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ABSTRACT 

The investment risk generated by a stochastic interest rate is recognized as often the greatest risk 
associated with a whole life or retirement policy. Recent research has investigated the mathematics 
of this risk when the interest rate follows a stochastic process and the time to death is considered to 
be random. In these cases the investment instrument is the money market. Though these 
investigations add considerably to knowledge on the behavior of  risk, in practice a company's 
investment portfolio is made up of various investment instruments. In this paper we focus on the 
use of the zero coupon bond as an investment instrument to fund a whole life policy. It is unlikely 
that a company will entirely fund a particular single policy with a zero coupon bond. However, the 
paradigms presented here provide insight into the behavior and risk associated with this investment 
strategy when the time to sale of  the bond is a contingent function of  a life. This paper presents the 
net single premium amount for funding a life policy using zeroes. It also presents the mathematics 
for the variance of the loss for such a funding strategy. In conclusion it appears that the value of  a 
zero coupon bond to a company is a function of the time to death random variable as well as the 
demographic profile of the population of  insured. 
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ASSESSING RISK FOR INSURANCE FUNDED BY ZERO COUPONS WITH 
STOCHASTIC INTEREST RATES 

I. INTRODUCTION 

The purpose of this paper is to examine the additional risk associated with funding a life 

insurance policy with zero coupon bonds when the interest rate for pricing and valuing the bonds 

follows a stochastic process. It has been formally recognized for over a decade that the risk 

associated with interest often dominates other risks in the insurance business. Recent insolvencies 

and failures of insurance companies have attracted public attention regarding financial assessment 

of the risk associated with liabilities resulting in increased need to assess interest based risk:. 

The introduction of the probabilistic approach to life contingencies (Pollard and Pollard 

1969) and the stochastic approach to interest rates (Pollard 1971) provides the theoretical framework 

to examine the various sources of risk associated with the insurance business. The recognition of the 

need to place the theory of life contingencies on a probabilistic foundation is evidenced by the book 

by Bowers et al (1986) used by several actuarial societies (see also the review of this book by 

Dhaene 1989). The result of assuming time to death, for example, as a random variable provides a 

method of identifying sources of risk associated with the random time to payment or to cessation of 

payment. As shown by Frees (1988) when time to death is a random variable, prospective and 

retrospective methods of calculating net single premium do not agree. Here we use the prospective 

method of calculating net single premium. 

Also important to the operations of the insurance company is the risk associated with interest 

rates that follow some random process. Boyle (1976) explored life contingencies assuming the 

interest rates follow a lognormal distribution. Waters (1978) explored the calculation of the 
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moments of insurance assuming various discrete mortality models with interest rates that follow an 

autoregressive process of order 2 (espoused by Pollard 1971). Panjer and Beilhouse (1978, 1980, 

1981) explored calculations of life annuities and life insurance assuming a discrete mortality model 

with interest rates driven by a normal process (with the autoregressive case as an example). 

Beekman and Fuelling (1990, 1991) examined the problems with insurance product calculations 

when the mortality followed a Makeham probability distribution and the interest rates were driven 

by an Ornstein-Uhlenbeck process and its special case, the Wiener process. 

In all of these research efforts the type of asset used is essentially the money market (MM) 

in which the value is accumulated through instantaneous compounding. Often times, however, the 

insurance company will fund a portion of its insurance liability through non-compounding products 

such as coupon bonds (which are bonds with periodic payments, often semi-annuals, and with a 

larger final payment at maturity) or zero coupon (ZC) bonds (which are pure discount bonds with 

a single payment at maturity). One of the advantages of ZCs is that there is no reinvestment risk 

until maturity. However, the price movement of ZCs can be very different from MMs. 

Consequently, using an MM model to assess the effects of risk associated with stochastic interest 

can be misleading. 

When assessing the risk associated with funding using ZCs, it is necessary to have a model 

for the term structure of yield rates or values of ZCs over time. There are several models for linking 

the instantaneous interest rate or spot rate with the forward rates used to price ZC bonds (see Heath, 

Jarrow, and Morton, 1992, for references to various models). The model we consider here is the one 

factor model (Vasicek, 1977, and Cox, Ingersoll, and Ross, 1985). In essence, this model assumes 

that the changes in instantaneous rates of returns of ZCs depends only on the current interest rate. 
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In this paper we examine the cost and risk as measured by variance of loss associated with 

a series of investment horizons for ZCs used to fund a single premium life insurance. We assume 

that the interest follows stochastic dynamics with stochasticity generated by the Wiener process such 

that the mean and covariance kernel are known. We also assume that the horizon, or time to maturity 

of the ZC can be selected by the investor. Based on these assumptions we determine the required 

investment for a net single premium using the equivalency principle (see Frees 1988). We also 

determine the variance of the loss. As expected, both the required investment and the variance are 

functions of the mortality patterns, the mean and variance of the stochastic process driving the 

interest, and the pattern of  maturity horizons selected. 

II. PRELIMINARIES 

Define the following: 

H i, i = 1, 2 .... is a sequence of investment horizons with H~ > H~.t for all i, and H~ > 0. 

W(t) = zero mean Wiener process with incremental variance dt. 

r(t) = force of  interest at time t. 

P(t,T,r) = price of  a ZC bond at time t ~ T paying 1 at maturity T given that r(t)=r. 

f(xl, x 2 ..... x0=joint density function ofr(t) at times t I, t 2 ..... t k. 

Let F(xt,...,xk) be the joint distribution function of r(tl),...,r(t 0. We will assume for convenience that 

the joint density, denoted above as f(x I ..... Xk), of F exists for each k. The form of F(xw..,xk)is 

dictated by the dynamics assumed to generate r(t) over time. For example, often r(t) is assumed to 

be generated by a stochastic differential equation. This can result in a joint distribution of r(tl)...r(t k) 

that is Ganssian and sometimes Markovian. One common one factor model for r(t) is 

41 



dr(t) = offt,r(t))dt + 13(t,r(t))dW(t), (1) 

where ¢t(.) and 13(') are real, deterministic functions and W(t) represents the Wiener process at time 

t .  

Vasicek (1977) shows that, under suitable conditions on equation (1), the function P(t,T,r) 

is of the form 

T T 

P(t,T,r) = E[expC-fr('~)d~- 2f{qtx,r(x))}2dx 
t t 

r (2) 

+ fq('r,r('r))dW('r))It(t) = r]. 
I 

In this conditional expectation, the function q('r,/i(x)) is the market value of risk. Positing a model 

for q(r, r(x)) is difficult and makes the solution to (2) complicated. One alternative proposed by 

Vasicek is to assume q(z, r(':)) is a constant, say q0. As noted by Cox, Ingersoll, and Ross (1981), 

for continuous time models the local expectation hypothesis, which states that q is zero over intervals 

of positive measure, is the only acceptable model of equilibrium for the one factor model. We give 

a general solution to the net single premium for an insurance funded with ZC's, assuming a one 

factor model. We specialize this solution to the model proposed by Vasicek with q(x, r(x)) = q0. The 

example at the end of this paper examines only the special case of q0 = 0, the local expectations 

hypotheses. We note that though the Vasicek model is considered an older model with the 

undesirable property that it allows negative interest rates, it admits a closed form solution to funding 

using ZC's for fixed time to death and, consequently, provides a basis for comparing different ZC 

strategies with an MM strategy. More sophisticated one factor models will result in different 

magnitudes in the comparisons but the patterns will be similar. 
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To fund the policy we will assume that a net single premium of amount 1 is invested by 

purchasing a ZC at the time the policy is issued with a horizon or maturity date of the bond of H r 

The bond yield rate is determined using the known current interest rate and the expected term 

structure of the bond. Thus the yield at maturity is P(0,H~,r(0)) ] .  Should death occur at time t prior 

to H t, the ZC is sold at its present value determined as P(t,H t ,r(t))*P(0,H~ ,r(0)) l .  Should the life 

exceed HI, the maturity value of the bond at HI is reinvested at price per unit at maturity of 

P(Ht,H2,r(Hj) ) with a horizon H 2 - H I. The process of reinvesting is continued until death occurs at 

which time the bond is sold at its present value determined from the forward rate using the then 

current interest rate. 

To calculate the expected single premium, assume the time to death t is known and that the 

interest rates r 0 ..... rk.~ for horizons H0---0 ..... H H are also known. Assume Hk. t ~ t < Hk. Assume 

that the interest rate at time t, r(t), is also known. Then the accumulation at time t of  an amount of 

1 invested at time zero is 

ACCUM = P(H0,Hpr0 ) -1P(HpHrr j )  -l ... P(Hk_vHk, rk_l) -] 

P(t, H k, r(t)) (3) 

Conditional on t, r o . . . . .  q-i, and r(t), the present value of an insurance of  1 payable at t is 

1 
P V -  A C C U ~ '  (4) 

Thus the expected present value is the expectation taken over time and over interest rates. By the 

monotone convergence theorem we can take expectation in either order. 

To calculate the expectation with respect to r o ..... r~, r(t), we note that P(t,T,r) is a function 

ofr( t )  = r. For fixed, known r, this function has no random component. The random component, 

4 3  



for fixed t, is introduced when r is random. Thus expectation of P(t,T,r(t)) is taken with respect to 

the probability density of r(t). The expected present value, conditional on t of  the bond given an 

initial investment of 1 is 

E (PV I t) = f H,, r 0) P(H l, H 2, r(H,) = xl) 

P(H k, Hk. z, r(H k) = xk) P(t, Hkq, r(t) = Xkq) q (5) 
f~(x 1 ..... x k, Xr, i)dxl ..... dxk, | , 

where H~ < t g Hk+ v Similarly, the second moment  is given as 

E((pv)2I t) = f.,.fP(H(r H,, ro )2 P(H., H 2, r(H,) = x,) 2 

... P(H k, Hk, l, r(Hk) = Xk) 2 P(t, Hk+ I, r(t) = Xk, S) -2 

f(x l ..... Xk. J) d x v  dxk+ v 

(6) 

Equations (5) and (6) are prospective in that they provide the expected present values of 

accumulation of the investment strategy at t ime t=0, given time of death at time t is known. 

Equations (5) and (6) can be simplified if the process r(t) is a Markov process. In this case, 

the joint density function f(.) can be written as a product of  conditional densities as 

f(Xm ..... Xk. I) : f(xll r0) f(x21 r(Ht) = xl)'" f(xk+ I) r(Hk) = Xk)" (7) 

For many cases, such as the Vasicek (1977) model and the Cox, Ingersoll, Ross (1985) model, the 

conditional density is known. 
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I lL  RANDOM T I M E  T O  D E A T H  

With an expression for P(t,T,r) and the Markov density f(x[ r = y) equations (5) and (6) 

specify the expected present value of  the investment strategy given a fixed time to death t. To 

determine the expected present value unconditional on the knowledge of t, we integrate over all 

values of t using the law of total probability. 

The relevant mortality variables are defined as follows: 

Tx = a random variable representing the future life time of an individual aged x. 

la~ = hazard function or force of mortality for an individual aged x. 

tP, = probability an individual aged x survives to x+t. 

gx(t) = density function of T,. 

= ~p~ lax÷ ,. (8)  

As an illustration we will use the Makeham mortality model 

Dx = D + ~yx (9)  

with parameters, similar to those given by Bowers, et. al. (1986), i.e., 

i a = 0.00059 

= 0.0000707 

¥=1.104 .  

The following important assumption will allow us to take this unconditional expectation: 

ASSUMPTION 1. The random variable T~ is independent of the random process r(t). 

In this assumption we assume that the likelihood of dying does not depend on the interest rate past, 

present or future. Although it is unclear how changes in interest rate would directly influence 
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mortality, both the selection process and the likelihood of termination of the plan could both affect 

the mortality experience indirectly. In this case Assumption I would be violated. 

Using the principle of equivalency, the net single premium is defined as 

P = ETIE(PVl t ) ] .  (10) 

Frees has shown that this equivalent to the premium defined using the prospective loss method for 

single premium insurances. 

IV. I N T E R E S T  F O L L O W I N G  A S T A T I O N A R Y  M A R K O V  G A U S S l A N  PROCESS  

In this section we illustrate the results of equation (14) when the interest follows a stationary 

Gaussian Markov or Omstein/Uhlenbeck (O/U) process (see Iranpour and Chacon, 1988). The 

interest rate r(t) follows an O/U process if the stochastic dynamics are given by equation (1) with a(t, 

r(0) = a * (60 - r(t)) and ~3(t, r(t)) = p, where a, 60 and p are constants. In this case, the conditional 

expectation of the interest at time s, given the rate at time t < s is 

E(r(s) jr(t) = r0) = 60 + (r o-  6o)e -~s-t). (11) 

The conditional variance of r(s) given r(t) = ro, t < s, is 

p2 
Var(r(s)]r(t) = r0) = ~ (1 - e-~Cs-t~). (12) 

To assess the differences between the MM and the various zero strategies, we solved equation (12) 

for various values of p and a as follows. From (12) as t ~ _~o, the unconditional interest rate standard 

deviation can be expressed as 
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st.dev. (r(s)) - P 

The level of"memory" of the process is dictated by the conditional variance given in equation (12). 

Beekman and Fuelling (1990) suggest that ~ is about 0.17. In this paper we will use a higher value 

o f ~  for faster reversion of about 0.01 to 0.02. We will use a range of values of p between 0.006 and 

0.012. 

Let the random variable Y(t,s) be defined for fixed t and s, t < s, as 

Y(t,s) = f r(~)dx. 
I 

Then the conditional expectation of Y(t,s) given r(t) = r o is 

E(Y(t,s) lr(t) = r o) = 8o(S-t) * r°- 80 
O~ 

(1 - e -.Is t l ) .  (13)  

The conditional variance is 

(14) 

When r(t) follows an O/U process and q('~, r(~:)) = q0 is a non-zero constant, equation (2) has 

the solution (see Vasieek 1977) 
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P(t,s,r) =exp{ l(1-e~°-°) (6+p--qq~x - lPZtx2-r)-(s-t) 

t ~ s  
(15) 

Equation (15) provides a simple alternative to the local expectations hypothesis. In the development 

below we will use equation (15) as the function for price. The local expectations hypothesis result 

is obtained by setting q = 0. 

To determine a closed form solution to the equations (5) and (6) we note that the random 

variables r(s) given r(t) = r o and Y(s, t) given r(t) = r 0 are both Gaussian. Thus, with the conditional 

expectations given in equations (11) - (14) we can use equation (7) to get integral expressions for 

(5) and (6). Using the fact that E(e 6r(s) I r(t) = r o) is the moment generating function of a Gaussian 

random variable, equations (5) and (6) can be expressed explicitly. An amount of algebraic 

manipulation is involved in this solution. A brief description of these manipulations is given in the 

appendix. To give the end result, we define the following 

d(z) : _1(1 - e -~=) 

re(T) = -So[1:-d(~)]  
2 

o2(t)  : - P ' l t  - d ( t )  ---ad 2(t)]  
~t 2 2 

q(z)  = - q o P [ d ( ~ ) - ~ ]  

a(x) = 6oad(T) 

b(l:) = ~-~( l -e  

c('O = e-"~ 
A i = H i . i - H  i 
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For any time of death t, H.< t ~ H°. t, define 

X = H n ,  1 - t 

"c= t -H . .  

Using these definitions, for fixed t, H.< t ~ H.+j 

P =  exp{-m(x) + 202(x) + q(x) } 

i =0 t i=t j i=t 

/ . - ,  f ~  k 
exp E lie d(A 0II c(a., i-,) lj=o tk-O -J" i=1 "" 

-d(x)c('c) ii~. t C(An_j+i_,)la(An_j_ ,) - d(x)a('O} 

(16) 

0 

In all cases l I  c(Ai) ~ 1. Although equation (15) is somewhat involved, its closed form 
i= l  

representation provides a simplification for solving (10) since the Makeham mortality law will 

require a numerical solution. 

Equation (4) follows a similar pattern with the appropriate change in the exponents. The 

expectation for the second moment gives the same result as in equation (16) with the functions m('), 

o(-), q(') and d(') all being doubled. Since d(.) appears with both powers of one and two, the result 

of doubling each of these functions is not the same as doubling the exponent. 
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We use a numerical integral to solve equation (10). Table 1 gives the solution for net single 

premium for various strategies and various values of p and a. In this table q is set to zero. Also in 

this table we have assumed that the current interest rate, r 0, is equal to the long run average, g 0. 

In Table 1, the column headings refer to the reinvestment strategy horizons. Thus, a horizon 

of  10 means that a ten year ZC bond is originally purchased for an amount listed in the table. At 

maturity the ZC bond yield is reinvested in another ten year horizon bond and so forth until death, 

at which time the bond is sold and used to pay the benefit. All ZC bonds are replaced at maturity 

with ZC bonds with the same horizon as its predecessor. The numbers quoted in the body of the 

table refer to the ratio of the single premium investment required under the various strategies to make 

EL r = 0 relative to the required investment under MM. Thus a value of .99 would mean that the 

required single premium would be 1% higher than that required under the money market. 

As we examine Table 1, we see that, as expected, the net single premium required increases 

as the horizon increases. However, note that the increase depends on both the process standard 

deviation and the memory as measured by a. If the interest process standard deviation is larger, the 

required net single premium for a ZC is relatively larger than that required for an MM strategy. 

Also, as the memory increases with decreasing a, the relative amount required increases. In the 

cases considered here where the process standard deviation is small, there is very little difference in 

the single premium rates as a function of the funding strategy. One would expect larger differences 

as the standard deviation of the process generating the term structure of interest is increased. In this 

case however, the Vasicek approximation becomes less reliable, allowing negative interest rates. 
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V. CONCLUSION 

In this paper we have given the genera] form for calculating the expected value of a single 

premium payment for a life insurance under a zero coupon (ZC) investment strategy when the 

instantaneous rate of interest follows a random process. A key assumption regarding pricing a ZC 

to use to match with the insurance liability is the "market value of risk." Under the one factor model 

of Vasicek we assumed zero. However, from Jensen's inequality, we know that even under the local 

expectations hypothesis there is a risk premium implicitly built into the investment strategy. The 

existence of this implicit risk premium necessitates management decisions regarding the level of risk 

and the amount risk premium the insurer wishes to take. The actual value of  this risk premium 

seems very small in the examples considered here. 

51  



BIBLIOGRAPHY 

Beekman, J.A. and C.P. Fuelling, (1990). "Interest and mortality randomness in some annuities," 
Institute of Mathematics and Economics, 9:185-i 96. 

Beekman, J.A. and CP. Fuelling, (1991). "Extra randomness in certain annuity functions," Institute 
of Mathematics and Economics, 10:275-287. 

Bellhouse, D.R. and H.H. Panjer, (1981). "Stochastic modeling of interest rates with applications 
to life contingencies -- Part 11" JR/, 48:628-637. 

Bowers, N.L. Jr. et ',d., (1986). Actuarial Mathematics, Schaumberg, IL., Society of Actuaries. 

Boyle, P.P., (1976). "Rates of return as random variables," Journal Institute of Actuaries, 43:693- 
713. 

Boyle, P.P., (1978). "Immunization under stochastic models of the term structure," Journal Institute 
of Actuaries, 105:177-187. 

Cox, J.C., J.E. Ingersoll, and S.A. Ross, (1985). "A theory of the term structure of interest rates." 
Econometrica, 53:385-407. 

Cox, J.C., J.E. Ingersoll, and S.A. Ross, (1981). "A re-examination of traditional hypotheses about 
term structure of interest rates." Journal of Finance, 36:769-799. 

Dhaene, J., (1989). "Stochastic interest rates and ARIMA processes," ASTIN, 19:131-38. 

Frees, E. W., (1988). "Net premiums in stochastic life contingencies," Transaction of the Society 
of Actuaries XXXVII, 371-385. 

Heath, D., R. Jarrow, and A. Morton. "Bond pricing and the term structure of interest rates: a new 
methodology for contingent claims valuation," Econometrica, 60:77-105. 

Gerber, H.U., (1990). Life Insurance Mathematics. Berlin: Springer-Verlag. 

Jordan, C.W., Jr., (1982). Life Contingencies. Chicago: Society of Actuaries. 

Panjer, H.H. and D.R. Bellhouse, (1978). "Theory of stochastic mortality and interest rates," 
Actuarial Research Clearing House (1978.2 Issue): 123-153. 

Panjer, H.H. and D.R. Bellhouse, (1980). "Stochastic modeling of interest rates with applications 
to life contingencies," JR/, 47:91-110. 

52 



Pollard, A.H. and J.H. Pollard, (1969). "A stochastic approach to actuarial functions," Journal 
Institute of Actuaries, 95:79-113. 

Pollard, J.H., (1971). "On fluctuating interest rates," Bulletin de l'Association Royal des Actuaries 
Belges, 66:68-97. 

Taylor, G.C., (1972). "On calculating the moments of the value of a life assurance liability," 
Journal Institute of Actuaries, 98:157- i 64. 

Vasicek, O. (1977). "An equilibrium characterization of the term structure." Journal of Financial 
Economics, 5:177-188. 

Waters, H.R., (1978). "The moments and distributions of actuarial functions," Journal Institute of 
Actuaries, 105:61-75. 

53 



Table 1 
Ratio of net single premium under MM investment stategy to the net single premium under various 
ZC strategies for various parameters of  the O/U process for an individual aged 30. Net single 
premium is calculated as the expected present value of the risk. Mortality follows the Makeham 
mortality model and long term average short term interest is set at 0.07. 

Horizons 

a = 0.31 10 15 20 25 30 35 

p = .006 0.999742 0.999170 0.998827 0.998608 0.998467 0.998381 

p = .009 0.999421 0.998135 0.997363 0.996867 0 . 9 9 6 5 5 1  ~996359 

p = .012 0.998974 0.996686 0.995314 0.994435 0.993873 0.993532 

a = 0.40 10 15 20 25 30 35 

p = .006 0.999638 0.999352 0.999196 0.999100 0.999040 ~999003 

p = .009 0.999187 0.998543 0.998193 0.997976 0.997842 ~997757 

p = .012 0.998554 0.997409 0.996787 0.996402 0.996164 ~996014 

a = 0.49 10 15 20 25 30 35 

p = .006 0.999652 0.999495 0.999413 0.999363 0.999333 0.999313 

p = .009 0.999218 0.998863 0.998680 0.998568 0.998499 ~998455 

p = .012 0.998609 0.997979 0.997653 0.997454 0.997333 ~997253 
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Appendix 

To determine the expected present value at time t, for a bond purchased at time zero under 
the Vasicek model, we proceed as follows. First, assume 0 < t ~ H I. In this case 

E V  t = fP(O, Hpro)-IP(t, HprOf(qlro)dq 

where x = H, - t. Note that the integral is the moment generating function of f(rl[ r0)where the 
argument of the function is d(x). The density f(r I [ro) is Gaussian under the Vasicek model. From 
Vasicek, P(0, H,, ro) is given by equation (20) in the text. Putting this into the current notation and 
recalling the generating function we get, for 0 < t < H~ 

EV, = e x p { m ( H t ) - l o 2 ( H , ) + q ( H , ) - m ( x ) + l o 2 ( x ) - q ( x )  

- d(x)a(t) + ld2(x)b( t )÷ ro(d(H,) - d(x)c(t)) } (A.2) 

For H I < t ~ H 2, define x = H 2 - t and 1: = t - Hr. Then 

EV t : P(0,HI, ro)-JffP(HpH2,rl)-fP(t, Hrr2)f(rxlrl)f(rl[r0)dr~lr I (A.3) 

= P(0,H,,ro)-Iexp(-m(x) + lo2(x) + q(x)) 

ff P(H t,H r r, )-lexp (-r2d(x)) f(r 2 I r t )f(r, [r0)dr2dr * (A.4) 

Noting that the inner integral is the generating function associated with f(r21r~) we can rewrite (A.4) 
a s  

= P(0,Hp ro)-'exp{-m(x) + lo2(x) + q(x) - d(x)a('c) + l d  2(x)b(x)} 

(A.5) 
exp{m(A) - lo2(A) - q(A)} fexp(r,[d(A) - d(x)c(~) ] f(r, ,ro)dr~, 

where A = H 2 - H,. 
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Again we see that the integral expression is the generating function for f(r~ Ir0), but with a 
more complicated argument. Substituting the expression for the generating function for the integral 
and using the definition of P(0, H~, r 0) we get 

EVT= exp{m(H,) - l o ~ H , )  - q(H,) 

÷ m ( A ) -  l o 2 ( A ) -  q ( A ) -  re(x)÷ l o ~ ( x ) +  q(x) 

- d(x)a('Q + l d  :(x)b(':) ÷ [d(A) - d(x)c(x)]a(A) 

+  td(a) d(x)c(l:)l:b(A) + [d(A) - d(x)c(T)]c(a)r.1 
2 -j (A.6) 

In general, the solution for any t follows the same pattern. Happily, each integral will in turn 
reduce to a generating function for f(r k I rk-~) with increasing complexity of the argument. The final 
result is as given in the text, equation (21). 
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