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Abstract

We present a method which first converges a two dimensional data
to a univariate one and then uses the interval censoring technique to
estimate the probability of failure of a Joint-life status from a heavily
censored data. Our study shows that the life annuities of joint-life
status calculated assuming independence overestimates the ones eval-
uated from an actual sample of population.
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1. Introduction

The traditional textbooks assume that the individual lifetime variables of
Joint-life status such as a married couple or twins are independent, for sim-
plicity of calculation. However, one may ask if this assumption is valid or
not. Recent study on twins has shown the strong correlation between twins,
see Philip, Bent and Niels [6]. In our study, we also found some statistical
evidence for the dependences in the lifetime of married couples (see [7] ).

In the case of dependencies, research has shown that the expected val-
ues of annuity can differ by large amounts from vahies caleulated assuming
independence in Joint-life status [4]. Therefore modeling the joint survival
distribution for the ealculation of annuities without assuming independence
becomes an important issue. In general, it is very difficult to provide a
suitable substitute model without independence assumption. To the best
our knowledge, there is no such a joint survival model that fit to the real
population experience well and as widely accepted as the one under the in-
dependence assumption.

In this paper we study the impact of the independence assumption on the
Joint-life or Joint-and last-survivor anunity values, present a non-parametric
estimation for joint survival model and provide a method to test how well a
joint survival model would fit to the the available data sample,

2. Methodology

Mathematically., for Joint-life status, we are interested in estimating Prob(TM

t, T,,' > t) from an actual sample of population where T and 1,1’ stand for
the future lifetime variables, of a couple aged at x and v for man and women
respectively and t is an arbitrary positive number.

The classical approach to study Prob(TM > ¢, f”’ > t) is examining the
bivariate distribution of the pair of variables TM and 1,} It is the proper way
if all the observations of the lifetime of people in the sample were complete
and the sample size, i.e. munber of observations, is not too small. However,
since the average hfetune of a human being is more than 70, some of the
observations might be terminated before the death occured. In this case. the
life time of some people in the sample is not exactly known at the time the

-
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data is taken. Therefore, to reflect the interesting survival pattern, we have
to deal with incomplete data, or censored data.

The data we use in this study is an incomplete sample of data set. How-
ever, our method could be applied to both complete and incomplete (or
censored) data to estimate the joint survival distribution and to check if a
piven model fits a data sample from actual population.

Ounr data set consists of 4,211 people whose entry ages were between 30 to
65 and who were observed for a maximum of 30 years. So not every person in
the study was followed up to death. In fact, among the 1,146 married couples
there were only 134 pairs where both partners died at the time the data was
taken. We see the censoring rate is heavy. Another important tssue about
the data is that the people recruited into the study were required to pass
certain health examinations, a typical situation for collecting hospital data.
This suggests the elder the people recruited into the study, the healthier
they might be. So it is a question whether to assume that the sample is from
the same distribution. Especiallv, one has to avoid grouping couples with
different. entry ages under the assumption that all the couples in the group
come from the same bivariate distribution,

We now group couples by fixing r and y, the entry age of man and women
respectively and assume they were all from the same bivariate distribution of
the bivariate variable (TM, fu}) We consider the following two typical age
ZIOUpSs.

The first group consist of all the couples with entry ages 42 and 40 for
man amd women respectively. 16 has 12 couples in the group. (see appendix
1). Notice that the value 1" in column 3 or in column 5 indicates the
observation was exact while a “0" means incomplete. So, only one (Couple
No. 4} out of 12 couples whose lifetimes are both exactly known since both
people of couple No.d have death 1D “17, while the rest of the lines has at
least oue “07.)

The second group includes couples with entry ages 46 and 44 for man and
women respectively, (see appendix 2) Notice that no couple’s information on
the two individuals lifetimes is complete. (At least one 707 in each of the
seven lines.)

In both groups, since little exact information are available, it is iinpossibie
to derive a reasonable estimation for the bivariate distribution of (TM, T))).
i.e. Prob(TM > f'[,ll > ).
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Notive that

Prob(TH > I.'l'ul" > ) = Prob(min(TM, T > ).

x 1]

We now consider the distribution of a one dimensional variable 2,

man(TM, ]a/[) instead of the bivariate one.

For the fivst group 1, the following three situations arise:

1) both of the individual lifetiimes of the couple are exactly known. Then
Z .y the minimm, is exactly known. For example, Couple No. 4.

ii)both of the life time of the conple are both censored. Then all we know
is that the joint of the couple was not failed vet at the minimum of the two
censored observations of the couple since a joint-life status is alive if both are
alive.) So the value for Z,, is a simply censored data. For example, couples
No.l, 3, 6,10 and 12

iii) if the observed lifetime of one person is exact and less than the one
of the spouse which 1s censored, then we also know the exact failure time of
the joint status. For example, couples No. 2,5, 7, 8, 9 and 11.

For the concern of data for Z,,,, the situations 1) and iii) are considered as
death class since the exact failure time for Z,, is known in both cases while
the values given by situation i} is considered as simple censoring class.

Our approach reduce the degree of incompleteness dramatically. One can
see that 7 out of 12 values for a one-dimensional variable Z,, are exactly
known comparing to that 1 out of 12 for a two-dimensional case. the rate
of exactly known data increases from the two dimensional (T, T,/') to the
one dimensional Z,,, in all of the 13 age groups. Iu fact, in one of the groups,
the rate is increased from 0 out of 8 to 7 out of 8.)

Now that the data set for Z,, from Group 1 consists of two mutually
exclusive subsets, the death class and the simple loss class, we can apply
the well known Kaplan Meier product Llimit estimation to calailate the Non-
parametric Maximum likelihood estimation (MLE) ([2]) of the joint survival
distribation, i.c..

Prob{mm(TM, 7,/') > 1)

or

Prob(Z,, > t)

Now consider the second age group (see Appendix 2). We sce that the
first three observations give values to Z,, that belong to death class while the
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5th and 6th produce values for Z,, which are tn the simple censoring class.
However, the 4th and Tth observation belong neither of the two classes. In
fact, the situation is :

iv) — the observed lifetime of the man is exact but great than the one
of his spouse which hiad not been observed until the death occeured. In this
case, the joint-life status was not only known to be alive at the moment the
wife was censored but also known to be failed before the moment the man
was dead.

In this case, which the value of Z,, is known to be falling into an interval
with finite ends, we call the incomplete data to be a interval-censoring
data which has been encountered in medical or correctional follow-up or
industrial life-testing when there is periodic iuspection. Hence data set for
Zyy from Group 2 can be divided into three mutually exclusive classes, i.e.,
in addition to the regular death class and simple censored class, the interval
censored data. Notice that we receive more information from the interval
censored data thau the simple censoring data.

However, the Kaplan Meier method can not be applied for the MLE of
the Joint survival distribution from the interval-censoring data. Peto, R
([1]) proves the existence and the uniqueness of the MLE for the interval
censored data sample and provides a computer algorithm to calculate the
MLE directly. The criticisin of the algorithin is that it is too cumbersome
and hence seldom be used. Bruce W. Turnbull [5] provides a less cumber-
some algorithm to calculate the so called self-consistent estimator which was
claimed to be equivalent to the maximum likelihood estimator. Despite the
fact that the method is often be referred, the proof of the equivalence is only
given for the case when the algorithm is convergent. But the convergence of
the algorithm is proved ounly if the initial point is picked close enough to the
MLE. In fact, we have an counterexample where the equivalence between the
consistent estimator(s) and the Maximum likelihood estimator is not true.
In our counterexample, there are two self consistent estimators, one is the
maximum likelihood estimator, and the other is a saddle point. We can show
that the Turnbull's algorithm will always converge to the maximum likeli-
hood if we pick any initial staring point other than the saddle point. So the
self-consistent estimator is not always equivalent to the maximum likelihood
estimator. In this particular example, the algorithm still enable us to find
the right MLE as long as one could avoid to pick up the saddle point as the
initial point. However, the algorithin would not guarantee a MLE for any
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interval censored data in general,

Our study use a different approach. We develop an algorithm to caleulate
estimators of conditional probability instead of the empirical distribution,
which are calculated in both of the two papers mentioned.

Our algorithm provide an explicit formula for the estimator as well as a
method to study the Large sample property of the MLE, for example, the
consistency.  In the case of small sample with simple structure, the exact
self-consistent estimators can be computed easily even by hand, and conld
be easy to verifv if it is the MLE. On the other hand, for large sample data,
we developed an unique block decomposition technigue for caleulating the
estimator for the efficieney and economical reason.

3. Applications

We now use our method to handle the interval censored data for onr study.
We group couples by fixing ¢ and ¢, the entry age of man and women respec-
tively and assume thev were all from the same bivariate distribution of the
bivariate variable (TM. TU’"). There are only 13 such age groups whose size
is greater than or equal to seven and where z and y are both greater than
or equal to 40. We then apply the algorithm and find the estimator for the
survival curve for each of the 13 age groups as well as a general data with
many incomplete observations.

By applving the interval censored technique to the 13 age groups from
this sample data, we reach the conelusion that, for 11 (out of 13) age groups,
the traditional method with the independence assumption overestimates the
survival probability of Joint-life status. Furthermore, comparing to our esti-
mated distribution with a constant interest rate of 6% in the computation.
the net single premium 4, of life insurance of a Jomnt-life status is under-
estimated while the annuity part ap, is overestimated by assuming the inde-
pendence assumption in each of the 11 {out of 13} age groups. On the other
hand, in each of the 11 (out of 13} age groups, the net single premium A, of
life insurance of a Joint-and -last-survivor status is overestimated while the
annuity part a,, s underestimated by the independence assumption. There-
fore, our study shows that insurance companies should charge more preminm

426



for the joint-life insurance policy but less for the Joint-and -last-survivor life
insurance policy.
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Appendix 1

Group 1.

(Entry ages: man=x=42, woman=y=40)

No Man's Dth ID (M) Woman's DthID(W)

1 32021585 0 _35.021585 0
2 26542214 1 34.999668 ]
3 33.96954 0 35.002407 0

4 15.25191 1 29451775 1

5 26416187 1 30.391492 0
6 31.722986 0 33.6079 0
1 21.021718 1 31.881889 (1]
8 16.040944 1 31.881889 0
9 23.709364 1 31.766822 0

10 31.838054 0 31.838054 0
11 15.331361 1 31.950381 0
12 1.964365 Q0 1.964365 0
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Appendix 2

Group 2.

(Entry ages: man=x=46 , woman=y=44)

N n' Dth ID Woman' DthiD
1 18.660097 1 35.246241
2 32.470924 0 27.681929
3 20947746 I _34.983229
4 29.799746 1 26.783307
3 24621684 0 24621684
6 17.871063 0 33.808158
1 29.194243 1 25.542223
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