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A b s t r a c t  

This paper  presents a mult i-state stochastic model for analyzing continuing care re- 
t irement community (CCRC) populations.  The model considers CCRCs with a number 
of independent living units and a skilled nursing facility. Residents may transfer tem- 
porarily or permanently to this facility. It is assumed that  units vacated by deaths,  
withdrawals or permanent  transfers are immediately occupied by new residents. Trans- 
fers are modeled using a time-homogeneous Markov process. The paper  provides some 
probabilistic results and some numerical results obtained using this model. Some im- 
por tant  generalizations of the model are also briefly discussed. 
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1 I n t r o d u c t i o n  

Actuarial Standard of Practice No. 3 [see Actuarial Standards Board (1994)] defines a con- 

t i n u i n g  care retirement community (CCI/C) as "a residential facility for retired people that 

provides stated housekeeping, social, and health-care services in return for some combination 

of an advance fee, periodic fees, and additional fees." CCRCs house up to several hundred 

residents and have facilities to provide one or inore levels of hmg-term care. tlesidency agree- 

ments are typically of long duration and care may be provided with no adjustment of fees. 

Winklew)ss and Powell (1984) discuss the operatiml of CCI1Cs in considerable detail. 

Tile uncertainty of future services required by CCRC residents has created a need for 

actuarial analyses. As outlined in Actuarial Sta~dards Board (1994), actuaries may be asked 

to: 

• design and price residency agreemonts in order to (1) provide for the economic survival 

of the community in the short and long run; and (2) fairly represent to the user the 

,t"COtl(llnic~ c o n s e t l u e n c e s  of entering into a residency agreement; 

* project future cash flows; 

• project changes ill tile future population of residents and est imate the future needs for 

health care beds; 

• determine actuarial assets and liabilities, and plan for surplus needs; 

• participate in the design of a ('C]~C's financial management and accom)ting systems; 

432 



• assist in developing financial feasibility studies; 

• provide appropriate rates of mortality, morbidity, or life expectancy for the commu- 

nity's use; and 

* perform mortality, morbidity, and withdrawal experience studies. 

These and other actuarial issues relating to CCR('~s are discussed by Brace (]994). 

In order to carry out actuarial analyses of (~CRCs one requires an appropriate model 

that describes the CCRC population over time. The model should allow for the movement 

of residents among the various levels of care and should provide information on the variability 

of future outcomes as well as expected values. Such a model is necessarily rather complicated. 

Cumming and Bluhm (1992) describe a CCRC population and financial model that allows 

one to perform actuarial wduations and cash flow and population projections. Expected 

results can be obtained using the decrement ratcs, and random variation may be est imated 

by simulation. A lilnitation of the model is that utilization of the care facility due to 

temporary stays is reflected on an average basis; the model does not permit  transfers from 

higher to lower care states. 

Jones (1994a and b) analyzed a simplified stochastic model for CCRCs. The model 

considers a community that offers single independent living units and one level of care. 

Residents may transfer either temporarily or permanently to the care facility. Transfers 

occur according to a Markov process with constant forces of transition. It is also assumed 

that the CCRC operates in a high demand environment, so that living units vacated by 
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death,  withdrawal or per ,nanent  transh~r (to the care facility) of a resident are immediate ly  

occupied by new residents. 

The purpose of this paper  is to present some results obtained using the  la t ter  mode] and to 

point out some general izat ions tha t  must  be c(msidered in developing a practical s tochast ic  

model for analyzing (;CRCs. Section 2 describes the model in mo,'e detail.  Probabil is t ic  

results arc discussed in Section 3, and some mmmrical results arc provided in Section 4. 

Section 5 considers a number  of generalizations. 

2 T h e  M o d e l  

Consider a CCRC with m single independent  living units  (ILU) and a skilled nursing facility 

(SNF). The SNF is assumed to have an inf ini l ,  capacity i7~ tha t  m) restrict ion is placed on 

the number  of residents in the facility at one time. Practically, this  represents a s i tuat ion 

in which the CCRC's  commi tmen t  to residents is such tha t  care will be provided even if 

residents must  be moved off site. 

Residents t ransfer  from their  living unit  to the SNF when care is needed. Transfers 

are deemed to be e i ther  t emporary  or pe rmanen t  based on an assesstner]t of whether  the 

individual  will ew~r again be capable of living independently.  Thus,  at any thne  after enter ing 

the communi ty ,  a resident is in one of the following four states: 

l .  I L U  

Residents in this s ta te  live normal actiw" lives and occupy independent  living units.  
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2. SNF ( temporary)  

Residents in this s ta te  have transfered temporar i ly  to the SNF. They  are expected to 

recover and re turn  to their  living units.  

3. S N F  (permanent )  

Residents ill this s ta te  have transferred permanent ly  to the SNF. Upon entry  to this  

state,  their  living units  are made  available to new residents. 

4. Dead or Wi thdrawn  

Individuals in this s tate  are previous residents who have ei ther  died or otherwise left 

the CCRC. Such individuals '  living units  are made  available to new residents upon 

death  or withdrawal,  or earlier permanent  transfer  to tile SNF. 

Figure 1 i l lustrates the setup, showing the four s tates  and the  possible t ransi t ions.  

Now assume tha t  tile demand  for living uni ts  in the  CCRC is such tha t  those uni ts  vacated 

by pe rmanen t  transfers,  deaths and withdrawals are immedia te ly  occupied by new residents. 

This "high demand"  assumption has some interest ing and ra ther  nice consequences. The  first 

is tha t  the  sum of the number  of ILU residents and the number  of t emporary  transfers is m 

at all times. Tile second is tha t  the m living units  can be assumed to operate  independent ly  

with respect to tile movement  of residents. This allows one to analyze the  CCRC by first 

considering just  one living unit .  

Transi t ions between the four s tates  in Figure 1 occur according to a Markov process with 

constant  forces of t ransi t ion.  Let tthi represent the force of t ransi t ion froln s ta te  h to s ta te  
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Figure 1: State Transition Diagram for Individual Residents 

1. ILU 

t'q4 

4. Dead . 1134 3. SNF 

2. SNF (temp) 

I123 

(perm) 

i, wbere h , i  E {1,2,3,4}. Tiros, the probability that a resident in state h at t ime t - d t  

moves to state i during the small t ime interval (t - dr, t] is phidt. Note that  this probability 

does not depend on t. Also, the t ime an individual spends in state h (for h = 1,2,3) has an 

exponential distribution with mean 1/E~¢h #hi. 

The assumption of constant forces of transition is questionable in many actuarial appli- 

cations. One might expect such quantities to depend on the age of the resident and perhaps 

on the t ime since entry to the current state, llowever, allowing for the current state of a 

resident inay remove some of the etfect of age and duration. Clearly, though, the assumption 

must be tested. 

Let J ( t )  represent the number of permancnt transfers in the commu,fity at t ime t _> 0. 
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Also, let K(t)  be the number of temporary transfers at t ime t. Then m - K( t )  is the number 

of ILU residents at t ime t. Time is measured from some arbitrary date that we let be t ime 

0. We are interested in the bivariate stochastic process { ( J ( t ) , K ( t ) ) , t  >_ 0}. It will be 

convenient to assume that J(0) = K(0) = 0, though this assumption can be relaxed without 

difficulty. 

Define Jr(t) and Kr(t) to be the number of permanent transfers and temporary transfers 

associated with living unit l at t ime t, l = 1 ,2 , . . .  ,m.  Clearly, Kt(t) must be either 0 or 

1 and Jr(t) is a non-negative integer. Jr(t) is the number of permanent transfers at t ime t 

who once resided in living unit l. We have J(t)  = Z ~ ,  Jr(t) and K(t)  = Z~=~ Kr(t). Also, 

Jr(O) = Kl(O) = 0 for all l. 

Assume that tile processes {(J~(t), K~(t)),t > 0}, l = 1,2 . . . .  ,m  are mutually indepen- 

dent. That  is, the state of any living unit at a given time is independent of tim states of all 

other living units at all points in time. This assumption is reasonable in light of the high 

demand assumption and the fact that the SNF has infinite capacity. 

According to this setup, the paths of the m processes are identically distributed. Thus, 

in seeking information about the distribution of (J(t) ,  K(t)) ,  we can first consider tile dis- 

tribution associated with an arbitrary unit, say, (Jr(t), Ka(t)). 
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3 P r o b a b i l i s t i c  R e s u l t s  

Considerable information about the process {(J, (t), K, (t)), t >_ 0} is contained in the prob- 

abilities Pr (J , ( t )  = j , K , ( t )  = k), j = 0 , 1 , 2 , . . . ; k  = 0,1; t > 0. Though we cannot find 

explicit expressions for these probabilities, we can for a number of related quantities. 

Since K~(t) is either 0 or 1 for all t, the (marginal) distribution of this quantity is 

characterized by Pr(IQ(t)  = 1). This probability is actually Pr(IQ(t)  = l lK, (0)  = 0) 

because we have assumed that IG(0) = 0. Now the process { IQ( t ) , t  >_ 0} is a two-state 

blarkov process with state space {0, 1 }. The fl)rce of transition from state 0 to state 1 is t02, 

and the force of transition from state 1 to state 0 is P2. =- #21 + tt2a q- fl24. Therefore [see 

Ross (1983, p. 150)], 

It follows from (1) that 

P r ( K , ( 0  = ] ) =  ; , , 5 -  ; ' , ,~-("'~+"~ )[ 
tq2 + #2. 

(]) 

zi,,, V r ( K , ( t ) =  ]) = ; "~  . (2) 
t ~ o o  /q2 + tL~. 

Equat ion (2) gives the long-run proport ion of t ime that  the SNF has a temporary  transfer 

from a given r iving umt.  

I t  was shown by Jones (199.1a) that  i f  tq2,tz23, tza4 > 0 and izJ, i < oo for all h , i ,  then 

l ira Pr(J~(t)  = j ,  l Q ( t )  = L') exists and is posit ive for j = 0, ],'2 . . . .  ; k  = 0, 1. These 
t ~ o o  

limits form what is called a n  equilibrium or stationary distribution for the state of a living 

unit. Jones (1994a) provides a method for finding the probabilities associated with this 

distribution. 
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The marginal distribution of J~ (l) is considerably more complicated than that of/~'a (t). 

Some information can be gained by considering a new process {N(t) , t  _> 0} where N( t )  

represents the number of permanent  transfer occurrences from a giw:n living unit by time t. 

Of course not all of those included in this count are still in thc commmfity at t ime t. It is 

easily seen that {N(t), t _> 0} is a renewal process. Furthermore, as shown by Jones (199,1b), 

the inter-occurrence time distribution function is 

--~2~ i : ( x )  = ] + ~,~ . . . .  - ~ , x > 0, (3) 

where 

0 1  = 

0 2 z 

f l l  - 

/ ~2  - 

, , ~  + #,~ + ,~. + ~/0, ,= + #,~ + #2.) 2 - 4[#,~#2. + #2.~#,2] 

2 

#,2 + t,,~ + j,2. - J 0 , , ,  + t,,~ + , , . ) '  - 4[#,~#~. + j ,2~,,2] 

tq2 + tt2. - c~1 

0 1  - -  Of 2 

tq2 + t12. - c~2 

Let re( t )  = E [ N ( t ) ]  be the renewal f imct ion for {N ( t ) ,  t _> 0}. Recognizing that  

a,, ,  ( ,j ) = P r ( p e r n a a n e n t t r a n s f e r o c c u r s d u r i n g ( y - d y , y ] )  

= [Vr (K, (g )=  O) t t , 3+Pr(K , ( y  ) = 1)t,2a]dy 

= [ 7 1  + "72c-("'2+"2)U]dY (4) 

WhCFe 

tqatt2. + t02,u~3 

tq~ + tz~ . 
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a n d 

/112(1t13 - -  1~23) 

t q~  + la2 • 

we find that 

re(t) = 7~t + - -  . ;  [~ _ ¢-{,.,;+,.~ },]. 
iq2 + tL2. 

(8) 

Then 

lira re(t) = "r,. (~) 
t ~ o o  t 

Equation (6) provides the long-run ext}ected number of permanent transfer occurrences per 

unit of time. Since the expected time that each 1}ermammt transfer spends in the SNFis  

1//z84, from Little's Result [see Kleinrock (1973, p.17)] the hmg-r,m ext,ect{M number of 

permanent transfers in the COlmmmity is 

lira E [ J , ( t ) ]  = ~[ , / t ,34.  
~ ~ o o  

(7) 

Also, 

E[J,(O] = / /e- ' •  O-~)dm(y) 

~1 -]- E~C -u3~t 4- ~ae -(*'~2+u~ ) t  (8) 

W | l C r e  

C I  - -  

£ 2  - -  

C 3  - -  

t~a4 

t~a4 t l34  - t q ~  - # 2 .  

'72 

t z a 4  - t q 2  - tL ,z .  

4 4 0  



Clearly, (7) is the limit of (8). 

It is also possible to obtain Var[J,(t)] and Cov[J,(t), K, (t)] ,,sing the following approach. 

Conditioning on the t ime of the first permanent  transfer we have 

Pr(J~(Q = j )  = Pr(J , ( t  - x) = j)[1 - e-"~'It-=)]dF(x) 

+ fot Pr (J , ( t  - x) = j - 1)e-"z'(t-=)dF(:c), (9) 

j =  1 , 2 , 3 , . . . .  

Multiplying both sides of (9) by j~ and summing from j = 1 to oo we obtain 

E[J ,~( t ) ]  

where 

o o  

= ~'  ~-~j'2 Pr(J,(t - x )  = j ) [ 1  - e-"~'('-=)]dF(x) 
j = l  

+ y ~ [ ( j - 1 ) 2 + 2 ( j - 1 ) + l ] P r ( J , ( t - x ) = j - 1 ) e - u ~ ' O - = ) d F ( x )  
j=l 

= fot E[J~(t - z ) ] [1  - e -""( ' -~ ]dF(z )  

+ fot{ E[J~(t-x)] + 2E[J , ( t -  x)] + l }e-*'~'(t-=}dF(x) 

/o' = g ( t )  + L'[J,2(t - = ) ] , / F ( = ) ,  ( l O )  

g( t) = ~ot {2E[Jl( t - x)] + l }e-Uadt-~)dF(x). (11) 

The interchange of summation and integration is justified by the fact that  the integrands are 

positive. Equation (10) is a renewal equation with well known solution [see Feller (1971)] 

/o' 
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To find a m o r e  convcnic,~t  cxpr,,ssi,,,~ for E[.II2(Q] wc must  first ,'vah~ate the  integral in (11). 

Fro., (3) , . ,d (8) w,, h,~v,. 

g(t) : / o ' { 2 [ . , + ~ , ~ - " ~ ' " - ' ) + . S ( " " + " ' > " - ' ) ] + 1 } ~ - " " ( ' - ' ) { ~ , . , ~  . . . . .  - ~ , , . , ~  . . . .  }dx 

-- 5 C-- (1112 "1-92 +1134 )t : ( l e - c q t  4- (2(:-c,2t  4- ~3e-ua ,  t 4- (4 e 2t,3, t 4- ( , , (13) 

where 

(,'1 

G 

G 

G 

G 

(2el 4- 1)t)'lCrl 282/~'10,1 2~3fllOl 
# 3 4  - -  ~ 1  2 # 3  4 - r q  t z ]2  4- tZ2. 4-  t t34 - -  ~1  

(2el + 1)fl2c~2 2¢2fl~c~ 2~3fl20'2 
- 4 - - - 4 -  

]134 - -  C¢2 2 # 3 4  - -  02  #12 4- t l2 .  + 1~34 - -  (v2 

( '2e, + 1)3,(~, (2e, + 1 )~a~  

1~34 - -  & l  tl34 - -  a2  

~#34 --  O1 21z34 - -  (~2 

I 

# 1 2  4- # 2 .  + 1L34 - -  ~ 1  #12 4- /z2. 4- #3,t -- ~2 

Substituti,~g (13) and (4) into (12) we obtain 

= ( , e  . . . .  t + G~  .~t + G,.-,,~,~ + (), ,-2,,~,t + Ge-( . ,~+, ,~  +.~,)t  

× ['71 + "~e -( ' ' '~÷'~ )~:]d.c 

---- 711 4- 7/2 e-c~'t 4- T]3C -<~21 4- I]4e -~'3't 4- 715C -21'34t + T/6(~. -(Iq2+;'2 )t + "qTe -('~12+~'2+~'~4)t, (14)  

W}IPFP 

7/1 
~Y1 &~ 1z34 2tt34 lq:z + #2.4-  t134 

4 4 2  



/]2 = 

t]3 = 

r/4 = 

r/5 : 

7/6 - -  

¢1 

6 

cq 0/, - / 1 , ~  - p~. 

G71 G72 

3 

o~ 0/2 - /11:2  - g2. 

GT, G72 
# 3 4  g 3 4  - / 1 1 2  - # 2 ,  

6 
2] t34  2/134 - -  /112 - -  # 2 .  

+ + + + - -  
O'l - -  / 1 1 2  - -  / 1 2 .  0 1 2  - -  / 1 1 2  - -  / 1 2 .  ]134 - -  /112 - -  /12- 2 /134  - -  / 1 1 2  - -  ~ 2 ,  / 1 3 4  

(~7, ¢s72 
/11'~ "JI- I t2 .  JF #34 #34  ° 

Then ,  of course,  Var[J,(t)] = E[J~(t)] - {E[J,(t)]} 2. 

To find Cov[J,(t), I f , ( / ) ] ,  consider  the  following equa t ion  which is analogous  to (9). 

P r ( J ,  (t) = j ,  1(, (t) = 11 

£ = P r ( J , ( t  - x) = j, I(, (t - x) = 1)[1 - e-Uadt-=)]dF(x) 

+ £ vr(a,(~-x) =j-l, K,(~-x)= 1)e-,3,(t-=) dF( x), 

j =  1 , 2 , 3 , . . . .  

(15) 

Mul t ip ly ing  bo th  sides of (15) by j and s u m m i n g  from j = 1 to oo we have  

E[J,(t)K, (t)] = j P r ( J l ( t  - x) = j, K,(t - x) = 1)[1 - e-U~'(t-=)ldf(x ) 
= £oo 

+ ~ , [ ( j - 1 ) + l l P r ( J , ( t - z ) = j - l , l q ( t - z ) = l ) e - " " ( t - ~ l d F ( x )  
j = l  

= ~o' E[d, ( t  - x) l¢ , ( t  - x)][a - , - " ( ' - ' ) ] d F ( x )  

-F jot{ E[J , ( t -  x ) K l ( t -  x)]-b Pr ( l ( , ( t -  x) = 1)}e-u"(t-~)dF(x) 

= h(t)  + ,~;[J,(t - x ) I q ( t  - x)],~F(x), (161 
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where 

i' h ( t )  = P r ( l ( , ( t  - x )  = 1)~- .3w- ' )aF(x) .  

Equat ion  (16) is a renewal equat ion with solution 

E P , ( 0 K , ( 0 ]  = h(0  + h(t - ~)am(~). 

From (1) and (3), (17) becomes 

i' h(t)  = #12 - - /q2e- ( " '2+u2)0-=)e - .~ ( t -~ ) t  a ~2e-~,~= 
/~,2 + t'2. ~,~ - / 3 ~ c q e  . . . .  )dx 

= 01e-"~ t + 02e -''~t + 03e -,'~4t + 04e -(u~2+u2+u34)t, 

(17 )  

(18) 

(19) 

where 

o , -  ~"~ [. B,,',, B,,~, 1 tZ12 -~- F2.- #12  "~ #2.  -{- P34 - -  (3(1 #34  - -  (3'1 

02 - P'2 [ _ fl2c~2 fl, c~2 ] 
#12  ~- //2" [/L34 --  0~2 [Z12 ~F ~2,  31- /Z34 --  0"2 

o3 - , ' , ,  [ e2 ; ] 
107. -{- tz2 • L#34 - (~1 tt34 - ~ J  

~12 -[- #2 .  117 -}" ,lt2. JC tt34 --  t'~2 #12  -[- #2 .  ~- ,/134 --  OZl 

Subs t i tu t ing  (19) and (4) into (18) we have 

E[J,(t)K,(t)] 

01C -°If  -~ 02C -cl2t ~- 03e--~34tO4c--('~12+"2 +'u3t}t 

+fot(Olc-c"(t-'r).4.02e-c'~(t-x)+o3e-~'a'(t-x)O4e-("12+~'2+"3')(t-~)} 

x [3q + ~2e-(.,~+,'~ )~']dx 

~_ KI jr_ K2C--c~lt ..{_ ,~3c-c ,2 t  .4_ /~4C-,us*t _~ tCS6--(.~x2+JJ2 )t _~_ /.~6C--(t~12+.u2 +~34)t (20 )  

4 4 4  



where 

0171 027, 0371 0471 
K, - -  + + + 

O~1 0 [2  ]234 # 1 2  "]- # 2 .  ~- ]234 

0171 0x 72 
~ 2  = 01 

Ctl e l  - -  ]212 - -  ]22- 

0271 027~ 
K 3 ~ 02 

or2 or2 - -  ] 2 1 2  - - / ~ 2 .  

0371 03")'~ 
~4 --~ 03 

~/134 ]234 - -  ]212 - -  ]22. 

017: 0272 
KS, - -  -{- 

cq -- ]212 -- ]22. c~2 - ]212 -- ,u2. 

K 6 = 04 0471  0472 
]212 "iv #2* -[- ]234 ]234 " 

+ 03 ")'2 04 72 + - -  
#34 - # 1 2  - # 2 .  #34 

The,, Cov[J,(t), K,(t)] = E[J,(t)K,(t)]- E[J,(i)]E[K,(t)] can be obtained using (20), (8) 

and (1). 

The fact that we can find the first two moments of J~(t) and K,(t) is quite significant. 

Since CCRCs typically have up to several hundred living units, it will usually be reasonable 

to approximate the distributions of J(t) and K(t) by normal distributions. We therefore 

require only the first two moments. They are 

and 

E[J(t)] = ~ E[Jt(t)] = mE[Ja(t)], (21) 
l= l  

ElK(t)] = ~ E[Kt(t)] = raE[IQ(t,)], (22) 
t = l  

m 

VarIJ(t)] = ~ Var[Jt(t)l = mVar[3, (t)] (23) 
l= l  

v,,,.[lC(t)] = ~ v,,,.[K,(t)] = -,Va,'[K,(0]. 
l =1  

(24) 
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We may also be interested in the total number of residents, S(t)  ~- J( t )  + I f ( t ) ,  in the SNF 

at a given time. We have 

and 

where 

E[S(t) ]  = E[J(t)] + E[K( t ) ]  (25) 

v , , . [ s ( t ) ]  = v . ~ [ j ( t ) ]  + v , , f l l¢ ( t ) ]  + 2Co.[J(t), K(t ) ] ,  (26) 

Cov[d(t), K(t)]  = ] ~  Co,,[g,(t), Kt(t)] = mCov[Jt(t), K,(t)] .  
/=1 

(27) 

4 N u m e r i c a l  R e s u l t s  

This section illustrates tile results of the previous section with a numerical example. The 

following (arbitrary) parameter values will be used. 

tq~  = 0 .12  #13 = 0.05 

#21 = 0.05 #23 = 0 .07 1124 = 0. I2  

#34 = 0.20 

Consider a CCRC with lO0 living units. Using equations (21) through (27) we have the 

following moments for various time points. 
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E[J(0] 
E[lC(t)] 
E[S(t)] 

Va,'[J(t)] 
v.,-[/,'(t)] 
v.~[,~'(t)] 

Cot,[J(t), l((t)] 

Figures 2 through 5 display 

t 
1 5 10 20 [ o0 

4.6316 i 17.0660 24.0.188 27.741228.33331 
10.0775 27.8234 32.4225 33.3084 33.3333 
14.7090 44.8894 56.4713 61.0496 61.6667 
4.6286 16.9497 23.7845 27.4077 27.9960 
9.0619 '20.0820 21.9103 22.2139 22.2222 
13.2332 32.8087 39.4643 42.8911 43.4722 
-0.2287 I-2.2225 -3.1153 -3.3653 ! -3.3730 

the results gral)hically. In Figure 2 the expected numbers of 

temporary and permanent transfers are shown for times from 0 to 30 years. '~Ve see that the 

expected number of temt)orary transfers is larger than the exl)ected nuinber of l)ermanent 

transfers at all points in time. Also, the expected immber of temporary transfers appears 

to converge more quickly to its limit. Figures 3 through 5 show the expected numbers 

of permanent, temporary and total transf(~rs along with 95 percent (pointwise) confidence 

intervals. The confidence limits were calculated as the expected value plus or minus 1.96 

times the standard deviation. Clearly the number of transfers to the SNF is subject to 

considerable variation. 

5 G e n e r a l i z a t i o n s  

The model discussed in this paper makes a number of assumptions fl~r simplicity and math- 

ematical convenience. They allow one to obtain explicit expressions for various quantities of 

interest. IIowever, in order to make the model more realistic, certain generalizations must 

be considered. These generalizations pertain to the CCRC structure, the forces of decrement 
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Figure 2: Expected Numbers of Permanent Transfers 
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and tile demand for living units. 

The model considers CCRCs that offer only single living units. In fact, most CCRCs 

provide double units for couples. The state of a double unit  at time t canllot be described 

by d~(t) and K~(t) as is the case for single units. We require a third quantity, L~(t), which 

represents the number of 1LU residents associated with a living unit at time t. Ll(t) may be 

0, 1 or 2. K~ (~) may also be 0, 1 or 2. Ilowever, K , ( t ) +  L:(*) must be 1 or 2. As in the single 

unit  c~e ,  d, (t) is a non-negatiw, integer. Thus, the possible outcomes for (d~ (t), Ifj (t), L~ (t)) 
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Figure 3: 95% Confidence Interval for Permanent Transfers 
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are (j, 0,2), (j, 0,1), ( j , l , 0 ) ,  (j, 2,0) and ( j , l , 1 )  for j = 0 ,1 ,2 , . . . .  The joint distribution 

of l(,(t) and L,(t) can be analyzed by recognizing that {(l(,(t), L~(t)),t > 0} is a five-state 

Markov process. Results for Jr(t) are more difficult to obtain since the permanent  transfers 

no louger occur according to a renewal process. We cau still find the long-run expected 

number of permanent  transfers using Little's result. 

CCRCs usually provide more than one level of care, often a personal care facility and 

a skilled nursing facility. This also increases the number of states and possible transitions. 
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Figure 4: 95% Confidence Interval for Temporary T,'ansfers 
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l[owever, tile analysis of tile s tate  of a CCI{(~ uait  can be approached in much tile same way 

as described above. 

As s ta ted  in Section 2, one must  test  whether  or not it is reasonable to assume tha t  

forces of t ransi t ion are constant .  It may ha tha t  one must  assume that  forces vary by age of 

resident a n d / o r  t ime sirlce entry  to tile various model states. If this is the case, tile model 

becomes much less t rac tab le  mathematical ly .  Numerical rcsult.s can, however, be found using 

simulat ion techniques.  
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Figure 5: 95% Confidence Interval for Total Transfers 
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Finally, in the analysis of CCRCs with lower demand for living units, one cannot assume 

that the units are independent. The t ime until a vacant unit becomes occupied depends on 

tile number of vacant units. Therefore, one must consider the state of the entire CCRC and 

not just one living unit. Simulation can again be used to obtain results in this case. 
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