ACTUARIAL RESEARCH CLEARING HOUSE 1997 VOL. 1
 Stochastic Simulations using Spreadsheet Software

Margie Rosenberg
University of Wisconsin-Madison
Howard Young University of Michigan

Abstract

The combination of mathematical theory, statistical theory, and computers will enhance the educational process of actuaries and equip actuaries to enter industry better prepared to analyze data. Some actuarial models can be studied analytically; now with the ease of working with computers, these models and others can also be studied as stochastic processes by using simulated data. Actuaries in the workplace use spreadsheets on a daily basis. Classroom preparation on model building using spreadsheet packages would provide valuable experience. This paper suggests ways of presenting ideas from the theory of compound interest and actuarial mathematics using simulation on spreadsheets.

1 Introduction

Actuares have been hintoncally educated in the fumdamentals of mathenatical and statistical theory applied to risk setings in business. With an increasing prevalence of computers in industry, in education, and at home. the edncational process of actuaries can be enhanced by combining the theory with the use of computers. Some actuarial models can be studied analytically; now with the ease of working with computers. these models and others can be studied using simmated data.

Simulation is powerful tool that is widely used in business. Almost every topic in business can be approached thomgh mandation. Complex models often can be smbated and the results analvaed more quickly than from the nathenatical analytical principles. The main benefits of simutation are (i) building a computer mode of a business process forces one to think carfully about the process; (ii) selecting inpus to the model forces one to think catefully abont hypothetical conditions; (iii) analyzing the ontput of the smulation provides insight into the operational characteristics of the bnsiness process; and (iv) obtaining insight result.s in better decision making.

The moreased statistical power of spreadsheets now permit easier use of simmlation. Actuaries in the workplace use spreadsheets on a daily basis. University education of actuaries inchudes the use of spreadsheets as part of the learning process. Greater exposure of university students to the practical ise of computers to help solve problems would be invaluable and lead to a greater understanding of business processes.

There are many examples of problems that could be better solved using statistical packages and using programming languages. The use of spreadsheets as a first step in the problem solution or as an initial exposure to the problem solution can be a worthwhile tool. The spreadsheet clearly indicates where there are problems in formulas, such as dividing by zero, or referencing a cell that does not exist, wheh as in a table. Spreadshet packages are not as versatile in their selection of randon mumber generation tools, sheh as generation of an exponential deviate, nor their choice of types of plots, such as boxplots, but one can accomplish most tasks with some creativity. For example, generation of exponential random mambers can be accomplished using a simple formula covered in most statistics texts and inchoded in the Society of Actuaries Course 130 exan and Casualty Actuarial Society's $4 B$ exam. (See the example in Section 2.)

This paper presents examples from the theory of compound interest and actuarial mathematics using simulation on spreadsheets. These examples are extensions of examples or exercises presented in the Actuarial Mathematics [1] and The Theorv of Interest [2] textbooks. The examples illustrate how students of the material can gain a better understanding of the material with hands-on computer work: the theory presented in the textbooks can come alive and the ideas presented will be shown with mumbers and pictures rather than formilas.

The outline of the paper is as follows. Section 2 briefly introduces simulation in spreadsheets using the software EXCEL 5.0. ${ }^{1}$ Section 3 discnsses possible ways of presenting the results. Section 4 provides the classroom examples and Section 5 discusses how one may incorporate the spreadsheet simulation techinque into the classroom. Spreadsheets for the six examples presented in this paper are available upon request.

2 Spreadsheet Simulation

Early spreadsheet packages contained only a function RAND(), or some version of this function, which would generate a miformly distributed deviate between 0 and 1 . The inverse transform technique is one way of generating deviates from other distributions. This technique uses the cumnlative probability distribution function to generate a value from a particular distribution. Briefly the approach is to generate random numbers from an uniform distribution on the interval (0,1) which is denoted as $\mathcal{U}(0,1)$. These deviates are then moluded in another formula to generate valnes from the desired distribution.

Define F as the cumulative distribution function, with density function, f, for the random variable V. The distribution function is contimous and positive on an interval (a, b) such that $F(b)-F(a)=1$ for $-\infty \leq a<b \leq \infty$. If V han density f, then $U=F(V)$ is uniformly distributed on (0,1). Thus if $U \sim U(0.1)$, then $F^{-1}(U)$ has density f. That is, if we generate a miform deviate, then we can find a deviate from onr dewired c.d.f. F.

[^0]For example, suppose that $V \sim \mathcal{E}(\lambda)$, i.e an exponential randon variable with parameter λ. The c.d.f. of V is: $F(x)=1-c \cdot \cdots$ for $r \geq 0$ The process to generate a deviate from an exponential dintribution with paraneter λ is a.s follows:

Step 1: Generate $U \sim \mathcal{U}(0,1)$ and call the result, u
Step 2: Set $u=1-r^{-\lambda v}$.
Step 3: Solve for $\%$. The value, v, is a deviate from an exponential distrilmtion with parameter λ.
The RA.VD () function can be dyamic. By entering " $=$ RAND()" in a cell and pressing enter, the contents of the cell will change when changes are made to the spreadsheet. If one desires that the contents of the cell not change, then instead of pressing enter, one wonld press the F9 key and a fixed value of an miform tandom momber will be generated. The nse of the dyamic version allows multiple trials of a simulation to be easily completed. This dynamic version, compled with a macro to copy values of successive rums to another sheet, facilitates further analysis of the problem under study. For large spreadsheets, the use of the dynamic randon function may be very time consuming to re-calculate a worksheet. One may prefer to set the calculation to 'manal' as opposed to "antomatic' to facilitate spreadsheet design and re-calculate the spreadsheet only periodically.

More recent versions of spreadsheet packages have increased the number of available functions. In EXCEL 5.0 two functions LOGINV and NORMINV have been added that calculate the inverse of the lognormal cumulative distribution function and the inverse of the nomal distribution function. These two functions will be used in Example 2. Other techniques to simulate deviates exist, but are beyond the scope of this paper.

The Analysis Tools included in EXCEL 5.0 is another approach to generate random numbers. These tools include many statistical functions, anong them random number generation. The types of random numbers quickly generated include uniform, normal, bernoulli, binomial, patterned, and discrete. Multiple numbers of variables can be calculated with multiple numbers of deviates, but they must be generated from the same distribution with one dialogue box. A random seed can be included so that the deviates can be reproduced at later times. The numbers produced are fixed and not dynamic. For more trials, more numbers will need to be generated.

Traditional statistics packages such as SAS and MINITAB are more versatile in their choice of random number functions and may provide better statistical rontines to generate those values. If a complex distribution is desired, EXCEL would not be the choice of package to do the simulation.

3 Presentation of Results

Spreadsheet information is displayed in a tabular format. For a large simulation, the amount of information displayed may be overwhelming. Thus ways of summarizing the information to provide an easy means of analyzing the results is critical.

Summary statistics, such as averages, standard deviations, ranges, and percentiles, provide some information. These functions can be coded right into the spreadsheet. The advantage of using these functions is with the dynamic approach. New samples of deviates from the desired distribution would be recalculated by pressing the F9 key and new summary statistics would be generated at the same time. ${ }^{2}$ The summary of all the simulation trials can be saved on a separate worksheet with the use of a macro and these statistics summarized as well. Some of the functions available include: AVERAGE, CORREL, FREQUENCY, KURT, LARGE, MAX, MEDIAN, MIN, MODE, PERCENTILE, QUARTILE, SMALL, STDEV, and VAR. All of these functions are described in EXCEL's HELP.

The Analysis Tools also provides a descriptive statistics option. The advantage of using the Analysis Tools is in its ease of use, but the mmbers are fixed for the range of information given in the dialogue box for the descriptive statistics menn. If the mumber of variables and trials is known in advance, then this approach is much faster than the dynamic approach. However, if multiple simulations are desired, then this

[^1]approach is not as etticient as the dynamic approach. The summary statistics provided be the Analysin Fools ate shown in Example 3

In addition to smmary statistics, graphs of defined items may be benelicial. EXCEL inchudes many plot options such as histograns, scatterplots, and timeplots. Noticeably missing is a boxplot option. ${ }^{3}$ The above distinction regarding the dynamic vs. Analysis Tools smmary statistics can be nade here as well. The use of a frequency function or looknp function wonld be valuable to help display summary statistics and provide the input for a colmm chart to pictorially display the results. The histogram function as part of the Analysis Tools allows a chart to be created as well, but recall that the results are fixed, and if the mumbers are uplated, the histogram will need to created again.

4 Classroom Examples

Example 1: Theory of Interest Example 10.12: GIC binomial lattice

This example is an extenmion of Example 10.12 from The Theorv of Interest [2]; the numance of which is an follows:

The issuer of a Guaranteed Investment Contract (GIC), with a guarantee of 8.5% ammal effective rate, will invest the proceeds in three-month instruments. The interest rate for the first quarter is 8.4% convertible quarterly. It is assumed that future interest rates move according to the random walk model: the probability of an upward movenent is 0.4 and of a downward movement is 0.6 . The amonit of upward and downward movements each quarter are 0.5% and 0.4% convertible quarterly, respectively: What is the probability that the issuer will lose money on a one year GIC?

The solution given for the example shows an emmeration of the eight possible interest rate paths for three quarters. The probability of each path is calculated along with the quarterly interest rates and the annual accumulated value. Two paths will result in a rate less than the guarantee: an annual rate of 8.3% has probability of 0.144 , and an ammal rate of 8.0% has probability of 0.216 .
While this technique theoretically applies to any duration GIC, the calculation procedure increases greatly for even relatively short durations: a 3 -year GIC would have 2,048 possible interest rate paths (since there are 11 unknown quarters), while a 5 -year GIC would have more than half-a-million paths. Therefore, simulation is a useful altenative approach.
Table 1 shows the input data and Figure 1 shows the results from simulating 1,000 runs for a 3 -year GIC. For each run, a numerical interest rate path is generated, the resulting numerical values are retained on the worksheet and used in snbsequent calculations. To simplify the printont, the paths are converted to indicate $\mathrm{U} p(\mathrm{U}$) or Down (D) rate changes between quarters, by using the Excel formula: IF (Current Quarterly Rate - Previous Quarterly Rate > 0, "U", "D").
Determination of the interest rate, for any quarter, is simulated by comparing the $\mathcal{Z}(0,1)$ deviate with 0.4 , the probability of an upward movement; if less, there is an increase, otherwise a decrease in the quarterly interest rate. This comparison is accomplished using the IF function, and including the RAND() function directly in the IF function. The cells for each quarter, after the initial period, have the formula: $\mathrm{IF}($ RAND $)<0.4$. prior quarter rate + increase, prior quarter rate - decrease).
The PRODUCT function gives the 3 -year accumatation, and the equivalent anmal rate is calculated by a formula for each of the 1,000 runs. For each rim, the cumblative number of rums (from run $]$ through the then current run) with Ammal Average Factor lens than the Target Factor is determined, and divided by the total nmmer of runs up to that point. That is done by using the formula:
where the range covers the Anmal Average Factor cells from run 1 through the run currently being processed, and the criteria is " <1.085 ".

[^2]Table 1: Input Data

First quarterly interest rate	0.021
Possible increase in quarterly rate	0.00125
Probability of increase	0.4
Possible decrease in quarterly rate (use absolnte value)	0.001
Total number of quarters	12
Target Ammal Accumuation Factor	1.085
(1+Amual Effective Rate)	

Figure 1: Simulated Interest Paths, Average Ammal Accumulation Factors, and Percentage of Losses below Target Rate

Quarter->	2	3	4	5	6	1	8	2	10	11	12	AmAvg	Ratio of
Trial												Factor	Runs ≤ 1.085
100	U	D	D	U	D	D	D	D	U	D	U	1.082	0.500
200	D	U	U	U	U	D	U	U	U	D	D	1.100	0.500
300	U	D	D	U	D	D	D	D	D	U	D	1.080	0.527
400	D	D	D	U	U	U	D	D	U	D	U	1.083	0.538
500	D	U	D	D	D	U	U	D	D	U	D	1.082	0.554
600	U	D	D	D	U	D	D	D	D	U	U	1.080	0.553
700	D	D	D	D	D	U	D	U	D	D	U	1.072	0.550
800	U	U	D	U	U	D	D	U	D	D	D	1.095	0.541
900	D	D	D	D	D	D	U	D	D	D	U	1.068	0.552
1000	U	U	D	U	D	D	D	U	U	D	D	1.092	0.550
Increase													
Ratio	0.42	0.42	0.40	0.40	0.40	0.39	0.38	0.40	0.42	0.39	0.42	Mran	0.464

The above summarizes 1000 simulation nuss, print-at shows each 100 th ran
For each nus, an Interest Rate Path for Quanters 2-12 is generated as follows:

1) Each cell, for those Quartors, uses the finction

IF(RAND() Prob, Previous Qrate + Inc, Previous Qrate - Dec)
2) The resulding rumerical values (not shown above), and the ist Q rate, prockce the AvgAm factor $=$ PRODUCT $(\text { range })^{\wedge}(4 / 12)$
3) To simplify the primout, the paths are convered to Up or Down notation by using IF (CMOPTevDO, " V ", "D")
The Increase Ratio by Quarter, for all 1000 noss is calculated using COUNTF(rage,"U") / 1000
For all Querters conbined the Mear = AVERACE (range)
Also the proportion of furs with AvgAm Factor < 1.085 is calculatad on a comulative besis (from Ran 1 through the Curreat Run) using the following

COUNTF (range " $<1.085 "$ ") COUNT(range)

For example. Figne I shows an interest rate path for tum 300 . and the resulting Anmal Average Factor for that necitio mu. On the name lime, the ratio of the manher of ras below taget of 8.5% is shown for the first 300 rams.

As a check on the overall process, the ratio of increases in each quarter, and for all quarters combined, is shown for the entire 1,000 run sample. In Figure 1, each of those items is close to the expected value of 0.4 . The COUNTIF function was also nsed for this, by applying it to the array of Up and Down indicators.

In order to show a printont of a reasonable amonnt of data. the rows with the intermediate runs (as well as some other portions of the worksheet) are hiddel. Recalculation of the entire worksheet takes a considerable period of time to generate another 1.000 mm simulation. However, a single prest of the F9 kev accomplishe this withont opening the hidden portions of the work sheet.
The worksheet format can easily be modified to consider a CilC with a difterent duration. The prinary change is to insert the necessary mmber of colunns and copy the IF function where needed. Care mist be given to see that all needed recopying is done. and that the PRODUCT function captures the appropriate range of cells. The array used to determine the ratio of increases also needs to be modified. Finally, since the number of quarters is a paraneter in the Input Data section it must be changed: the other Input Data items shown aiso are parameters and can similarly be changed.

Example 2: Actuarial Mathematics Example 4.2: Actual versus expected accumlated fund for a gronp of 100 lives

Simulation runs can provide additional insights into the analytic results developed in Example 4.2 of Actuarial Mathematics \{1]. The substance of that example is as follows:

One hundred independent lives are subject to a constant force of mortality, $\mu=0.04$; each life is insured for death benefit of 10 units; benefits will be paid from an investment fund expected to earn $\delta=0.06$.

The text shows that $E\{Z]=4$ and $V a r[Z]=9$. Then, using a normal approximation, it is determined that an initial amomnt of 449.35 would be required for a 0.95 probability that the fund will be sufficient. Also, a single illustration is shown of the rmout of the fund, using a force of interest of 6%, and selected times-at-death for the first two years.
A single simulation run involves a generation of 100 uniformly distributed random numbers, and those are converted into time-at-death deviates (as described in Section 2 of this paper) using $\mu=0.04$. For each of the time-at-death deviates, the present value of the 10 unit death benefit is calculated using $\delta=0.06$. Once a single run has been set-up, new deviates can be generated by hitting F9; also the formulas can be copied to show multiple runs on a single worksheet.

The AVERAGE and VAR functions provide approximate values of $E[Z]$ and $V u r[Z]$; Table 2 shows such values for ten simmation rums. One can see how close these results are to the analytically determined values. Note that 100 times each mean equals the initial fund needed for the sample in that run. In Table 2, only one of the runs (with 4.6 mean) would require a fund in excess of the 95% minimum which was calculated at 449.35 . Of course, ten runs is not sufficient to draw any conclusions. By merely hitting F9, the means of many runs can be computed quickly. Using this procedure, 100 runs were generated, and only 6 of thone would require an excessive fund. This example shows the sampling variation using simulation.

Table 2: Simulation Output for 10 Runs

	Rum Number									
Statintic	1	2	3	4	5	6	7	8	9	10
Mean	3.4	4.0	4.1	4.6	3.8	4.2	4.3	3.7	4.0	4.1
Variance	8.4	9.9	8.5	9.1	8.4	9.4	9.2	9.8	8.4	8.9

The FREQUENCY function yields the mander of deaths in specific time intervals when applied to the data in rach mimulation mun. The results are easily converted into a chatt for exanple. Figure 2 shows the results for one run. Deaths are gronped for later time periods. Unlike the smoothly decreasing momer of deaths per year implied by analytio nse of the constant force of mortality, this rim has $]$ death in the finst year, 2 in the second, 7 in the third and exhibits a jagged curve.

Figure 2: Frequency Ontput for 1 Rmu of 100 Deaths

Also, there are the common-sense, but occasionally overlooked, points such as (i) only an integral number of deaths can occur in any time period (not 3.92 deaths in the first year), (ii) some years have no deaths as the groups are small (a significant consideration in many small pension plans), and (iii) some people live a very long time under this mortality rule (trials often inchude values exceeding 200 as a tine-until-death). Some of the latter points are not obvious in Figure 2, Lut they can be seen by examiming the data in a simulation, especially if the data is sorted into ascending time-mintildeath sequences. An extract of that sorted data is shown as run 1 in Figure 3; note that the FREQUENCY function can process sorted or misorted data.
To sort data, the spreadsheet software in EXCEL requires that cells have fixed values, rather than formulas; otherwise the recalculation that occurs during the sorting process generates new random deviates and the result is just a new unsorted sample. While cell contents can be directly converted from formulas to values, a better approach is to copy them using the Edit-PasteSpecial command, so that the original formula cells can contimue to be used to generate new samples.
Sorted data for any run can be used to simulate the rmont of an initial fund, with stochastic time-atdeath patterns. Furthemore, the run-out can be done with varions interest processes, including some stochastic concepts. ${ }^{4}$

[^3]Figure 3: Run-ont of initial fund of 400 and death benefit of 10 with stochastic mortality and three interest rate processes

		Stochastic Rate of interest		Time-at-Death usirg Rum 1			Time-al-Death using Run 4		
				Force at	Log	Random	Force at	Log	Random
Time-it-Death		Log	Random	6\% (fixed)	Normal	Walk	6\% (fixed)	Normal	Walk
Run 1	Run 4	Normal	Walk	400	400	400	400	400	400
0524	0.525	1.062	1062	403	403	403	403	403	403
1.503	0.592	9.062	1.062	417	417	417	394	394	394
1.618	0.727	1054	1.054	410	410	410	388	387	387
2.070	0.849	1.053	1.045	411	409	408	380	380	379
2.181	1.103	1.074	1.057	404	402	400	376	377	375
2300	2.357	1067	1.064	397	396	393	396	399	394
2.549	2.729	1077	1.075	393	393	390	395	400	395
2.565	2.818	1.054	1068	383	383	381	387	391	387
2.619	2.831	1.073	1.079	375	375	372	377	382	377
2.643	3.105	1055	1.073	365	365	363	373	378	375
3.536	3.233	1.059	1.070	375	374	376	366	370	358
3658	3.757	1.063	1.072	368	36 ?	369	368	372	371
3.814	4.223	1.057	1.068	361	360	363	368	372	373
4279	4.502	1059	1.065	362	360	364	365	368	370
HIDDEN ROWS HERE									
58.366	55.088	1.075	0.927	1913	1341	-74	344	182	-82
59.043	55.657	1.040	0.906	1982	1367	-79	343	176	-88
60.476	57.739	1.067	0.911	2150	1491	-79	379	192	-82
60.880	59.343	1.061	0.911	2193	1517	-86	407	20%	-81
61.359	59.813	1.057	0.906	2247	1548	-92	409	196	-87
64.546	62.445	1.065	0.909	2711	1880	. 78	469	221	-78
64.55%	64.835	1.064	0.940	2701	1871	. 88	531	247	. 72
66.497	66.940	1.064	0.912	3026	2100	-83	593	271	-69
69.073	68.318	1.065	0.915	3522	2460	-76	634	285	.71
70.555	68.725	1.047	0.901	3839	2625	.76	639	281	.78
70.829	70.254	1061	0.901	3893	2658	. 83	691	298	. 77
71.228	80.627	1.060	0.900	3977	2711	-90	1277	536	-36
79.662	B7. 119	1059	0.897	6587	4374	. 46	1910	779	-27
81.893	95.102	1071	0.905	7521	5088	. 47	3018	1310	. 23
104.810	203.078	1.066	0.909	29735	21926	-15	1964955	1280796	-10
Two simulations using RAND() and inverse transtorm. Values frozen and sorted				and runout efiod betwe	using in time-a	est rate (fro ath (for in	mpecified approprial	process) Run).	
		One set of new RANDU values is used as Probability for:							
		Force of Interest generated by LOGINV(Probability, 0.06, 0.01).							
		tnteresil rale generated by:							
		NORMINV(Probability. Priorintrate. 001)							

Figure 3 , hows data from 6 mu-onts of the fund for two mortality rms using interest rates gencrated
 They were chosen becanse their renalts were the extreme mean values in that table, with appoxmate initial funt! requirements of 340 and 460 respectively.
The three interest rate processes all start with $\delta=0.06$; therafter they are determined by either:

1. The 6% constant force of interest.
2. A lognormal generation of the fore of interest, using the function LOGINV, with a mean of 6% and a standard deviation of 1%.
3. A random walk generation of the interest rate, ning the function NORMINV, with a mean for each period equal to the prior period interest rate and a 1% standard deviation.

For processes (2) and (3), a single new mof on mombly distributed randon mombers is generated. These serve as the probability inpist items for the LOGINV and NORMINV functions. A new simulation is generated each time the worksheet is recalculated; however, as noted above, the mortality run deviates are fixed. no they to not change with recalculations of the worksheet.
For convenience, interest rates are assmed to change immediately after each benefit payment. rather than ammally or at other fixed time interval. Thms, the length of time a particular interest rate is used depends on the mortality of the gronp. The three interest rate processes have the same aprioni expected means but different variances, so it is not surprising that the simulated rum-onts produce quite different residual amomts.
The simulated rum-onts nse an initial fund of 400 rather than the 95% minimum initial amome of 449.35 . The final expected value of a large number of mortality simulations would be zero for the constant force of interest process.
Rather than comparing the final fimd amounts which are distorted by the large difference in times for the last death (about 105 years for trial 1, and 203 years for trial 4), a comparison of values immediately after paynent of the pemaltinate death benefits (which are respectively abont 82 and 95 years in the future) is shown in Table 3.

Table 3: Comparison of Fund Value

Rim	Nimber	$\delta=0,06$	LogNormal
1	7,521	5,088	-47
4	3,018	1,310	-23

It is not suggested that these are estimates of averages for the possible population of rum-outs. These reflect only two samples from the joint distribution of mortality and interest rate variables. The goal here, aside from learning the smmation concepts and related spreadsheet techniques, is to provide concrete illustrations which can be dynanically revised of the actinarial material.

Example 3: Actuarial Matheratics Section 3.6: Assumptions for fractional ages

Actuaries in their work generally assume expected mortality probabilities through the use of a life table which are displayed by integer year of age last birthday. To complete calculations at fractional ages and fractional durations, such as for year-end reserves or to calculate functions such as the complete expectation of hife from the life tables, an assumption for the time of death within the year of age is made.
Three possible assmptions are the uniform distribution of deaths (UDD), constant force (CF) and Balducci (BAL). Let a x be the ammal mortality rate for a life aged (x). Table 3.5 of Actuarial Mathematics [1] describes,q_{x}, for $0 \leq t \leq 1$ for each of the assumptions: $t \cdot q_{x}$ for UDD, $1-\exp \{-\mu \cdot t]$ for CF , and $\frac{t \cdot q_{x}}{1-(1-1)_{g r}}$ for BAL. Note that t is restricted between 0 and 1 and that itix does not integrate to 1 , as it is not conditional on the death of (\boldsymbol{r}).

 then $\left.\operatorname{Pr}(T, r \leq 1\}-q_{r} \cdot \operatorname{Pr}(T(x) \leq 1 \mid T, r) \leq 1\right\}$. Fon $0 \leq t \leq 1, \operatorname{Pr}(T(x) \leq t \mid T(x) \leq 1) \sim \mathcal{U}(0,1)$, as it is at comblative distribmion functions.

One wav to illustrate the difference between the assumptions is to graph the cumalative conditional distribution function for death of (x). given death prior to age $(x+1)$. Two mortalitiy rates are illustrated in Figure 4. The first grapla uses a very high mortality rate of 0.50 which clearly shows the impact of choosing of the three assmotions. For example, the probability that soneone will die whin the firm quater of the vear. given hat they die duthg that vear of age is 0.25 under the (ThD) axtuption 0. 92 meder (F, ant 0.40 muter BAl. The next graph showing a 0.01 probability of dying in a given age, denomstates indistinguishable differences between the three ansmoptions.

The moments for these conditional distributions can be calculated as well. For example, the mean can
 is 0.5 for UDD, indeperment of the mortality rate. $1-\frac{1}{q_{r}}-\frac{1}{\log \left(1-q_{r}\right)}$ for $C F$, and $\frac{\eta_{x}-1}{q_{s}}\left(1+\frac{\log \rho_{1} 1-q_{x}}{q_{x}}\right)$ for BAL. With :he motality ate at (0.5. the theoretical mean under DDD. (FF, and BAL are 0.5. 0.4427 , and 0.3863 . Other monents can be fonnd as well. All of these calculations and graphs can be easily completed on a spreadsheet.

These same results can be illustrated by simulation. Using the inverse tranform techacue, umform devates between 0 and 1 are generated. Lach of these values are multiplied by the one-year mortality rate to solve for the time of death durmg the year under cach of the three assumptions. The steps are: (i) Generate $t \sim \mathcal{U}(0,1) ;(i i)$ Set $U=P_{r}\left\{T(x) \leq t|T r|<1\right.$; ;iii) For UDD, net $t \cdot q_{x}=q_{x}$ U . Thus $t=u$; (iv) For CF, set $]-\left(1-q_{x}\right)^{t}=q_{x} \cdot v$. Thus $t=\frac{\log \left(1-q_{x} \cdot v\right)}{\log \left(1-q_{x}\right)}$; (v) For BAL, set $\frac{1 \cdot q_{x}}{1-(1-q) \cdot q_{x}}=q_{x} \cdot U$. Thus $t=\frac{\left(1-\left(i-q_{2}\right)\right.}{1-q_{t} \cdot t}$.
One thousand values are generated for U and time until death values for each of the three assumptions are calculated assuming that the mortality rate is 0.5 . Descriptive statistics for the generated values are shown in Table 4.

Table 4: Descriptive Statistics by Fractional Age Assumption Given $q_{x}=0.50$

	UDD	CF *	BAL*
Mean	0.5038	0.4468	0.3905
Standard Error	0.0092	0.0091	0.0089
Median	0.5012	0.4162	0.3344
Mode	0.1591	0.1196	0.0864
Standard Deviation	0.2903	0.2872	0.2819
Sanple Variance	0.0843	0.0825	0.0795
Kurtosis	-1.2289	-1.1625	-0.9724
Skewness	-0.0090	0.2230	0.4604
Range	0.9935	0.9944	0.9948
Minimum	0.0052	0.0037	0.0026
Maximum	0.9987	0.9981	0.9974
Sum	503.8358	446.7720	390.5416
Count	1000	1000	1000
Confidence Level (95.000%)	0.0180	0.0178	0.0175

Note how closely the sample means compare to the theoretical means: all are within one standard error. As a side project, one could ilhstrate the concept of sampling distributions, by repeatedly drawing samples of 1,000 and recording the sample mean for a mulber of trials. The distribution of these sample means cond be described. The mean shondd correspond to the theoretical mean and the standard deviation to the theoretical standand error.

Histograms basel on these simatated values are shown in Figure a. The charts show a level number of values by cell for (IDD), some skewness for the CF. and greater shifting to the left for BAL.

Figure 4: Comparison of LDD), (F, and BAL Assmptions for Two Mortality Rates 0.5 and 0.01

 tates.

Figure i: Histogram of 1000 Death Simulated using UI) ((FF and BAL Asmmptions for Mortality Rate of 0.5

Example 4: Actuarial Mathematics Exercise 3.24: Fractional age assmoption in the calculation of the median age at death

Exercise 3.24 asks the student to use the U.S. Life Table and an assmmption of unform distribution of deaths in each year of age to find the median of T, where T is the future lifetime of a person aged (0). This problem is one that is easier to do theoretically, but the simulation of the answer requires a good working knowledge of the concepts. To do the problem withont simnlation. one could just look for where 50,000 people are alive, somewhere between ages 77 and 78. Using the nuform assumption, one conld just do a linear interpolation to solve for the answer of 77.59 years.
Figure 6 graphs the i_{x} and d_{x} expected vahes from age 0 to 111 . The deaths at age 0 last birthday are high at 12.6 deaths per 1.000 , but then drop to around 0.5 deaths per 1.000 . One can calculate the q_{x} 's at each age and see that they are all very small except at the very highest ages. Thus the choice of the fractional age asmumption will not be significant.

The simulation of this exercise uses the LOOKUP function in EXCEL. A probability density function and then the cmmative distrimution function is created for each life aged (0). One hundred $\mathcal{U}(0,1)$ values are generated to represent 100 humded newborns. The miform deviate is compared against the cumnlative distribution function to detemine the integer age at death. The LOOKUP function takes the value less than or equal to the lookup value, one nust be carefnl to code the spreadsheet formula comectly. It may be, depenting on the design of the spreadsheet, that one must add 1 to the value retmoed by the LOOKll? function. Care mast also be mploved for treatment at ane 0 lant bindiday.

This in patmon highlights the abantage of wing a spreatsheet, as an eror for looking up a value will be clearly displayed in the speabtheot. The fractional probability piece is fom liy subtracting the miform deviate by the looknp value atd dividing by the difference between the cod f s for the ages surronming the deviate. Then $\mathrm{I} D \mathrm{D}$) deviates, or other fractional age assumption, can bo fomd as shown in Example 3. The total the mil death is fonnd by adding the integer and fractional pieces.
The simulation of 100 liven shows the distribution of the time matil death rather than just a mumber of 77.50 years for the median. The minimum and maximmm times until death can be fomd by using the MIN and MAX finctions. The diffrences in time of death between individuals, even though they are identicaliy distributed can be dramotic. For cxample, for one trial of 100 lives assmong IDDD. the medtan time mot death is 73.94 , the minmmu is 0.88 , and the maximum is 107 . 18 . For amother sample of 100 lives, the median time mat death is 78.14 , the mmimm is 18.61 , and the maximum is 101.89.

This is a challenging exerciee to complete on the compater, Jut very practical, as actuaries commonly work with data that is discrete and must nake assmmptions for interim time periods. The cxercise conld be taken further to examine the differmee in the resilts for the choice of fractional age assumption. Since the ammal momality rates are small for ahost all ages, the spreadsheet results confirm those in the prior example, showing little diflerences in the median age at death and other statistics.

Example 5: Actuarial Mathenation Exercise 8.7: Joint life prohatility and expectationsusing DeMoivre's Law with $=100$.

The commative distribution function and density function of order statistics has always been a diftionh concept for students to understand. This example and the next will show that the use of simulation makes a difficult concept easy and allows one to quickly get reliable answers.

Exercise 8.7 of Actuarial Mathematics assumes deMoivre's law with $w=100$. The problem asks the student to calculate ${ }^{\circ} 40: 50$, ${ }^{\circ} \frac{{ }_{40}}{4050}$ and variances of the associated time until death random variables, and the correlation. It is a good problem, as the student needs to pay attention to the upper limits of the integral because of ω and the joint life assmmption.
A spreadsheet is designed to separately input ω and the two desired issue ages, in this case (40) and (50). For sake of comparison to the book answers, these are kept as 100,40 , and 50 respectively. The RAND() function is used separately for each life to simulate the time until death, which implies that the two lives are independent. The actual formula coded is ($\omega-$ issue age) $\times \operatorname{RAND}$ (), which provides the flexibility for the input noted above. For each life, 100 deviates are generated. For each pair of deviates, the MIN function is used to choose the smaller of the two values aide the MAX function to choose the maximm of the two values. The 100 valnes for the minimum is an approximation for the density of the first death, while the other 100 values for the maximm is an approximation for the density of the second death. Table 5 shows the theoretically correct values for the average, variance, standard deviation for the time of death for each single life, the time of death for the first death, and the time of death for the second deall. Also included in Table 5 are the results of two trials for the modeling of the distribution. Comparing each statistic for each trial to the theoretically true value, one can see that each trial will produce variation from the truth. This is one way for the student to understand how a realization of a process may differ from the expected average. Also this concept can be reinforced by just examining each realization from the 100 , instead of the average of the 100 realizations.
Corresponding to the results in trials one and two, a frequene histogran is dynamically generated using the FREQUENCY function in EXCEL. See Figure 7 for a cliart of results. Of importance to note is that the fommla is entered as an antay fomma, which means that CTRL + SHIFT + ENTER mast be entered with all the appropriate cells highlighted. The bins of how to split up the comuts into gronps can be defined neparately or a defantt is used. The comts in each bin is the number of cells that are less than the maner for the bin and above the immediate prior bin. So the first bin is the mmber of thues of death less than or equal to 5 , while the next bin is the number between 5 and 10 . The chat gives a feel for the difference between the distributions of the min and the max of the time

Table 5: Compation of Theomtical and Smalation Results for Exemese x. 7

Thenetical Results.				
Statistios	140	T! 50$)$	$\min 110) T(50$	$\operatorname{max~T(40)~T~} 500)$
Averag	3100	25.10	[x.06	36.94
Saniak\%	3800.60	20833	160. 11	1×2.33
Std.der	15%	14.43	1263	13 30

Statistics	T10)	T 50)	min(T:40) Tj5011	maxi T 40 T (500)
Average	3×9	24.72	17.51	36.10
Vammac	258.47	199.01	155.36	166.95
Studev.	16.98	14.11	12.46	12.92
$\begin{aligned} & \operatorname{Cor}(T, 40) T(50)=000 \\ & \operatorname{Con}(m \text { max }=0.51 \end{aligned}$				

Statistics	Ti40	T 150)	$\min (\mathrm{T}(40) \mathrm{T}$ (50)	$\max (\mathrm{T} 40 \mathrm{~T}$ (509$)$
Average	29.74	26.66	18.23	38.17
Variance	330.76	189.51	14146	182.94
Stdder.	18.19	13.77	11.89	13.53
$\begin{aligned} & \operatorname{Cont}(\mathrm{T}(40), \mathrm{T}(50))=0.11 \\ & \operatorname{Corr}(\min \max)=0.44 \end{aligned}$				

Example 6: Achatial Mathematios Exercise 8.27: Joint life fractional age assumption

Exercise 8.27 combines both concepts of jomt life fmetions and the fractional age assmption. The problem states: " Let $T(r)$ and $T(m)$ be independent and miformly distributed in the next year of age. Given that botl (x) and (If) die within the next year, demonstrate that the time-of-failure of ($x y$) is not unformly distributed over the vear. [Hint: Show that $\operatorname{Pr}[T(r y) \leq t \mid(T(r) \leq 1) \cap(T(u) \leq 1)]=$ $\left.2 t-t^{2}\right\}^{\prime \prime}$ Students have difticulties with calculating the density function of the minimun of two random variables. This example will show how easy it is to use simmation to ilhustrate the concepts of this exercise.

First, to solve this problem theoretically, one calculates the cumbative densty finction as:

$$
\begin{aligned}
\operatorname{Pr}[T(r y) \leq t: \mid T(r) \leq 1) \bigcap(T(m) \leq 1)] & =1-\operatorname{Pr}\{T(x)>t, T(0)>t(T(r) \leq 1) \cap(T(y) \leq 1)] \\
& =1-\operatorname{Pr}\{T(x)>+\mid(T(x) \leq 1)] \cdot \operatorname{Pr}[T(y]>1\{(T(y) \leq 1\}] \\
& =1-(1-t)(1-t) \\
& =2 t-t^{2}
\end{aligned}
$$

The density function of the minmm is $2(1-1)$, which is not miform for $0 \leq t \leq 1$. Using the density function we can find the expected value equal to $\frac{1}{3}$ and the variance equal to $\frac{1}{10}$. In addition, one can note that the joint survival probability of surviving past time 0.1 is $0.81(0.9 \times 0.9)$, while if miform, the value should be 0.9 .

Figum 6: C.S Life Table for Total Population

US. Lifa Table $\alpha \mathrm{dx}$)

Figure 7: Histogram for Exercise 8.7

 shown in Figure 8 , shows how the individual times moth death are miform, while the frequenty of the minmonn is not.

Suatintics	man
average	$\mathbf{0 . 3 3 1}$
vatiance	$\mathbf{0 . 0 5 3}$

Fighe d: Histogram for Exercise 8.27

5 Classroom Incorporation

The simmation examples described in this paper range from easy to complex. The clansoom may be a place to demonstrate the results. but is not a place to create the raw spreadsheets. The incorporation of simmation is most appropriate in homework assignments and more lengthy projects. This section describes two experiences that have been insed.

Example 1 involving the GIC, can be used to introdnce the concept and technique of simulation to a theory of interest class, as well as to cover varions nses of spreadsheet software. Even thongh the example is baved on material at the very end of textbook. the substance of the problem and its solution can be explaned in general torms very early in the course. The advantage of this is that simulation of interest rates can be continued throughout the course, such as in examining variable rate mortgages versus fixed rate mortgages. Students may or may not have some backgromed in probability distributions when taking interest theory, so the level of explanation regarding simulation will need to be tailored to their background.

Mont acturaial stndents are likely to haw had some spreadsheet experience. but many may not have used the logic functions or other specialized capabilities deacribed in this paper. ln order to accommodate the range of prior knowledge, the following approach has been useful.

First, simply reproduce the one-vear analysis in the textbook over the eight possible interest rate paths. This can be done with the type of speadheet formalas and functions that students ane likely to know alrealy

 PRODCOI fumtion

 approach introdures the sthdem to more sophaticated programming skills.
 advance, baid on the IF matement practiced in step 2. A large mmber of rows fen 100 or 1000 ean be set
 of the worksheret.

 an estmate of the probability of loss. and can be compared with the value detemined by steps 1 and 2 . Students wee that there is vanation from rim to man, but that the overall result is about ats expected.

Extending this simulation appoach to a longer the period in quite easy. However, it is very imporamt to emphasize that a significant change occus: in the 1-year case. the correct answer based on the eight paths is already known and mmeasonable simmation results can be the basis for reexaminimg the spreadsheet logid and detaiks. For the tonger pertot. the comect answer is not know: of comse, that is more ecalintic since a major reason for ung simulation is when complete or otherwise accurate calcolations are not feasible. Other ways of checking the feasibility of the sesults will be needed. For exanple, simply checking whether the proportion of quarterly incyeases are near the 'true' probability of an increase ha- revealed errors. Students need to learn that they canot trust complex spreadsheets to prodnce reliable results mones they put a lot. of effort into the art of developing check-values.

If stndents have done some spreadheet smalations in prior comses, even greaser emphanis can be put on sophisticated techniques and their inplications. Thus the complexities of the LOOKDP function shonld not be a barrier, and the ideas discussed in Example 4 regarding alternative fractional age nules can be inchded.

While Example 4 showed a simulation of Exercise 3.24 in Actuarial Mathematics which refers to the U.S. Life Table shown in the text, the procedure is applicable to other life tables. Rather than having students type in the Illustrative Life Table valuen (Appendix 2A), a preliminary project can be constructed which is also instructive in ith own right. For ages 13 and above, that constraction involves application of the Makeham formula as described on pages $71-72$ of the text. The 113 value shown in Appendix 2A should be used as the starting point for the construction; then i is a small task to type in values for younger ages.

Example 4 can then be applied to the Illustrative Life Table. Of conrse, the simulation results can lue checked against the table by simply determining the UDD estimate for $t_{x}=50,000$.

Example 4 simulations can also be used to ilhstrate the relationsinp between cuntate and complete time-until-death varialles as discussed on pages $70-71$ of the text. and in Exercise 3.40 . For UDD it is easy to demonstrate that average of the curtate expectation plus 0.5 provides a reasonable estimate of the complete expectation. That half-vear adjustment can be justified by analvtic reasoning, or funtified by simulations as discussed in Example 3 of this paper.

References

[1] Bowers, N.. Gerber, H., Hickman. J., Jones. D., and Nesbitt, C.. Actuarial Mathematics, Society of Actuaries Il asca, Illinois, 1986.
[2] Kellison. S. The Theory of Interest, 2nd edition. Irwin:Ilimois 1991.
.

[^0]: ${ }^{1}$ Other spreadsheet software could have heen used. Some of the methods presented in the paper are specified to EXCEL. but the functions could be translated for use in other software packages.

[^1]: ${ }^{2}$ Note that this is a different use of the F9 key as described earlier. Here the formula RAND() is entered into the cell with the enter key. Then, every change of the spreadsheet will change the value in the cell. Or the cell's contents will change by pressing the F 9 key .

[^2]: ${ }^{3}$ Note: There are macio packages developed by ourside vendors for EXCEL that can generare boxplots.

[^3]: ${ }^{4}$ The first edition of Actuarial Mathematics does not include analysis of stochastic interest processes; it is expected that will be covered in the next edition. Therefore, even though it is somewhat inconsistent to use stochastic interest in the run-out of an initial amount that was based on constant interest, the extension is easy to understand.

