Non-parametric Estimation for Joint Survival Distribution Using Interval-Censoring Technique

Yibing Wang, Lijia Guo \dagger and Robert B. Brown

Department of Mathematics
The Ohio State University
Columbus, Ohio 43210
U.S.A.

Abstract

We present a method which first converges a two dimensional data to a univariate one and then uses the interval censoring technique to estimate the probability of failure of a Joint-life status from a heavily censored data. Our study shows that the life annuities of joint-life status calculated assuming independence overestimates the ones evaluated from an actual sample of population.

Keywords: Maximum likelihood estimation, Interval-censoring, Selfconsistent estimation, Product-Limit Estimation

[^0]
1. Introduction

The traditional textbooks assume that the individual lifetime variables of Ioint-life status such as a married couple or twins are independent, for simplicity of calculation. However, one may ask if this assumption is valid or not. Recent study on twins has shown the strong correlation between twins, see Philip, Bent and Niels [6]. In our study, we also found some statistical evidence for the dependences in the lifetime of married couples (see [7]).

In the case of dependencies, research has shown that the expected values of amnuity can differ by large anomots from values calculated assuming independence in Joint-life status [4]. Therefore modeling the joint survival distribution for the calculation of amuties withont assmming independence becomes an important issue. In general, it is very difficult to provide a suitable substitute model without independence assmmption. To the best our knowledge, there is no such a joint survival model that fit to the real population experience well and as widely accepted as the one under the independence assumption.

In this paper we study the impact of the independence assumption on the Joint-life or Joint-and last-survivor ammity values, present a mon-parametric estimation for joint survival mondel and provide a method to test how well a joint survival model would fit to the the available data sample.

2. Methodology

Mathematically, for Joint-life status, we are interested in estimating $\operatorname{Prob}\left(T_{r}^{M}>\right.$ $t, T_{y}^{F}>t$) from an actual sample of population where T_{4}^{M} and $T_{y}^{V^{*}}$ stand for the future lifetime variables, of a conple aged at x and y for man and women respectively and t is an arbitrary positive number.

The classical approach to study $\operatorname{Prob}\left(T_{x}^{M}>t, T_{u}^{\beta}>t\right)$ is examining the bivariate distribution of the pair of variables T_{x}^{M} and T_{y}^{F}. It is the proper way if all the observations of the lifetime of people in the sample were complete and the sample size, i.e mumber of observations, is not too small. However, since the average lifetime of a haman being is more than 70 , some of the observations might be teminated before the death oreured. In this case the life time of some people in the sample is not exactly known at the time the
data is taken. Therefore, to reflect the interesting survival pattern, we have to deal with incomplete data, or cemsored data.

The data we nse in this study is an incomplete sample of data set. However, our method could be applied to both complete and incomplete (or (ensored) data to estimate the joint survival distribution and to check if a given model fits a data sample from actual population.
()nr datan set consists of 4.211 people whose entry ages were between 30 to 65 and who were observed for a maximmof of 30 years. So not every person in the study was followed up to death. In fact, among the 1,146 married couples there were only 134 pairs where both partners died at the time the data was taken. We see the censoring rate is heavy. Another important issue about the data is that the people recruited into the study were required to pass certain health examinations, a typical sithation for collecting hospital data. This suggests the elder the people recruited into the study, the healthier they might be. So it is a question whether to assume that the sample is from the same distribution. Espectally, one has to avoid grouping couples with different entry ages moder the assumption that all the couples in the group) come from the same bivariate distribution.

We now group couples by fixing x and y, the entry age of man and women respectively and assume they were all from the same bivariate distribution of the bivariate variable $\left(T_{x}^{M}, T_{y}^{F}\right)$. We consider the following two typical age groups.

The first group consist of all the couples with entry ages 42 and 40 for man and women respectively. It has 12 couples in the group. (see appendix 1). Notice that the value " 1 " in column 3 or in column 5 indicates the observation was exact while a " 6 " means incomplete. So, only one (Couple No. 4) out of 12 comples whose lifetimes are both exactly known since both poople of couple No. 4 have death ID " 1 ", while the rest of the limes has at least one " 0 ".)

The second group includes couples with entry ages 46 and 44 for man and women respectively (see appendix 2) Notice that no couple's information on the two individuals lifetimes is complete. (At least one "(0" in each of the seven lines.)

In both groups, sime little exact information are available, it is impossible to remive a reasonable estimation for the bivariate distribution of (T_{x}^{M}, T_{y}^{F}), i.e. $\operatorname{Prob}\left(T_{r}^{N /}>t, T_{y}^{+}>t\right)$.

Notice that

$$
\operatorname{Prob}\left(T_{x}^{\mathrm{M}}>t, T_{y}^{H}>t\right)=\operatorname{Prob}\left(\min \left(T_{x}^{M}, T_{y}^{U}\right)>t\right) .
$$

We now consider the distribution of a one dimensional variable $Z_{r y}=$ $\min \left(T_{x}^{M}, T_{y}^{F}\right)$ instead of the bivariate one.

For the first group 1, the following three situations arise:
i) both of the indivichal lifetimes of the comple are exactly known. Then $Z_{x y}$, the minimmm, is exactly known. For example, Comple No. 4.
ii)both of the life time of the rouple are both ernsored. Then all we know is that the joint of the comple was not failed yet at the minimum of the two rensofed observations of the comple sime a joint-life status is alive if both are alive.) So the value for $Z_{t \prime \prime}$ is a simply censomed data. For example, conples No.1, 3, 6,10 and 12.
iii) if the observed lifetime of one person is exact and less than the one of the sponse which is censored, then we also know the exact failure time of the joint status. For example, couples No. 2, 5, 7, 8, 9 and 11.

For the concem of data for $Z_{z y}$, the situations i) and iii) are considered as death class since the exact fallure time for $Z_{r y}$ is known in both cases while the values given by situation ii) is considered as simple censoring class.
()ur appoad reduce the degree of incompleteness dramatically: One can see that 7 out of 12 values for a one-dimensional variable $Z_{x y}$ are exactly known comparing to that 1 out of 12 for a two-dimensional case. the rate of exactly known data incteases from the two dimensional (T_{r}^{M}, T_{y}^{F}) to the one dimensional $Z_{x y}$ in all of the 13 age groups. In fact, in one of the groups, the rate is increased from 0 out of 8 to 7 out of 8 .)

Now that the data set for $Z_{s y}$ from Group 1 consists of two mutually exclusive subsets, the death class and the simple loss class, we can apply the well known Kaplan Meier product limit estimation to calenlate the Nonparametric Maximum likelihood estimation (MLE) ([2]) of the joint survival distribution, i.e..

$$
\operatorname{Prob}\left(m i n\left(T_{i}^{A}, T_{y}^{r}\right)>t\right)
$$

(1)

$$
\operatorname{Prob}\left(Z_{x y}>t\right)
$$

Now consider the second age group (see Appendix 2). We see that the first three observations give values to $Z_{s y}$ that belong to death class while the

5 th and 6 th produce values for $Z_{3 y}$ which are in the simple censoring class. However, the 4 th and 7 th observation belong neither of the two classes. In fact, the situation is:
iv) - the observed lifetime of the man is exact but great than the ome of his spouse which had not been observed until the death ocenred. In this case, the joint-life status was not only known to be alive at the moment the wife was censored but also known to be failed before the moment the man was dead.

In this case, which the value of $Z_{x y}$ is known to be falling into an interval with finite ends, we call the incomplete data to be a interval-censoring data which has been encountered in medical or correctional follow-up or industrial life-testing when there is periodic inspection. Hence data set for $Z_{x y}$ from Group 2 can be divided into three mutually exclusive classes, i.e., in addition to the regular death class and simple censored class, the interval censored data. Notice that we receive more information from the interval censored data than the simple censoring data.

However, the Kaplan Meier method can not be applied for the MLE of the Joint survival distribution from the interval-censoring data. Peto, R ([1]) proves the existence and the miqueness of the MLE for the interval censored data sample and provides a computer algorithm to calculate the MLE directly. The criticism of the algorithm is that it is too cumbersome and hence seldom be used. Bruce W. Turnbull [5] provides a less cumbersome algorithm to calculate the so called self-consistent estimator which was claimed to be equivalent to the maximum likelihood estimator. Despite the fact that the method is often be referred, the proof of the equivalence is only given for the case when the algorithm is convergent. But the convergence of the algorithm is proved only if the initial point is picked close enomgh to the MLE. In fact, we have an counterexample where the equivalence between the consistent estimator(s) and the Maximmm likelihood estimator is not true. In our counterexample, there are two self consistent estimators, one is the maximum likelihood estimator, and the other is a saddle point. We can show that the Turnbull's algorithm will always converge to the maximum likelihood if we pick any initial staring point other than the saddle point. So the self-consistent estimator is not always equivalent to the maximum likelihood estimator. In this particular example, the algorithm still enable us to find the right MLE as long as one could avoid to pick up the saddle point as the initial point. However, the algorithm would not guarantee a MLE for any
interval censored data in gemeral.
Our study use a different approach. We develop an algorithm to calculate estimators of comditional probability instead of the empirical distribution. which are calculated in both of the two papers mentioned.

Our algorthm provide an explicit formula for the estimator as well as a method to study the large sample property of the MLE, for example, the consistency. In the case of small sample with simple structure, the exact self-consistent estimators can be computed easily even by hand, and conld be dasy to verify if it is the MLE. On the other hand, for large sample data, we develojed an mique block decomposition technique for calenating the estimator for the efficiency and eromomical reason.

3. Applications

We now use our method to handle the interval censomed data for one study. We group couples by fixing x and y, the entry age of man and women respectively and assume they were all from the same bivariate distribution of the bivariate variable $\left(T_{x}^{M}, T_{y}^{P}\right)$. There are only 13 such age groups whose size is greater than or equal to seven and where x and y are both greater than or equal to 40 . We then apply the algorithm and find the estimator for the survival curve for each of the 13 age groups as well as a general data with many incomplete observations.

By applying the interval censored technigue to the 13 age groups from this sample data, we rach the comelusion that, for 11 (out of 13) age groups, the traditional method with the independence assumption overestimates the survival probability of Joint-life status. Furthemore, comparing to our estimated distribution with a constant interest rate of 6% in the computation, the not simgle premium $A_{s y}$ of life insmance of a Jomt-life status is moderestimated while the ammity part $a_{\text {ry }}$ is overestimated by assmming the independence assumption in each of the 11 (out of 13) age groups. () on the other hand, in each of the 11 (ont of 13) age groups, the net single preminm $A_{r,}$ of life insurance of a Jonnt-and -last-survivor status is overestimaterd while the annuty part $a_{r y}$ is underestimated by the independence assmmption. Therefore, our study shows that insurance companies shonld charge nore preminm
for the joint-life insurance policy but less for the Joint-and -last-survivor life insurance policy.

References

[1] Peto,R., "Experimental Survival Curves for Interval censored data," Applied Statistics, 22, No. 1(1973),86-89.
[2] Kaplan E.L. and Meier Paul, " Non-parametric estimation from incomplete observations", American Statistical Association, Vol. 53, pp. 457-481, 1958.
[3] Klien J.P., "Semi-parametric estimation of random effects using the Cox model based on the EM algorithm", Biometrical Journal, Vol. 34, 1992.
[4] Carriere J. F. and Chen L.K. , "the bounds of bivariate distributions that limit the last-survivor annuities," Transaction of the Society of Actuaries, Vol.38, 1986.
[5] Turnbull B.W., " the empirical distribution function with arbitrarily grouped, censored and truncated data," J. R. Statist. soc., B, 38, 209295, 1976.
[6] Philip H., Bent H. and Niels V.H., "Measuring the similarities between the lifetimes of adult Danish twins born between 1881-1930," Journal of Amer. Statis. Assoc., Vol. 87, No. 417, 17-24, 1992.
[7] Wang, Y, "Dependencies in Joint-Life Status", present to the Joint Meeting of AMS and AMA, Cincinnati, January 1994.

Appendix 1

Group 1.
(Entry ages: $\operatorname{man}=x=42$, woman $=y=40$)

No.	Man's	Dth ID (M)	Woman's	DthID(W)
1	32.021585	0	35.021585	0
2	26,542214	1	34.999668	0
3	33.96954	0	35.002407	0
4	15.25191	1	29.451775	1
5	26.416187	1	30.391492	0
6	31.722986	0	33.6079	0
7	21.021718	1	31.881889	0
8	16.040944	1	31.881889	0
2	23.709364	1	31.766822	0
10	31.838054	0	31.838054	0
	15.331361	1	31.950381	0
12	1.964365	0	1.964365	0

Appendix 2

Group 2.
(Entry ages: man $=x=46$, woman $=y=44$)

No.	Man's	Dth ID (M)	Woman's	DthID(W)
1	18,660097	1	35.246241	0
2	32.470924	0	27.681929	1
3	20.947746	1	34.983229	0
4	29.799746	1	26.783307	0
5	24.621684	0	24.621684	0
6	17.871063	0	33.808158	0
7	29.194243	1	25.542223	0

[^0]: \dagger This research has been partially supported by the actuarial faculty fund at the Ohio State University.

