.00096 0.00084 0.00047 0.00047 
37 0.00102 0.00089 0.00055 0.00055 
38 0.00108 0.00095 0.00061 0.00061 
39 0.00115 0.00103 0.00069 0.00069 
40 0.00121 0.00113 0.00076 0.00076 
41 0.00128 0.00123 0.00084 0.00084 
42 0.00137 0.00134 0.00092 0.00092 
43 0.00148 0.00145 0.00101 0.00101 
44 0.00158 0.00158 0.00112 0.00112 
45 0.00169 0.00169 0.00121 0.00121 
46 0.00179 0.00179 0.00129 0.00129 
47 0.00194 0.00194 0.00139 0.00139 
48 0.00211 0.00211 0.00152 0.00152 
49 0.00226 0.00226 0.00172 0.00172 
50 0.00237 0.00237 0.00198 0.00198 
51 0.00247 0.00247 0.00223 0.00223 
52 0.00263 0.00263 0.00242 0.00242 
53 0.00288 0.00283 0.00261 0.00261 
54 0.0032 0.00306 0.00288 0.00288 
55 0.00353 0.00335 0.0032 0.0032 
56 0.0039 0.00367 0.00355 0.00355 
57 0.00433 0.00402 0.00385 0.00385 
58 0.00478 0.00444 0.00415 0.00415 
59 0.00523 0.00488 0.00446 0.00446 
60 0.00572 0.00531 0.00477 0.00477 
61 0.0063 0.00577 0.00506 0.00506 
62 0.00702 0.0063 0.00541 0.00541 
63 0.00786 0.00697 0.00601 0.00601 
64 0.00876 0.00777 0.00677 0.00677 
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TABLE 10 (continued) 
Ultimate Per Policy Female Mortality 

 
Attained Age FAB < 10K FAB 10–25K FAB 25–50K FAB > 50K 

65 0.00969 0.00872 0.00772 0.00772 
66 0.01068 0.00976 0.00876 0.00876 
67 0.01176 0.01094 0.00996 0.00996 
68 0.01298 0.01218 0.01122 0.01122 
69 0.01435 0.01359 0.01255 0.01255 
70 0.01588 0.01509 0.01403 0.01403 
71 0.0175 0.01662 0.01572 0.01572 
72 0.01924 0.01811 0.0173 0.0173 
73 0.02124 0.01957 0.01897 0.01897 
74 0.02346 0.02126 0.02061 0.02061 
75 0.02594 0.02323 0.02238 0.02238 
76 0.02862 0.02554 0.02435 0.02435 
77 0.03157 0.02813 0.02664 0.02664 
78 0.03483 0.03114 0.02945 0.02945 
79 0.03834 0.03469 0.03314 0.03314 
80 0.04218 0.0385 0.03773 0.03773 
81 0.04643 0.0425 0.0425 0.0425 
82 0.05137 0.04745 0.04745 0.04745 
83 0.05678 0.05311 0.05311 0.05311 
84 0.06277 0.05909 0.05909 0.05909 
85 0.06905 0.06561 0.06561 0.06561 
86 0.07621 0.07321 0.07321 0.07321 
87 0.08381 0.0822 0.0822 0.0822 
88 0.09196 0.09144 0.09144 0.09144 
89 0.10038 0.10038 0.10038 0.10038 

 
 
3.3 Select 

 
In this section we develop the select PPR model based on the select data described in 

Section 2.2. 
 
The response variable will be the A/E per policy ratio as the ratio of actual deaths to the 

expected deaths based on the ultimate PPR model results shown above. 
 



 

 25

Fitting the model, we use the following formula:  
 
AEpol ~ Attained_Age + Duration + Smoker_Status +  Gender + 
Face_Amount_Band.  
 
Though this formula displays five predictors, Gender, Smoker_Status and 

Face_Amount_Band are categorical variables. The ppr algorithm converts the multiple levels of 
these categorical variables into additional predictor variables. For this specific model the 
predictor variables are in Table 11. 

 
TABLE 11 

Select PPR Predictors 
 

1X   Attained Age  

2X   Duration 

3X   Gender:Female  

4X   Gender:Male 

5X   Smoker_Status:Smoker  

6X   Smoker_Status:Unknown 

7X   FAB $10K–$25K  

8X   FAB $25K–$50K  

9X   FAB $50K–$100K  

10X   FAB $100K–$250K  

11X   FAB $250K+  
  
 

For example, for a nonsmoking male with an attained age of 40, in duration 10 and a face 
amount of $15,000 the predictor vector is coded as:  

 
0,=1,=0,=0,=1,=0,=10,=40,=( 87654321 XXXXXXXX  

0)=0,=0,= 11109 XXX . 
 

The determination of this model is based on a weighted least squares. The weights are the 
expected deaths based on the ultimate PPR model results. 
 
 xAEpol qExposedPoliciesSelectW ×__=  (2) 
 

Note that these weights vary by gender, duration, AA, FAB and smoker status. The 
ultimate xq  for FAB above $50K is used for all bands above $50K. 
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Observe in Figure 4 the ridge functions associated with the Select A/E Ratio model. 
Table 12 contains the parameters associated with the corresponding PPR model. 

Figure 4 
Select Per Policy A/E Ratio Ridge Functions 

 

 

 
 

TABLE 12 
A/E Policy Select PPR Parameters 

 
 1α 2α  
Attained_Age  -0.001320526 -0.003153862 
Duration  0.018731901 0.013552710 
GenderFemale  -0.004146304 -0.061148480 
GenderMale  0.072364767 -0.185082074 
Smoker_StatusSmoker  0.897275344 -0.522394983 
Smoker_StatusUnknown  0.177385436 0.004201492 
Face_Amount_Band $10,000-$24,999  -0.027797072 0.344371979 
Face_Amount_Band $25,000-$49,999  0.038380290 0.665815168 
Face_Amount_Band $50,000-$99,999  -0.121659701 0.278434934 
Face_Amount_Band $100,000-$249,999  -0.191195703 -0.164331181 
Face_Amount_Band $250,000 and Over  -0.322834759 -0.149883452 
Coefficients of ridge terms:    

1β   0.36087680  

2β   0.02964484  

AE   0.8666025  

Goodness of fit:  34856.98   
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This PPR model required that the bass tone level be set to 5 instead of 0, which smoothes 
the model. A bass tone level of 0 (no smoothing) causes a reduction in the model A/E ratio from 
duration 15 to duration 25, for various ages. We also used bass tone levels of 1 through 4, but the 
behavior was not completely removed until we reached 5. Please refer to Appendix B for a brief 
discussion of the bass tone control. 

 
Note that 1β  is approximately 0.4, and the other iβ  is much smaller. In our interpretation 

of the select PPR we will only emphasize the first ridge function contribution. Also observe that 
1f  is an increasing function (effectively linear) with a domain of 1.2,1.5)(−  and a range of 
6.9,3.0)(− . Since 1f  is increasing, whatever increases X⋅1α  will increase the PPR model A/E 

ratio over the average and vice versa. 
 
The first observation is that kkk

X1
11

1=
α∑  decreases as the FAB increases and AA increases 

and duration decreases. Observe that the major component to the increase of X⋅1α  is if the 
policyholder is a smoker, and to a much lesser degree if the policyholder is male and as duration 
increases. 

 
Using the PPR Select A/E ratio model, we took the model results and multiplied them by 

the respective ultimate xq  rates described in Section 3.2. Note: We placed a ceiling of 0.94  on 
the Non-Smoker model A/E ratio. 

 
We calculated the deaths per thousand for face amount bands $10K–$25K and $100K–

$250K.  Tables 13, 14, 15 and 16 are the tables for FAB $10K–$25K. Tables 17, 18, 19 and 20 
are the tables for FAB $100K–$250K. 
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TABLE 13 
Select Male Non-Smoker Band 10K–25K Deaths per Thousand 

 
Age Dur 1 Dur 2 Dur 3 Dur 5 Dur 10 Dur 11 Dur 15 Dur 20 Dur 25

25 0.7   0.7   0.8   0.8  0.9  0.9  1.0   1.0   1.0 
35 1.0   1.0   1.0   1.1  1.2  1.2  1.3   1.4   1.5 
45 1.7   1.7   1.8   1.9  2.1  2.1  2.3   2.5   2.5 
55 3.1   3.2   3.2   3.4  3.8  3.9  4.2   4.5   4.7 
65 7.4   7.6   7.8   8.1  9.1  9.3  10.0   10.9   11.4 
75 20.4   20.9   21.5   22.5  25.2  25.7  27.8   30.1   31.9 
85 52.8   54.2   55.6   58.4  65.3  66.8  72.3   78.3   83.8 

 
TABLE 14 

Select Female Non-Smoker Band 10K–25K Deaths per Thousand 
 
Age Dur 1 Dur 2 Dur 3 Dur 5 Dur 10 Dur 11 Dur 15 Dur 20 Dur 25

25  0.2   0.2   0.2   0.2  0.3  0.3  0.3   0.3   0.3 
35  0.4   0.4   0.5   0.5  0.5  0.6  0.6   0.7   0.7 
45  0.9   1.0   1.0   1.0  1.2  1.2  1.3   1.4   1.5 
55  1.8   1.9   1.9   2.0  2.3  2.3  2.6   2.8   3.0 
65  4.6   4.8   4.9   5.2  5.8  6.0  6.6   7.2   7.8 
75  12.1   12.5   12.8   13.5  15.3  15.7  17.3   19.0   20.6 
85  33.5   34.6   35.6   37.6  42.7  43.8  48.1   53.2   57.6 

  
 

TABLE 15 
Select Male Smoker Band 10K–25K Deaths per Thousand 

 
Age Dur 1 Dur 2 Dur 3 Dur 5 Dur 10 Dur 11 Dur 15 Dur 20 Dur 25 

25  1.6   1.7   1.7   1.7  1.8  1.9  1.9   2.0   2.1 
35  2.2   2.3   2.3   2.4  2.5  2.6  2.7   2.8   3.0 
45  3.8   3.9   4.0   4.1  4.4  4.4  4.6   4.9   5.1 
55  7.0   7.1   7.2   7.4  8.0  8.1  8.5   8.9   9.4 
65  16.7   17.0   17.3   17.8  19.2  19.4  20.5   21.6   22.7 
75  46.1   46.8   47.6   49.1  52.8  53.6  56.5   60.0   62.9 
85  119.2   121.2   123.1   127.1  137.0  138.9  146.8   156.2  164.3

  
 



 

 29

TABLE 16 
Select Female Smoker Band 10K–25K Deaths per Thousand 

 
Age Dur 1 Dur 2 Dur 3 Dur 5 Dur 10 Dur 11 Dur 15 Dur 20 Dur 25 

25  0.5   0.5   0.5   0.5  0.6  0.6  0.6   0.6   0.7 
35  1.1   1.1   1.1   1.1  1.2  1.2  1.3   1.4   1.4 
45  2.3   2.4   2.4   2.5  2.6  2.7  2.8   2.9   3.1 
55  4.6   4.6   4.7   4.9  5.2  5.2  5.5   5.8   6.1 
65  11.7   11.9   12.1   12.5  13.3  13.5  14.1   15.0   15.7 
75  30.7   31.2   31.7   32.7  35.2  35.6  37.3   39.6   41.7 
85  85.1   86.6   88.0   90.9  98.1  99.5  104.5   110.6  117.1

 
TABLE 17 

Select Male Non-Smoker Band 100K–250K Deaths per Thousand 
 

Age Dur 1 Dur 2 Dur 3 Dur 5 Dur 10 Dur 11 Dur 15 Dur 20 Dur 25
25  0.4   0.5   0.5  0.5  0.6  0.6  0.7   0.7   0.8 
35  0.5   0.5   0.5  0.6  0.7  0.7  0.8   0.9   0.9 
45  0.9   0.9   1.0  1.0  1.2  1.3  1.4   1.6   1.8 
55  1.7   1.8   1.8  2.0  2.4  2.5  2.8   3.1   3.5 
65  4.0   4.2   4.5  4.9  5.9  6.1  6.9   7.8   8.6 
75  11.4   12.1   12.7  14.0  17.1  17.7  20.1   23.0   25.4 
85  32.3   34.3   36.2  40.0  49.3  51.1  58.4   67.5   74.8 

 
TABLE 18 

Select Female Non-Smoker Band 100K–250K Deaths per Thousand 
 

Age Dur 1 Dur 2 Dur 3 Dur 5 Dur 10 Dur 11 Dur 15 Dur 20 Dur 25
25  0.1   0.1   0.1  0.1  0.2  0.2  0.2   0.2   0.2 
35  0.2   0.2   0.2  0.2  0.3  0.3  0.3   0.3   0.4 
45  0.5   0.5   0.5  0.6  0.7  0.7  0.8   0.9   1.0 
55  1.2   1.3   1.4  1.5  1.8  1.8  2.1   2.3   2.6 
65  2.8   3.0   3.2  3.5  4.2  4.3  4.9   5.6   6.2 
75  7.7   8.2   8.7  9.7  11.9  12.3  13.8   15.9   17.8 
85  21.1   22.6   24.1  27.0  33.9  35.1  39.5   45.5   51.6 
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TABLE 19 
Select Male Smoker Band 100K–250K Deaths per Thousand 

 
Age Dur 1 Dur 2 Dur 3 Dur 5 Dur 10 Dur 11 Dur 15 Dur 20 Dur 25 

25  1.0   1.1   1.1   1.1  1.2  1.2  1.3   1.4   1.5 
35  1.2   1.2   1.2   1.3  1.4  1.4  1.5   1.6   1.7 
45  2.2   2.2   2.3   2.4  2.6  2.6  2.8   3.0   3.2 
55  4.3   4.4   4.5   4.7  5.1  5.2  5.5   6.0   6.4 
65  10.7   10.9   11.1   11.5  12.6  12.9  13.8   14.9   15.9 
75  31.5   32.1   32.7   34.0  37.3  38.0  40.7   43.9   47.2 
85  92.2   94.1   96.0   99.8  109.6  111.6  119.6   129.5   139.2 

 
TABLE 20 

Select Female Smoker 100K–250K Deaths per Thousand 
 

Age Dur 1 Dur 2 Dur 3 Dur 5 Dur 10 Dur 11 Dur 15 Dur 20 Dur 25 
25  0.3   0.3   0.3   0.3  0.3  0.3  0.4   0.4   0.4 
35  0.5   0.5   0.5   0.5  0.6  0.6  0.6   0.7   0.7 
45  1.3   1.3   1.4   1.4  1.5  1.6  1.7   1.8   1.9 
55  3.4   3.5   3.5   3.7  4.0  4.1  4.4   4.7   5.1 
65  8.0   8.2   8.4   8.7  9.5  9.7  10.4   11.3   12.1 
75  22.8   23.3   23.8   24.7  27.1  27.6  29.6   32.2   34.6 
85  65.6   67.0   68.3   71.1  78.2  79.6  85.4   92.8   100.0 

 
In the next section we will discuss how this model will be first applied regarding ERM. 
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4. Results and ERM Management 
 
Enterprise risk management takes on many different shades and hues according to which 

industry the specific enterprise belongs. The needs of ERM run the gamut from modeling or 
managing risks to determining how these risks impact the enterprise’s capital. Within life 
reinsurance, we first need to understand our risk exposure. From the use of predictive models, we 
have already realized how much our models have improved our understanding of this risk. If the 
predictive models are very realistic (which is often the case with PPR models), we are then able 
to better manage our business as well. 

 
In order to construct a model of mortality risk to use for ERM for our company, we use 

this PPR model of the SOA 2002–2004 Study as a basis for developing a predictive model of our 
own internal mortality experience. Our internal mortality experience database includes nearly 
100,000 deaths from nearly 50 million life-years of exposure, grouped into cells by individual 
attained ages and durations, gender, smoker status and face amount band, and further 
differentiated by client, experience quarter, reinsurance type (coinsurance or YRT, excess or 
quota share, automatic or facultative), product type (term or permanent), underwriting type 
(guaranteed issue, simplified issue or fully underwritten) and risk class rank (e.g., second best 
preferred in a four class structure) or substandard table rating. Due to the confidential nature of 
the data, we may not share the details of our internal model. However, the techniques described 
in this paper are used to develop a model of the A/E ratios of the cells in our internal mortality 
experience database to the PPR model of the SOA 2002–2004 Study. From these model A/E 
ratios, the implied model mortality rates are calculated. 

 
This internal mortality risk model can be used to monitor and manage risk in many ways. 

First, by comparing the model mortality rates to the mortality rates used when business now in 
force was originally priced, we can determine where there may be cross-subsidies hidden in our 
existing treaties. These treaties can then be monitored for shifts in distribution of business that 
could affect the profitability of the account. Cells for which the original pricing mortality rates 
are higher than the model mortality rates present an opportunity to seek new business by pricing 
these cells more aggressively. Similarly, cells for which the original pricing mortality rates are 
lower than the model mortality rates should be priced more conservatively in future deals. 

 
We are effectively using the industrial model as a major component of both key risk and 

key performance indicators. Note that these approaches also work across blocks of business, so 
we would be able to examine our aggregated risk exposure as well. 

 
In the next section, we will outline the advantages and disadvantages of the use of PPR, 

but one nice advantage that we mention here is that once the data is modeled within PPR, the use 
of the model in a predictive manner is very efficient. This makes PPR a natural candidate to use 
as a dashboard for upper management. As we continue to collect and model our internal data 
using PPR or some corresponding predictive model, we will be able to communicate our ongoing 
mortality performance on a timely basis to our management. 

 
In the next section, not only do we discuss the strengths and weaknesses of PPR, we also 

discuss our conclusions and briefly outline our future work integrating this work with our ERM 
models. 



 

 32

5. Conclusions and Further Research 
 

The following is a list of advantages of using PPR as a model for mortality: 
 
1. The model is a continuous function. According to Venables and Ripley [9] while 

citing Diaconis and Shahshahani [1], given a large enough number of ridge 
functions, PPR can approximate arbitrary continuous functions. 

2. One is able to obtain fractional age and duration estimates. 
3. It is the best possible fit since every component is solved to minimize the 

weighted least squares. 
4. Each ridge function does not extrapolate outside of its specific domain. If the 

specific Xi ⋅α  is outside the domain, the relevant domain endpoint is used. 
5. The model handles the interactions between the different predictors. See 

Appendix A for an example of how this holds. 
6. PPR models categorical predictors as easily as continuous predictors. 
7. PPR lessens the “curse of dimensionality” by projecting the data into a one-

dimensional space, and thus reduces data sparseness that renders other methods 
less useful. 

 
The disadvantages are: 
 
1. The range of the PPR model may fall outside of the range of acceptable values. 

For instance, both A/E models above could create negative or zero A/E ratios. To 
offset this weakness, we place a lower bound on the output. 

2. The implementation of ppr in R produces only point estimates on all of the 
parameters. The lack of the ability to create confidence intervals around each of 
the kf , ikα  or the iβ  makes it difficult to determine if a specific parameter is 
significant to the model. In fact one is unable to test if the actual model is 
significant, other than the use of the goodness of fit statistic. All research results 
that discuss the distributional issues of the fitted ridge functions and projection 
vectors are quite difficult to read, let alone implement. If the reader is interested, 
these topics are covered by Park and Sun [6], Diaconis and Freedman [2] and Hall 
[5]. Another approach to alleviate these difficulties would be to implement some 
type of resampling and empirically determine the confidence intervals 

3. One can easily overfit or overexplain the data. See Venables and Ripley [9]. 
4. The model can be too flexible, which makes the model difficult to interpret. One 

can observe this in the discussions around the components of the ultimate PPR 
model above. Again, see Venables and Ripley [9]. 

 
Even with these weaknesses, we have found that the PPR algorithm is extremely valuable 

in our industry mortality models, and it has enabled us to not only confirm our empirical 
knowledge, but to actually have models calibrated to the data that corresponds to our 
understanding. We are strongly encouraged by the results that we have obtained, and we have 
gone from thinking that predictive modeling would be an interesting intellectual pursuit to 
finding that the use of the models makes good business sense. 
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Our future work is to continue the development of these models for key risk and 
performance indictors as well as potential dashboard models. It is our desire to be able to 
actually look at different blocks of business from an economic capital perspective and observe 
the risk adjusted return from these blocks. Once we are able to look at this business from a risk-
adjusted basis, it is our desire to use this knowledge in strategic decision-making. 
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Appendix A. Projection Pursuit Regression (PPR) 
 

In linear regression, one fits a response variable Y  to a collection of n  predictor 
variables iX  in the familiar form: 
 

 εβα ++∑ ii

n

i
XY

1=
=  (3) 

 
In additive models, the ii Xβ  are replaced with various functions )( ii Xf , with this form:  

 εα ++∑ )(=
1=

ii

n

i
XfY  (4) 

 
Projection pursuit regression (PPR) is a modification of this structure in that there are:   
 
1. M  different if .  
2. Each if  acts on a different linear combination of all n  of the kX .  
3. A specific coefficient of these linear combinations is denoted by .ikα   
4. Each if  is multiplied by a .iβ   
5. The constant term is the average of the response variable.  
 
So PPR takes on the following form: 

 

 
εαβ ++ ∑∑ )(=

1=1=
kik

n

k
ii

M

i
XfyY

 (5) 
 
or in vector format: 
 

 
εαβ +⋅+∑ )(=

1=
XfyY iii

M

i  (6) 
 

where ),...,,(= 21 nXXXX  is the predictor vector, and ),,,(= 21 iniii αααα K . 
 
The term “Projection” in PPR comes from the projection of  X on to the directional vector 

iα for each i . 
 
“Pursuit” arises from the algorithm that is used to determine optimal direction vectors 

Mααα ,,, 21 K . 
 
Each if  is called a ridge function. This is because they only have values in the iα  

direction and are considered constant elsewhere. Effectively, what occurs is that the overall PPR 
model is a linear combination ( iβ  are the coefficients) of the ridge functions. These functions 
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only take on values that arise from the projection of the predictors against the direction vectors, 
and the functions are assumed to take on a constant value in any other direction. So, each ridge 
function is like the profile of a mountain range, and we linearly combine these functions along 
all different ridges (as pointed out by the iα ). 

 
On a formal basis, Y and X are assumed to satisfy the following conditional expectation: 

 

 )(=],,,|[
1=

21 XfXXXYE iii

M

i
yn ⋅+∑ αβμK  (7) 

 
with ][= YEyμ  and the if  have been standardized to have zero mean and a unit variance. That 

is: 0=)]([ XafE ii ⋅  and 1=)]([ 2 XafE ii ⋅ , where i  takes on values from 1 to M . We assume 
that the realized sample values for the random variables Y  and ),,,(= 21 nXXXX L  are 
independent and identically distributed to the distributions of Y  and X , respectively. 

 
The ppr algorithm in the R stats library [7] estimates the best ,, ii fβ  and the iα  by 

minimizing the following target function for the mean square error: 
 

 
2

1=
)( ⎥
⎦

⎤
⎢
⎣

⎡
⋅−− ∑ XfYE iii

M

i
y αβμ  (8) 

 
across all the data samples for Y  and X . 

 
A powerful trait of PPR models, since the predictor vector X  is projected, is that 

interactions between different jX  and kX  are included within the model, whereas other model 
algorithms cannot do this without user intervention. 

 
We justify this by using an algebraic demonstration based on the S-Plus Guide to 

Statistics [8] recast into our notation as follows: 
 
Suppose that the actual data model is .=],|[ 2121 XXXXYE  
 
Let 0=Y , 2=M , .25== 21 ββ  and assume that (1,1)=1α  and 1)(1,=2 −α . 

Furthermore assume that 2
1 =)( ttf  and 2

2 =)( ttf − . Let ).,(= 21 XXX  
Now .2=)(=)( 2

221
2

1
2

2111 XXXXXXXf +++⋅α  Similarly 2
221

2
122 2=)( XXXXXf −+−⋅α . 

Finally, .=)( 211=
XXXf iii

M

i
⋅∑ αβ  

 
So, we can see that if the ii f,β  and iα  are optimally selected and the underlying model 

has interactions between different predictors, PPR should capture this. 
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Appendix B. Techniques and Diagnostics for ppr 
 

The procedure when using the R ppr algorithm [7] is as follows: 
 
First, one specifies that M  should range between 1=MINM  and some positive integer 

MAXM . The ppr algorithm then creates a PPR model for each M  from MAXM  to MINM  in a 
descending fashion, and at the same time produces a goodness of fit statistic for each value of 
M . Scanning this list of goodness of fit values should display a local minimum. If this local 
minimum is at MAXM  one should reprocess the experiment with a larger MAXM . Once one 
determines the local minimum, say s , reset sM MIN =  and reprocess the ppr algorithm with the 
same MAXM  as before. The resultant model arising from the backward iteration from MAXM  to 

MINM  will then be the best PPR model. 
 
Two other components that are implemented in ppr are the concepts of bass and optlevel. 
 
bass is Friedman's [4] super smoother bass tone control that is used with automatic span 

selection. It is used in ppr to smooth the results. The range of values allowed with this 
component is from 0 to 10. To increase smoothing within the data increase this value. The 
default is 0 and this setting gives the best fit to the underlying data. bass is similar to the h 
smoothness parameter used within the Whitaker-Henderson graduation formula. 

 
optlevel is an integer from 0 to 3, which determines the optimization thoroughness. The 

best models usually are obtained if this is set to 3. At level 0, the ridge functions are not refitted. 
At level 1, the projection directions are not refitted, but the ridge functions and the regression 
coefficients are. Levels 2 and 3 refit everything, but level 3 takes pains to re-balance each 
regressors' contribution at each step and so reduces the chance of converging to a saddle point in 
the sum of squares. 

 
One diagnostic aid in PPR model building is to plot the ridge functions. If these ridge 

functions are very noisy or discontinuous, you should expect that the resultant PPR model will 
behave oddly. 

 
Another effective diagnostic aid is to both plot the fitted Ŷ  against the actual Y  and do a 

simple linear regression of Y  against Ŷ , assuming no intercept. The scatterplot should display 
symmetry around the 45 degree line and the coefficient of the regression should be 
approximately 1. These two diagnostics will indicate how well the PPR model will perform as a 
predictive model. 

 
Note: A PPR model does not extrapolate outside of the sample data. Therefore, the 

resultant fitted values from a PPR model will frequently hit a maximum value and will not grow 
any larger no matter how one manipulates the predictors. This is not the case for linear 
regression models, where there are no natural limits placed on how one sets any respective iX . 
One may revise the prediction object to conduct extrapolations; however, one must first feel 
comfortable with the continuity of the separate ridge functions. If these functions are very noisy 
or appear not to be differentiable, you might want to avoid all extrapolation. 
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Appendix C. Poisson Weights Derivation 
 
We would like to maximize the probability of the actual deaths given the model, 

assuming a Poisson distribution of deaths in each cell. For cell i , 
 

 { } ( )
!

exp|
i

d
i

i
M
ii d

AEdP
iλ

λ−=  (9) 

 
where M

iiii AEqE=λ , id  is the actual number of deaths incurred in cell i , iE  is the number of 
policy years exposed in cell i , iq  is the reference mortality rate for cell i  and M

iAE  is the model 
A/E ratio for cell i . 

 
For the ultimate model, iq  is taken from the composite 2001 VBT. For the select model, 

iq  is taken from the PPR ultimate model. 
 
Let }{= M

iAEM  be the set of model A/E ratios for all cells, and let }{= idD  be the 
actual deaths for all cells. Then: 
 

 
!

)(exp=}|{
i
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i

i
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MDP λλ−∏  (10) 

 
and: 
 
 )!lnln(=}]|{[ln iiii

i
ddMDP −+−∑ λλ  (11) 

 
We would like to maximize the loglikelihood, or equivalently, minimize its negative: 

 
 !lnln= i

i
ii

i
i

i
dd ∑∑∑ +−Ξ λλ  (12) 

 
Using the definition of iλ , we see that: 
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Since the id  and the iE  are given in the data and the iq  are specified, we see that: 
 

 

M
i

iii
M
i

M
i

i
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i

AE
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AE
d

qE
AE
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∂
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=

=
 (13) 

 
Ξ  is the function we would like to minimize, and its partial derivatives with respect to M  are 
given by (13). 
 

As discussed in Appendix A, the error function that will be minimized by the PPR 
algorithm is given in equation (8) as: 
 

2

1=
)( ⎥
⎦

⎤
⎢
⎣

⎡
⋅−− ∑ XfYE iii

M
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 In our model, we can write this as: 
 
 2)(= M

i
A

ii
i

AEAEw −Ξ′ ∑  (14) 

 
where A

iAE  is the actual observed A/E ratio for cell i , iw  is the weight for cell i , and 1=ii
w∑ . 

Note that: 

  
ii
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Substituting (15) into (14), we see that: 
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The partial derivatives of Ξ′  with respect to M  are given by: 
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If we choose iw  so that the partial derivatives of Ξ′  with respect to M  are the same as 
the partial derivatives of Ξ  with respect to M , then Ξ  and Ξ′  will both be minimized by the 
same set M  and the PPR algorithm will produce the model that minimizes our desired error 
function. 
 
 From (16) and (13), we see that these partial derivatives will be equal when 
 

 M
i

iii
M
i

iii
M
i

ii

i

AE
dqEAEdqEAE

Eq
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 Solving for iw , we get: 
 

 M
i

ii
i AE

Eqw
2
1=  (18) 

 
Since we do not yet know M

iAE , we assume that it is a constant, and we set iii qkEw =  

where ( ) 1= −∑ iii
Eqk  is the normalizing constant. 
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