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BACKGROUND 

The development of  stochastic investment models for actuarial applications has 
become a major area of interest to actuaries. Stochastic investment models have 
applications to pension funds, to life assurance, to general insurance and investment 
management. Geoghegan et al (1992) and Daykin & Hey (1989, 1990) discuss some of 
these applications 

Wilkie (1986) first developed a stochastic investment model for the UK using annual 
data extending over long periods of  time. Extensions to the model and analysis of 
additional aspects were presented in Wilkie (1995). Jon Carter (1991), using quarterly 
data and employing the same methodology used by Wilkie, derived a stochastic 
investment model for the Australian experience. The approach used by these authors is 
based on time series techniques that use differences of data to obtain stationary series 
without any formal tests of whether or not the series are stationary. Transfer functions 
are used to determine the structure of the model. These models assume unidirectional 
causality for the variables used in the models and do not formally test for this causality 
or incorporate feedback mechanisms (bi-directional causality), that are likely to exist in 
investment data Research by Huber (1996) raises other aspects of weaknesses in these 
models 

The development of  these models has taken place at the same time as significant 
advances in time series and econometric analysis have occurred. These developments 
include methods for the non-stationary analysis of economic relationships (unit roots), 
allowing for long-run equilibrium relationships between the series (co-integration), and 
models that allow for heteroscedasticity such as GARCH models. Harris (1994,19~5) 
develops and applies a stochastic investment model based on Australian data that 
allows for heteroscedasticity that he refers to as ERCH. His model uses annual &ta. 
Harris (1994) does not formally analyse the stationarity of the series used but does 
have a model structure that allows for feedback. 

INTRODUCTION 

The main aim of this paper is to apply some of the techniques of modern time series 
and econometric analysis to analyse investment data in order to better understand the 
nature of  long run relationships in investment series typically used in stochastic 
investment models. The analysis is based on Australian data. Other stochastic 
investment modelling studies for actuarial applications have not formally investigated 
such relationships yet these are fundamental to the structure of any model to be used in 
actuarial applications. 

The paper attempts to identify and address fundamental issues that need to be 
considered before developing a particular stochastic investment model. It has identified 
many structural features of investment models that should be included in such a model. 
Many of these features are not found in published stochastic investment models for 
actuarial applications. The paper does not present a stochastic investment model. The 
detail required for a stochastic investment model will depend on the application. 
Parameter estimates and initial values for a stochastic investment model will generally 
need to be based on the most recent data. 
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Transfer functions were used to fit models to Australian investment data. These were 
found not to be appropriate for investment modelling analysis for the Australian asset 
returns series data since there was evidence of feedback relationships between many of  
the series. State space models were then fitted to the asset returns data and the 
inflation series allowing for feedback between inflation and asset class returns. The 
fitted models are reported in this paper. 

Based on the results of the research discussed in this paper any model used for 
stochastic investment modelling will need to incorporate time variation in means and 
variances and allow for cointegration between interest rates and the CPI. Transfer 
function models and constant mean and variance models often used in practice were 
not found to be a satisfactory representation of the return generating process. 

The analysis in this paper uses quarterly data. Stochastic investment models are used in 
practice to establish strategic asset allocations and to examine solvency and capital 
adequacy. Long run asset allocation strategies are often determined using an annual 
model on the assumption that cash flows occur at annual intervals. In practice this will 
be a crude approximation to the timing of cash flows and a higher frequency model will 
be preferred. Similarly the capital requirements for meeting a solvency test will be 
much less stringent when solvency is tested at annual time intervals than at quarterly 
intervals. In this context the difference between annual and quarterly models has yet to 
be investigated but in order to do this it will be necessary to develop an appropriate 
quarterly model, 

There are many important issues in stochastic investment modelling that require further 
investigation. These include modelling structural changes that have occurred in the 
economy using regime-shifting models (Garcia and Perron, 1996 and van Norden and 
Vigfusson, 1996) and allowing for other time varying components of  the series such as 
heteroscedasticity. Parameter estimation and stability of parameters require further 
investigation. Parameter and model uncertainty also needs to be incorporated. This 
research has considered some of these issues including heteroscedasticity. 

Structural time series models provide a framework for analysing and developing 
stochastic investment models. Such models can be developed using a state space 
formulation. Such an approach provides a number of significant advantages over more 
dated time series techniques. These are: 

• Models reflect the salient characteristics of the data. 
• Model parameters are interpretable. 
• Feedback mechanisms (bi-directional causality) are included. 
• Stationarity does not have to be assumed. 
• On-line model maintenance and updating on receipt of  additional 

information. 

Further research is required in this area. It is hoped that this paper will provide a 
foundation for that research. 
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D A T A  

The structure of a model needs to be based on economic and financial theory as far as 
possible. Often theory will rely on empirical data for justification. The model structure 
and the parameters of a stochastic model will need to reflect historical data. Parameter 
estimation will usually be based on historical data. A statistical analysis of historical 
data will also provide useful insights into the features of  past experience that the model 
will need to capture. 

The data used for the empirical analysis in this research is taken from the Reserve Bank 
of Australia Bulletin database. The study uses quarterly data in contrast to most other 
studies in this area that use annual data. The reasons for using quarterly data, rather 
than monthly or some other higher frequency, is that this is the highest frequency for 
which many of the main economic and investment series are available. It is also a 
frequency that is suited to most practical applications and will be more realistic than 
annual data as currently used. 

Different series are available over different time periods. The longest time period for 
which data was available on a quarterly basis for all of the financial and economic 
series was from September 1969. Individual series were available for differing time 
periods. The series considered were Consumer Price Index - All groups (CPI), the All 
Ordinaries Share Price Index (SPI), Average Weekly Earnings - adult males (AWE), 
share dividend yields, 90 day bank bill yields, 2 year Treasury bond yields, 5 year 
Treasury bond yields, and 10 year Treasury bond yields. An index of dividends was 
constructed from the dividend yield and the Share Price Index series. Logarithms and 
differences of the logarithms are used in the analysis of the CPI, SPI, AWE and 
dividends. The differences in the logarithms of the level of a series is the continuously 
compounded equivalent growth rate of the series. 

Appendix A sets out summary statistics for the series used. It is important to note that 
none of the series is well represented by an assumption of independent and identically 
distributed normal variables. Mean-variance optimisation models that are ot~en used in 
determining optimal asset allocation strategies by fund managers and asset consultants 
assume that the returns are correlated but serially independent and identically 
distributed normal variables. It is clear from the data that such assumptions are 
inappropriate and that mean-variance models should be used with caution. 

Appendix B provides time series plots of the series, the logarithm of the series and 
their differences. An examination of the plots for the CPI, AWE, SPI and the Dividend 
Index series shows exponential growth and the plot of  the logarithms of these series 
suggests that the series could be fluctuations around a linear trend in the logarithms. 
Such a series is referred to as trend stationary. The analysis in this research indicates 
that the trend is in fact stochastic and the logarithms of these series can best be 
modelled using first differences or the rate of continuous growth of the series. An 
examination of the plot of  the differences of the logarithms of these series also appears 
to indicate a non-constant variance or heterogeneity. This is tested for in this research 
and found to be the case. 
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The interest rate series all show a changing level as interest rates rose during the 
1970's and 1980's. Models of  interest rates that incorporate mean-reversion are often 
used. These models assume that the level of  interest rates is stationary. This is not 
obvious from an examination of  the time series plots of  the interest rates. The 
differences in the levels of  the interest rates do however appear to fluctuate around a 
constant value but the series appears to be heteroscedastic. 

UNIT ROOTS AND STATIONARY SERIES 

Many of  the series used in stochastic investment modelling are non-stationary. For 
example the level of  the Consumer Price Index, the level of  the Share Price Index and 
the level of  a dividend index can be seen to be non-stationary by simple inspection o f  a 
time series plot. It is less clear whether or not interest rates have stationary 
distributions and this cannot easily be determined by inspection of  a time series plot  
Rates of  changes in indices or rates of  return have been used in stochastic investment 
models and this might be justified because they can be considered as "natural" variables 
to use. 

Because the level of  the Consumer Price Index, the level of  the Share Price Index and 
the level of  a dividend index are non-stationary this has lead researchers to difference 
the data, or some transformation of  the data such as a logarithmic transform, in order 
to obtain a stationary series for modelling. Wilkie (1986) and Carter (1991) used 
differenced data, as does Harris (1994, 1995) for equity and inflation series. In Carter 
(1991) the order of  differencing was decided using more traditional time series 
techniques based on the sample autocorrelations. FitzHerbert (1992) fits a 
deterministic trend to various index levels instead of  taking differences. Neither 
FitzHerbert (1992) nor Harris (1994, 1995) conduct formal tests for stationarity of  the 
series used in their models. 

If  the level of  a series is non-stationary but the difference of  the series is stationary then 
the series is said to contain a "unit root", be "integrated or order 1", or be "difference 
stationary". It is important to understand that the existence of  unit roots determines the 
nature of  the trends in the series. If  a series contains a unit root then the trend in the 
series is stochastic and shocks to the series will be permanent. I f  the series does not 
contain a unit root then the series is "trend stationary". The trend in the series will be 
deterministic and shocks to the series will be transitory. This has major implications for 
investment models in actuarial applications. 

The other aspect of  unit roots is that if they exist in a series and differences are not 
used in model fitting and parameter estimation then the statistical properties of  the 
parameter estimates for the model will not be standard and the use of  standard results 
for model identification and parameter estimation can result in an incorrect model 
structure and unreliable parameter estimates. Insignificant parameters are more likely 
to be accepted as being significant. 

These are all significant reasons that make testing for unit roots in a series for use in 
developing an investment model critical. Formal statistical tests for unit roots have 
been developed over the past decade in the econometric literature. Unit root tests are 
described in many articles and books including Dickey and Fuller (1979) and Mills 
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(1993). These procedures are implemented in various statistical and econometric 
packages such as Shazam (1993). 

In order to test for unit roots in the series xt the following regressions are fitted: 

AX t = 0% + o t lx  t + g t  

AX t = 0% + ( l z t  + Qf.lXt + ~t 

(l) 
(2) 

where gt  are assumed to be independent and identically distributed and Axt = x t - x t - i  is 
the first difference in the series. These are referred to as Dickey-Fuller regressions. I f  
the value of  cq is equal to zero then xt is integrated or order 1. In this case (1) defines 
x~ as a random walk with drift and (2) defines x~ as a random walk around a non-linear 
time trend. This can be seen by substituting cq = 0 and rearranging to get: 

Y; = Y;l + ~:¢ 
with 

y~ = x~ - Ctot for (1), and 

y: = x , - E o ~ 0  + ~ - ]  t - ° t2 t22  for(2).  

In the case that the g, are not i.id. then the following regressions are used: 
p 

Ax, : 0% + ~t,x t + ~ , j A x ,  j + ~, (3) 
j l  

p 

Ax ,  = (z o + OtlX t + ot2t + Z y j A x ,  ) + t; t (4 )  
j_l 

where p is selected to ensure the errors are uncorrelated These are referred to as 
augmented Dickey-Fuller regressions. 

The procedure for testing for unit roots and determining the order of  integration uses 
the t-statistic o f  the coefficient cq of  xt-~ in the regressions given by (3) and (4). The 
null hypothesis is that the series is non-stationary with cq = 0 and the alternative is that 
cq < 0. The t-statistic under the null hypothesis has a non-standard distribution and is 
compared with the table of  critical values found in Fuller (1976, p. 373). I f  the null is 
rejected then this is evidence that xt is a stationary series. If  the null is not rejected then 
differences of  the series are taken and the differences tested for a unit root. When the 
null is eventually rejected the level of  differencing required to reject the null determines 
the order of  integration of  the series. Usually this requires only one order of  
differencing for financial and economic series. 

The critical values used for testing for a unit root depend on whether or not cx2 is zero 
in the regression given by (4). If  ct0 and or2 are zero then the t-statistic for ¢tl has the 
non-standard limiting distribution as in Dickey and Fuller (1979). This distribution 
applies if cz0 is non-zero. If  et2 is non-zero then the limiting distribution is standard 
normal. It is therefore necessary to determine if cx2 is non-zero in order to determine 
critical values for testing for unit roots. Dickey and Fuller (1981) provide critical 
values for a range of  tests as follows: 
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I~) 1 using Equation (3) with Null ct0=0, cq=0 
dO2 using Equation (4) with Null Cto=0, or2=0, cq=0 
dO3 using Equation (4) with Null ot0¢0, c~2=0, oh=0 

The procedure for testing for unit roots can be set out as follows (Holden and Perman, 
1994): 

Step 1 : Estimate the regression (4). 
Step 2: Use dp3 to test the null hypothesis ct0;~0, ct2=0, cq=0 against the alternative 
c~o~0, c~2~0, c~1~0. If the null can not be rejected then go to Step 5. 
Step 3: Need to determine if c~2¢0, cq=0, or or2=0, al~0 or ot2;~0, cq~0. Test for cq=0. 
If this null is not rejected then conclude that ct2~0, (21=0 and the series has a unit root 
and linear trend. 
Step 4: If the null is rejected in Step 3 then there is no unit root and the series is 
stationary. A conventional t-test for c~2=0 is used to test for a trend. If this null is 
rejected then the series is stationary with a linear trend. A conventional t-test is used to 
test for a constant ct0;~0. 
Step 5: In this case the series has a unit root with no trend and possibly with drift. This 
can be confirmed using the non-standard critical values for the null cq=0. 
Step 6: To test for non-zero drift use d02 since this tests the null ct0=0, c~2=0, etl=0 and 
previous tests have not rejected a2=0, cq=0. If the null is not rejected then the 
evidence suggests that the series is a random walk without drift. If the null is rejected 
then the series is a random walk with drift. 
Step 7: Regression (3) is used and ~bl used to test the null a0=0, cz~=0. This will 
confirm the results of earlier steps. 

Table 1 sets out the unit root test statistics using the augmented Dickey-Fuller 
procedure for Australian quarterly data over the period September 1969 to December 
1994. Table 2 gives the parameter estimates and t statistics for regressions (3) and (4) 
for this data. 

Applying the procedure to the unit root test statistics in Tables 1 and 2 gives the 
following results: 

i o g C P I  - logarithm of the Consumer Price Index 
dp3 does not reject the null hypothesis ~0~0, c(2=0, ~t=0 so the series has a unit root. dp~ 
rejects the null so=0, al=0 suggesting the drift is significant. This is confirmed by the 
regression (3) where the estimate of oto is 0.0244 with a t statistic of 2.94 which is 
significant at the 04% level. 

A L o g C P I  - first difference of I o g C P I  

~b3 rejects the null hypothesis Cto;t0, et2=0, oh=0 for the differences. The "~2 test statistic 
rejects the hypothesis that cq=0 so there is evidence that the differences are stationary. 

Conclusion 
On the assumption of i.i.d, errors, the logarithm of the CPI is integrated of order 1 and 
differences in the logarithm of the CPI is a stationary series with drift. 
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LogSPI - logarithm of the Share Price Index 

q% does not reject the null hypothesis cto~0, ct2=0, cq=0 so the series has a unit root 
with no trend, qb2 does not reject the null or0=0, ct2=0, oq=0 so that this is evidence of  
no drift Using the more powerful test with q~, does not reject the null ~ = 0 ,  eq=0. 
From the regression (3) the estimate of  ~xo is 00547 with a t statistic o f  0.52 which is 
not significant suggesting that the drift is zero 

ALogSPI 

q% rejects the null hypothesis that eto~0, ct2=0, ctl=0 for the differences. The ~2 test 
statistic rejects the hypothesis that ~L=0 so there is evidence that the differences are 
stationary. From regression (4) the estimate of  ct0 is 0.0128 and of  ot2 is 0.0002 and 
neither o f  these is significant. 

Conclusion 

The logarithm of  the SPI is integrated of  order 1 and differences in the logarithm of  the 
SPI is a stationary series. The results suggest that the dritt in the difference of log(SPI)  
is not signicantly different from zero. This could be because the test used has little 
power against an alternative of  a positive drift close to zero. 

LogAWE - logarithm of Average WeekLy Earnings 
q~3 does not reject the null hypothesis ~0~0, c~2=0, c~L=0 so the series has a unit root 
with no trend. (~2 does not reject the null or0=0, ct2=0, Ctl=0 so this does not reject the 
zero drift hypothesis. Using the more powerful test with ~ does reject the null oto=0, 
ct~=0 suggesting that the drift is significant. From the regression (3) the estimate of  ao 
is 0 1182 with a t statistic of  3.04 which confirms this. 

ALogAWE 

~3 does not reject the null hypothesis crone0, et2=O, oq=0 for the differences which 
suggests that the differences have a unit root. However the z2 test statistic rejects the 
hypothesis that c~x=0 and this is evidence that the differences are stationary. Note that 
if the differences in the logarithm of AWE are not stationary then this means that a 
random shock to the continuously compounding growth rate of  AWE would be 
permanent. A model with this feature would not be sensible since it would allow the 
continuously compounding growth rate to become arbitrarily large or small. 

Conclusion 
The logarithm of  AWE is most likely integrated of  order 1 although the statistical tests 
suggest it could be of  higher order. 

LogSDiv - logarithm of the Share Index Dividend Series 

(~3 does not reject the null hypothesis ~t0~0, ct2=0, oq=0 so the series has a unit root 
with no trend, qb2 does not reject the null oh=0, ct2=0, Gq=0 so this does not reject the 
zero drift hypothesis. Using the more powerful test with ~1 does not reject the null 
a0=0, eta=0 suggesting that the drift is not significant. From the regression (3) the 
estimate ofcto is 0.0940 with a t statistic of  1.188 which confirms this. 
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Variable 
10% Critical Value 
LogCPI 
ALogCPI 
LogSPI 
ALoFSPI 
LogAWE 
ALogAWE 

Table  1 Test  Statistics for Unit  Roots - A D F  Regressions 

n ~, ¢, ~= ¢2 ¢3 
~2.5~ (3.78) ~3.1~ (4.03) (5,34) 

96 -2.5394 5.0773* -0.14401 3 3658 3.2153 
95 -1.9654 19387 -3.2620* 3.8593 5.7811" 

101 -0.36670 1.0593 -2.5374 2.9977 3.4468 
93 -4.0574* 8.2403* -4.0353* 5.5106" 8.2573* 

94 -2.9235* 5.0615" -1.1134 3.3407 42320 
94 -1.6971 1.5320 -3.1763" 3.4963* 5.1460 

LogSDiv 
ALo~SDiv 
SDyields 
ASDyields 
BB90 
ABB90 

91 -0.94375 3.2947 -2.2644 3.8328 2.7697 
97 -3.6085* 6.5145" -3.5827* 4.3077* 6.4580* 

94 -2.6065* 3.4282 -2.4752 2.4863 3.6984 
93 -4.2322* 8.9565* -4.3210' 6.2671" 9.3998* 

95 -2.0651 2.1326 -1.8133 1.4128 2.1190 
93 -4.3252* 9.3662* -45146* 6.8251" 10.225" 

TB2 98 -2.1987 2.4757 -2.2523 1.7769 2.6071 
ATB2 97 -3.5883* 6.4738* -3.5303* 4.3129" 6.4337* 

TB5 98 -19812 2.0334 -1.8892 1.3792 1.9985 
ATB5 96 -3.5858* 6.4526* -3.6100' 44730* 6.6862* 

TB10 101 -1.8629 1.9083 -1.3939 1.3380 1.8353 
ATB10 98 -48847* 11930* -4.9430* 8.2041' 12306* 

* indicates significant at 10% level 



Variable 
LogCPI 

ALogCPI 

LogSPI 

ALogSPI 

LogAWE 

ALogAWE 

LogSDiv 

ALogSDiv 

SDyields 

ASDyields 

BB90 

ABB90 

TB2 

ATB2 

TB5 

ATB5 

TB10 

ATB 10 

Table 2 Tests for Unit Roots - Parameters of ADF Regressions 
(t statistics in brackets beneath the estimate) 
Regression 3 

5 002438 -0.00446 
(2.94) (-2539) 

5 0.00390 -0.20633 
(1 744) (-1.965) 

0 0.05472 -0.00594 
(05161) (-0.3667) 

7 0.02421 -1 2959 
(1.803) (-4.057) 

7 0.11815 -0.01577 
(3041) (-2.923) 

6 0.00520 -0.29492 
(1204) (-1 697) 

10 0.09404 -0.00092 
(1.188) (-09437) 

3 0.01354 -0.67085 
(1.789) (-3609) 

7 084903 -0.18277 
(2.610) (-2.607) 

7 0.01025 -1.3678 
(0 1704) (-4.232) 

6 1.3958 -0.12360 
(1.987) (-2065) 

7 000596 -1 5594 
(002885) (-4.325) 

3 0.74802 -0.06935 
(2.203) (-2.199) 

3 003630 -071139 
(0.3556) (-3.588) 

3 0.61876 -0.05561 
(2.011) (-1981) 

4 0.03165 -0.79979 
(0.3752) (-3.586) 

0 0 54248 -0.04698 
(1.951) (-1863) 

2 002894 -0.84539 
(0.3953) (-4.885) 

Regression 4 
p cto etl ~2 

5 0017387 -0.00175 -0 00006 
(05417) (-01440) (-0.2255) 

5 0.01406 -0 41302 -000011 
(3 262) (-3,262) (-2.724) 

0 054693 -0.10166 0.00251 
(2536) (-2.537) (2.598) 

7 0.01283 -1.3302 0.00021 
(04519) (-4.035) (0.4551) 

7 0.12763 -0.01766 000005 
(1513) (-1.113) (0.1267) 

6 0.03463 -0.80799 -0.00034 
(2.952) (-3. 176) (-2.684) 

10 0.99212 -0 14792 0.00361 
(2.332) (-2.264) (2.147) 

3 001587 -0.67512 -0.00004 
(1.043) (-3.583) (-0.1772) 

7 091397 -0.17543 -0.00176 
(2.719) (-2475) (-0.7951) 

7 0.13634 - 1 4646 -0.00224 
(0.9379) (-4321) (-0.9529) 

6 1.4177 -0.11965 -0.00121 
(1.963) (-l.813) (-0.1463) 

7 0.58113 -l.7217 -0.01032 
(1,167) (-4.515) (-1268) 

3 0.71168 -007914 0.00255 
(2.06l) (-2.252) (0.6407) 

3 0.10645 -0.73037 -0.00130 
(0.4620) (-3.530) (-0.3400) 

3 0.61260 -0.06071 0.00111 
(1977) (-1889) (0.3311) 

4 0.16815 -0.86536 -0.00249 
(0.8454) (-3.610) (-0.7582) 

0 054105 -0.04031 -0.00134 
(1.939) (-1.394) (-0.4767) 

2 O. 15870 -0.88785 -000240 
(0.9776) (-4.943) (0.8958) 
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ALogSDiv 

qb3 does reject the null hypothesis ~Xo;eO, et2=0, cq=0 which is evidence that the 
differences in the series are stationary without trend. The z2 test statistic rejects the 
hypothesis that ct~=0 so this is further evidence that the differences are stationary. 

Conclusion 

The logarithm of  the dividend series is integrated of  order 1 and the differences in the 
series have no drift. 

SDyields - Dividend yields on the Share Price Index 

q% does not reject the null hypothesis et0~0, ct2=0, eta=0 so the series has a unit root 
with no trend, d02 does not reject the null coo=0, ct~=0, c~=0 so this does not reject the 
zero drift hypothesis. Using the more powerful test with ~l does not reject the null 
ct0=0, etl=0 suggesting that the drift is not significant. However regression (3) shows 
an estimate for co0 of  0.849 and this is significant. 

ASDyields 

q% does reject the null hypothesis ~¢0~0, c~2=0, cq=0 for the differences of  the series 
which is evidence that the differences are stationary. The z2 test statistic rejects the 
hypothesis that cc~=0 so this is further evidence that the differences are stationary. 

Conclusion 

The dividend yield series is integrated of  order 1 and the differences in the series are 
stationary with zero drift 

Interest rates - BB90 - 90 day bank  bill yields, TB2 - 2 year Treasury bond yields, TB5 - 5 year  
Treasury bond yields, TB10 - 10 year Treasury bond yields 

The same test statistics are significant for all o f  the interest rate series. ~b3 does not 
reject the null hypothesis ot0~0, ct2=0, cq=0 so this is evidence that each of the series 
has a unit root with no trend, d~2 does not reject the null eto=0, oc2=0, a.~=0 so this does 
not reject the zero drift hypothesis. Using the more powerful test with dh does not 
reject the null co0:0, C~l=0 suggesting that the drift is not significant. 

Alnterest  rates - ABB90, ATB2, ATBS, ATB10 

(1)3 does reject the null hypothesis Cto~0, ct2=0, cq=0 for all interest rate series which is 
evidence that the differences of  each of  the series is stationary without trend. The x2 
test statistic rejects the hypothesis that a~=0 so this is further evidence that the 
differences of  the series are stationary. 

Conclusion 

Each of  the interest rate series is integrated of  order I so the changes in yields are 
stationary with no drift. 
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Table 3 Test Statistics for Unit Roots -Phillips-Perron Tests (n=10l) 
Variable 
10% Critical Value 
LogCPI 
ALo~;CPI 
LogSP] 
ALo~SPI 
LogAWE 
ALo~AWE 

~2.5~ 0.78) ~3.13) (4.03) (5.34) 
-38378* 119,83' 2,2660 98.752* 13073" 
-5,2039* 13.482" -63676" 13538* 20.307* 

-03098 0,9029 -2.8153 34695 4.3031 
-98017* 48052* -98160* 32128* 48178* 
-4.1848' 48.665* 0,0434 33.830* 9.6581" 
-8.4424* 35.636* -9,9542* 33.037* 49.544* 

LogSDiv 
ALo~SDiv 
SDyields 
ASDyields 
BB90 
ABB90 

-11221 6.5966* -1.5004 4.8385* 1.4252 
-10.607" 56.279* -10613* 37.587* 56.374* 
-31195* 49308* -3.0255 3.3472 4.9644 
-9.1122' 41.529" -94328* 27813* 41.712" 
-27201 37059 -2.6124 2.4444 36589 

-10.773" 58.023* -10.775" 38.702* 58047* 
TB2 -1 9289 1 9504 -1 7487 1.2882 18453 
ATB2 -9.1718" 42.071' -91772* 28106* 42.152' 
TB5 -18815 18962 -1.5613 12723 1.7848 
ATB5 -9.2738* 43.005* -93308* 29.027* 43.541" 
TBI0 -4.8920* 1.9395 -14685 13388 1.8608 
ATB10 -90689* 41.130' -9.1662" 28.013' 42.018" 

* indicates significant at 10% level 

Phillips and Perron (1988) have proposed non-parametric procedures for testing for 
unit roots with more general assumptions concerning et than the i . id assumptions for 
the Dickey-Fuller and augmented Dickey-Fuller tests. Table 3 sets out the equivalent 
test statistics to those in Table 1 using the Phillips-Perron test procedures, These were 
calculated using the procedures in Shazam (1993). 

The conclusions already drawn for the SPI and for the interest rate series are supported 
by these test statistics. There are however some differences apparent for the other 
series. For the logCPI series the Phillips-Perron ¢3 rejects the null hypothesis ctoz0, 
otz=0, or1=0 and the hypothesis that oq=0 is not rejected. The conclusion is that the 
series has a unit root with a trend. The differences in the series are stationary. Similar 
conclusions are reached for IogAWE using the Phillips-Perron statistics. In the case of 
LogSDiv, the logarithm of the dividends series, the Phillips-Perron statistics suggest 
that this series is difference stationary with drift. Dividend yields are difference 
stationary without drift. 

So far the data period used has been common to all the series covering the period 
September 1969 to December 1994. Some of the series are available for longer time 
periods. Tables 4 and 5 report unit root test statistics for these longer time periods for 
the relevant series. 
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Table 4 Test Statistics for Unit Roots - ADF Regressions 
Various Periods 

Variable [ 
10% Critical Value 62.s7) (s.Ta) 6s.ls) (4.o3) (5.34) 
Data from March 1939 to March 1995 
LogSPI 
ALogSPI 
LogAWE 
ALogAWE 

223 -0.0369 
210 -44210* 

3.2802 -27539 49204* 39974 
97739* -44454* 65980* 98960* 

210 -06899 
210 -2.3994 

21214 -2.4390 3.3084 30349 
29010 -23545 1.9627 29216 

Data from March 1958 to December 1994 
LogCPl 
ALogCPI 
LogSPI 
ALosSPI 
LogAWE 
ALogAWE 

179 018249 33767 -16925 33323 1.5961 
180 -32500* 52817* -32444* 3.5113 52666 

185 -029941 2.8000 -24794 3.9967 31611 
172 -40135'  80617* -4.0168" 5,4166' 81171* 
172 -007160 1~4983 -2.6340 34014 3.5482 
173 -26096* 3.7562 -2.6057 2.5520 34787 

Data from March 1958 to December 1994 
LogCPI 
ALogCPI 
LogSPI 

ALogSPI 
LogAWE 
ALogAWE 
TBI0 

147 -0.51786 13032 -26342 3.1287 34721 
141 -2 1290 2.2675 -19831 15080 22608 

146 -060057 23429 -21793 30718 23939 
138 -4 3209* 9.3540* -43673* 63799* 95508* 

134 -1.0694 2.1296 -1.4421 19822 14069 
134 -1.6881 1.4316 -1.6724 12924 19319 

143 -1.4655 12807 -1.6998 12059 1 6020 
142 -44264* 9.8343* -4.4309* 66185* 9.8903* ATBIO 

* indicates significant at 10% level 

For the period March 1939 to March 1995 Tables 4 and 5 provide support for the 
hypothesis that logSPI is difference stationary with drift. This longer period o f  data 
provides a more reliable estimate o f  the drift so the conclusion is that the logSPI is 
difference stationary with positive drill There is evidence in Table 4 that IogAWE and 
logCPI are integrated o f  a higher order than 1 but the results in Table 5 suggest that 
they are integrated o f  order 1. 

Because the data used is quarterly it is necessary to test for seasonal integration. In 
quarterly data there could be a bi-annual or annual frequency seasonal unit root as well 
as the quarterly unit root tested for already, Hylleberg et al (1990) develop tests and 
test statistics for seasonal unit roots. Shazam (1993) provides procedures for 
implementing these tests. These procedures were used to obtain Table 6. Bi-annual and 
annual unit roots are convincingly rejected for all o f  these series. 

It is worth noting that structural breaks in any series can result in a stationary series 
appearing to have a unit root. This will lead to differencing the data when a model 
using the levels o f  the data and explicitly capturing the structural break would be more 
appropriate. Differencing series results in the loss o f  information about the long run 
level o f  the series so that care has to be taken to ensure that the series is not stationary. 
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It could be argued that deregulation of financial markets during the 1980's resulted in a 
structural break in many of the series. For instance the method used to sell government 
securities changed during this period and the bond market became more active. The 
requirements for life insurance companies, superannuation funds and banks to hold 
government securities were also relaxed. During this period an imputation tax system 
was introduced for share investments. All of these factors could well have resulted in 
structural changes in rates of return and the levels of the series used in this study. This 
issue is briefly addressed later in this paper. 

Table 5 Test Statistics for Unit Roots - Phillips-Perron Tests 
Various Periods 

Variable ] "el ~bl x2 ~b2 ~b3 
10% Critical Value I (-2.57) O. 78) (-3.13) (4.03) (5.34) 
Data from March 1939 to March 1995 (n=224) 
LogSPI 
ALo~;SPI 
LogAWE 
ALogAWE 

-0.066319 3.1281 -2.8455 4.9236* 4.2426 
-14.151" 100.13' -14.143" 66.678* 100.02" 
0020279 57.654* -1.0626 38.751" 0.58240 
-11.358" 64.474* -11.332' 42.781" 64.171" 

Data from March 1948 to December 1994 (n =186) 
LogCPI 
ALosCPI 
LogSPI 
ALogSPI 
LogAWE 
ALoe, AWE 

0.23384 73.724* -0.64481 49.144' 0.28228 
-5.5568* 15382* -5.5431" 10.185" 15.278" 
-0.32714 2.6717 -2.5693 40070* 3.3852 
-12.851" 82.575* -12.827" 54.846* 82268* 
-0.96316 48.872* -052415 32.424* 052388 
-10.584' 55.994* -10.604" 37.463* 56.192" 

Data from March 1958 to December 1994 (n=147) 
LogCPI 
ALogCPI 
LogSPI 
ALogSPI 
LogAWE 
ALosAWE 
TB10 
ATB 10 

15225 75.700* -2.5431 57.601" 5.4467* 
-5.1516" 13.206" -5.2291' 9.1058" 13.655" 
-061547 2.2874 -2.2381 3.0804 2.5254 
-11.650' 67.861" -11611* 44.949* 67.421" 
-0.42646 39.283* -0.52395 26.044* 0.19468 
-10.069" 50.672* -10.041" 33.597* 50.395* 

-1.3495 1.1305 -1.3746 0.90826 1.1456 
-10920* -59631 -10.913" 39.706* 59559* 

* indicates significant at 10% level 
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Table 6 Seasonal Unit Root Tests for Quarterly Data 

Variable 

10% Critical 
Values 
IogCPl 
AlogCPI 
IogSPI 
AIogSPI 
IogAWE 
AIogAWE 
IogSDiv 
AIogSDiv 
SDyields 
ASDyields 
BB90 
ABB90 
TB2 
ATB2 

Unit Root -Zero 
Frequency 
No Seasonal 
seasonal dummies 
dummies 

-2.58 -2,63 

-2.5558 -24495 
-1.6454 -1.6184 
-0.2028 -0.2029 

-4.0574* -4.0689* 

Bi-annual unit root 

No Seasonal 
seasonal dummies 
dummies 

-1.60 -2. 63 

-2.3806* -2.8796* 
-1.9934" -2.6699* 
-35139* -3.7428* 
-3.0922* -3.4052' 

Annual unit root 

No Seasonal 
seasonal dummies 
dummies 

2.35 5.56 

13.3244" 16.7450" 
7.7801" 11.5590" 
9.1280" 9.5253* 
6.7530* 7.5579* 

-2.9666* -2.9198' -4.1878" -4,2243* 9.2549* 9.7714' 
-1.4787 -1.4798 -3.6134' -3.7350* 6.6096* 7.1982' 
-0.9518 -0.9242 -2.4735* -2.3999 13.6728" 13.8382" 

-2.8230" -2.8009' -2.1389' -2.1051 9.0294* 9.1264" 
-2.5334 -2.4800 -2.8599* -2.8753* 13.4955" 13.7299" 

-4.2322* -4.2173" -2.5347* -2.6077 10.1068" 10.5368" 
-1.8145 -1,8794 

-4.3252* -4.2128" 
-3.6654* -3.6088* 
-3.3461' -3.3806* 
-3.4886* -3.9141" 
-3.4435* -39788* 

-2.0141 -2.0619 
-3.7605* -6.7620* 

5.0402* 6.4094* 
4.5974* 5.7972* 

10.0680" 10.1565" 
9.3317" 10.2047" 

TB5 -2.0343 -2.0590 -4.1606" -4.4070* 11.6016' 11.6886" 
ATB5 -3.1579' -3,1463" -3.7562" -4.0800* 9.0354* 9.7720* 
TB10 -2.0179 -2.0250 -3.7420* -3.8649* 11.7289" 11.8837' 
ATB10 -2.9494* -2,9253* -3.3636* -3.5422* 8.6545* 9.1863' 

*values significant at 10% critical level 

C O I N T E G R A T I O N  

The differencing operation used to achieve stationarity, often used in developing 
stochastic investment models for actuarial applications, involves a loss o f  information 
about long-run movements in the series. The theory of  cointegration explains how to 
study the inter-relationships between the long-term trends in the series. These long- 
term trends are differenced away in the standard Box-Jenkins approach. The inter- 
relationships between the long-term trends in the series can be interpreted as 
equilibrium relationships between the series. 

Empirical studies have demonstrated that financial markets generally move quickly to 
an equilibrium since informed investors act quickly on new information particularly 
when transaction costs are low and markets are liquid. Financial markets can be out o f  
apparent equilibrium as evidenced by "speculative bubbles" that occur when the share 
market booms and subsequently "crashes" even though these events are consistent with 
rational expectations. Economic systems are less likely to be in equilibrium since 
friction and price stickiness in goods and labour markets can cause the adjustment 
process to equilibrium to occur over an extended time frame. This suggests that if 
equilibrium relationships exist between financial and economic variables then these will 
only be detected by examining data over long time periods. 
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Rates of return on different investments would be expected to have long run 
equilibrium relationships determining their relative values. For example the spread 
between the return on a short term investment and the return on a longer term 
investment should fluctuate around some long term relationship that reflects the risk 
premium investors require for the longer term investment over the shorter term 
investment. If  a long term relationship does hold then the difference between the 
returns should have a stationary distribution. The rates of return themselves might not 
be stationary but a linear combination of them will be stationary if such a long run 
equilibrium holds. Rates of  return adjusted for expected rates of  inflation, referred to 
as "real" rates of return as compared with nominal rates of return, might also be 
expected to have a stationary distribution. 

Similarly the level of  the share price index (SPI) and the level of  an inflation index 
(CPI) could have an equilibrium such that they do not "wander" too far away from 
each other even though each is non-stationary. Thus if there is excessive inflation then 
it is often argued for a variety of reasons that the level of the share market should 
eventually increase in line with inflation and vice versa In some cases a well developed 
theory might not exist to specify the nature of the equilibrium relationships between 
different series or there might be conflicting theories. In this case it will be the 
empirical relationships in the data that will support one or the other theories. 

Most actuaries assume that there is a relationship between equity returns and inflation. 
This assumption is usually implicit in the use of "real" rates of return for projecting 
asset values and for valuation purposes. If a constant "real" rate of  return is used then 
this implicitly assumes that asset returns are perfectly correlated with inflation. The 
Wilkie model uses inflation as the main factor driving asset returns. Investment model 
studies by Canner (1991) and Harris (1995) include results derived from fitting Wilkie's 
model to Australian data and find no statistically significant empirical relationship 
between equity returns and rates of inflation. This conflict between often used actuarial 
assumptions and empirical results clearly requires investigation since it will be 
fundamental to investment modelling and modelling the interaction between liabilities 
and assets of insurance companies and pension (superannuation) funds 

It is important to recognise that equity values and inflation can have a long-run 
equilibrium relationship and for there to be no statistically significant relationship 
between equity returns and rates of inflation. This could be the case if the series are co- 
integrated. Since rates of inflation and equity (capital) returns are differences in the 
logarithm of the level of the inflation index and differences in the logarithm of the 
equity index respectively, these rates of change in the levels of the indexes might 
appear to have no statistical relationship even though the levels of the indexes might be 
co-integrated with a long run equilibrium relationship Each of the index series would 
be difference stationary containing a unit root consistent with the notion of market 
efficiency and with studies of  Australian data such as Carter (1991), Harris (1994) and 
the results in this paper. 

As another example consider the level of the share market index, dividends and interest 
rates. The level of the index (SPI) will equal the present value of future dividends 
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(DIV) on the index and, assuming dividends grow at constant rate g and are present 
valued at constant rate i, can be written as: 

DIV, 
SPI, - 

i, - g t  

so that 

iog(SPI, ) = log(DIV, ) - log0, - g, ) 

In this case the logarithm of the share price index, the logarithm of the dividends and 
interest rates will be co-integrated 

If variables are non-stationary but an equilibrium relationship represented by a linear 
combination of the variables exists such that this linear combination is stationary then 
the variables are said to be co-integrated Engle and Granger (1987) suggested the 
concept of  cointegration and developed tests for cointegration. The concept of  
cointegration captures the notion that two or more series "move together" in some 
fashion. Each series, if looked at individually, need not have a long run equilibrium but 
their relative values might. The series have common stochastic trends. 

Testing for cointegration between any two series, where there is only one co- 
integrating linear combination determining the equilibrium relationship between the 
series, requires only the unit root tests used earlier to determine the order of  
stationarity of the investment data. Consider two series x, and yt that are integrated of 
order 1 so that they are difference stationary. If a long term (linear) relationship exists 
between these then xt-[3y, for some constant 13, will be stationary. I f  xt is regressed on 
yt and there is a long run equilibrium relationship between them, then the residuals 
from this regression will not have a unit root. Thus for these residuals the null 
hypothesis of a unit root should be rejected if the series are co-integrated Otherwise 
there is no evidence of cointegration. 

Table 7 reports the results of unit root cointegration tests for bi-variate series from 
Australian data using Augmented Dickey Fuller tests and Table 8 reports the results 
using Phillips-Perron tests. From the tests carried out earlier in this paper all of  the 
series used were previously found to be integrated of order 1. The results in Tables 7 
and 8 were calculated using procedures in Shazam (1993). They consider each of the 
bi-variate series over the longest time period available and also for shorter time 
periods. 

There is no evidence that any of the bi-variate series considered, other than the 90 day 
bank bill yield and the 10 year Treasury bond yield, are co-integrated In all cases other 
than for these two interest rates the test statistics for both ADF and Phillips-Perron 
tests given in Tables 7 and 8 do not reject the null hypothesis of a unit root. Thus there 
is no evidence that the SPI and the CPI "move together" nor that share index dividends 
and the CPI "move together". It is encouraging to find that the long and short interest 
rate are co-integrated since this is supported by the results of Ang and Moore (1994). 
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Table  7 Test  Statistics for Co- integrat ion - ADF Regression Tests  
Various Periods 

Variable 1 n xt Om x: 02 03 
10% Critical Value ] (-2.57) (3. 78) (-3.13j (4. 03) (5. 34) 
Data from September 1948 to March 1995 
RSC (SPI-CPI) 
ARSC 

186 -22308 2.4892 -2.2755 17733 26588  
186 -3.9832* 7.9760* -3.9460* 52886* 7.8902* 

Data from March 1958 to December 1994 
RSC (SPI-CPI) 147 -22356  2.5917 -22261 1.7159 2.4817 
ARSC 138 -41852* 8.7753* -4 .1839 '  5.8690* 87864*  

R10C(TB10-CPI) 144 -1.8067 1.6823 -1.7801 1.2556 1.8333 
AR10C 147 -4 .5473 '  10.377'  -45761* 7.0730* 10571* 

DMa from September 1967to  December 1994 
RSC (SPI-CPI) 
ARSC 

109 -1.7755 15808 -1.8020 1.1877 1.7770 
100 -3.5151'  61879* -3,7956* 4.8270* 7.2305* 

RSD (SPI-DIVS) 102 -1,9911 1.9934 -20944  2.0728 3 0978 
ARSD 100 -3.8000* 72352* -4.1384'  57208* 8.5658* 
RDC (DIVS-CPI) 99 -20153 2.0389 -2.0644 14597 2 1813 
ARDC 99 -4.5093" 10.167' -4 .4580'  67409* 1 0 1 1 1 '  

Data from September 1969 to December 1994 
RSC (SPI-CPI) 
ARSC 

101 -21646  2.3788 -22573 2.1308 31598  
93 -39151* 7.6758* -4.0427* 54993* 8 .2371 '  

RSD (SPI-DIVS) 94 -22297 2.4956 -2.4545 25298  37847  
ARSD 93 -4.2881'  9 .1979 '  -43814* 64889* 9,7294* 

RDC (DIVS-CPI) 91 -1.9483 1.9080 -20843  1.5l 18 2.2576 
ARDC 97 -3.7729* 7.1208" -3,7797* 4.8360* 7.2507* 

RB90T10 (BB90-TB 10) 95 -30086* 4.6227* -3.3381'  3.7971 55976* 
ARB90TI0 93 -4,5139" 10.189'  - 4 4 9 8 6 '  6.7474* 10,120'  

RB90C (BB90-CPI) 95 -1,9732 1.9849 -1.9528 15621 2.3052 
ARB90C 93 -4.3734* 9.5769* -4.5307* 6.8770* 10302* 

RT10C (TB10-CPI) 101 -1.4796 1.0999 -1.6161 1 3038  1.9502 
ART10C 98 -4.9972* 12.486" -5.0212" 8.4723* 12,708" 

* indicates significant at 10% level 

RSC are the residuals from thc regression logSPI = ~ + cq logCPI 
RSD are the residuals from the regression logSPI = (~to + c~ logSDiv 
RDC are the residuals from the regression logSDiv = ~xo + cq logCP| 
RB90T10 are the residuals from the regression BB90 = ~o + cq TB10 
RB90C are the residuals from the regression BB90 = so  + cq logCPl 
RT10C are the residuals from the regression TB10 = ~t~ + c~ logCPI 
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Table 8 Test Statistics for Co-integration - Phillips-Perron Tests 
Various Periods 

Variable ] n zl d?l "[2 ~b2 03 
10% Critwal Value [ (-2.57) (3. 78) (-3.13) (4. 03) (5.34) 
Data from September 1948 to March 1995 
RSC I 187 -2.3507 2,7666 -2.3937 1.9552 29318 
ARSC I 186 -12372* 76536* -12345* 51.800" 76,200* 

Data from March 1958 to December 1994 
RSC 
ARSC 
R10C 
AR10C 

t48 -23100 27567 -2.3011 18269 26546 
147 -11440* 65442* -11400* 43330* 64991* 

148 -15317 1 2507 -15376 10544 15053 
147 -11 194" 62.657* -11207* 41872* 62807* 

Data from September 1967 to December 1994 
RSC 
ARSC 
RSD 
ARSD 

RDC 
ARDC 

1t0 -1.8159 16544 -1.8381 1.2285 18384 
109 -10.128" 51297* -10.122' 34.158' 51.277" 

lIO -22646 25663 -22649 1.7906 26852 
109 -10.423' 54.332* -10.413' 36.145" 54207* 

110 -1.9553 1.9130 -19500 12701 19015 
109 -11.337" 64.269* -11.283' 42449* 63.674* 

Data from September 1969 to December 1994 
RSC 
ARSC 

102 -2.1995 2.4551 -2.2783 21503 3.1902 
101 -9.6874* 46938* -9.7916' 31.968' 47938* 

RSD 102 -2.7287 37547 -2.7584 28158 4.1945 
ARSD 101 -98873* 48908* -9.9629* 33 111 * 49.644* 

RDC 102 -1.8420 16966 -18487 1.1802 17688 
ARDC 101 -10 755* 57.858* -10703* 38 215" 57318* 

1t.9010 102 -4.2355* 89906* -4 5131' 68119" 10201* 
AR9010 101 -11.167" 62.349* -11 111" 41160* 61.726' 
R90C 102 -26822 36009 -2.7375 2.6313 39422 
AR90C 101 -10789* 58196* -10782* 38.750* 58119* 
RIOC 102 -1 5535 1.2136 -1 6759 1 3390 20035 
AR10C 101 -9.2265* 42570* -92868* 28.755* 43.130' 

• indicates significant at 10% level 

RSC are the residuals from the regression logSPI = o% + ~1 logCPI 

RSD are the residuals from the regression logSPI = c% + ctl logSDiv 
RDC are the residuals from the regression logSDiv = o% + cq logCPl 
R9010 are the residuals from the regression BB90 = o% + oq TB10 
R90C are the residuals from the regression BB90 = o% + oq logCPI 
RIOC are the residuals from the regression TB10 = o% + cq logCPl 

These tests consider only bi-variate series. There could be co-integrating relationships 
amongst more than just two of the series and these would not be detected using the 
procedure adopted so far. Johansen and Juselius (1990) developed maximum 
likelihood test statistics for determining the number and form of  co-integrating 
equilibrium relationships amongst several series. These test statistics can also be 
applied to bi-variate series as well. The results of  applying the Johansen procedure 
using the trace test statistic for the bi-variate series confirm that there are no co- 
integrating vectors for these series other than for the interest rates. 
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Based on the earlier discussion co-integrating relationships could be expected to exist 
between all of the interest rate series, possibly including the CPI variable to obtain an 
adjustment for inflation, and also amongst the SPI, the dividends on the SPI and 
interest rates. Table 9 sets out the results of the Johansen trace statistic for these 
variables. 

The Johansen test statistics for the interest rate series indicate the existence of a co- 
integrating relationship between the interest rates for different maturities. They also 
indicate a co-integrating relationship when the CPI is included with the interest rates. 
This provides evidence that, although the interest rate series do not appear to be 
stationary, the levels of interest rates for different maturities "move together" 
maintaining an equilibrium relationship over time. Note that non-stationary interest 
rates means that they do not have a mean-reversion property The rate of  inflation, 
which is equal to the difference in the logarithm of the CPI, is stationary and interest 
rates appear to be co-integrated with the logarithm of the CPI. 

Table 9 
Johansen Trace test statistics 

Quarterly data September 1969 to December 1994 
Variables: BB90, TB2, TB5, TBI0 

N o  of  lass in VAR = 4 I No. ofla~,s in VAR = 8 
Number o f  co-intesratin 8 relationships 

59281* 29084 46157 21313 10950 
Variables: BB90, TB2, TBS, TBI0,  LCP1 

3 
4918 

No ofla~,s in VAR = 4 [ N o  ofla~,s in VAR = 8 
Number of  co-intesratin ~, relationships 

0 1 2 3 4 0 1 2 [  3 [  4 
74419" 43 025 25.825 14061 5254 83 145 44626 23963 I 11.207 I 

Variables: LSP1, LCPI,  LSDIV, BBg0 
4974 

of  lags in VAR = 4 [ No. of  lags in VAR = 8 N o  
Number of co-integrating relationships 

44352 26 139 13009 4 172 48 944 28994 t5.499 
* significant at 10% critical value 

3 
4.391 

The results for the share price index, dividends, the CPI and the bank bill yield are not 
as positive and the hypothesis that these have no co-integrating relationship is not 
rejected. 

The conclusions that can be drawn from this analysis of co-integrating, or "long-run" 
equilibrium, relationships in the Australian returns data is that, with the exception of 
the interest rate series, the analysis finds no strong evidence that such equilibrium 
relationships exist between the series analysed This has implications for the structure 
of  stochastic investment models since it will be important to incorporate an equilibrium 
structure for interest rates (and inflation) in the model but differences in the logarithms 
of the SPI, CPI and dividends can be used in the model as stationary variables without 
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the need to incorporate any specific equilibrium between these series. This also adds to 
the empirical evidence that there are no strong relationships between inflation and 
equity returns. 

ERROR CORRECTION MODELS 

If  a number o f  series are co-integrated then they have common stochastic trends and 
move together through time following a long-run equilibrium. This long run 
equilibrium is disturbed by random shocks that are short term or temporary effects. 
The series eventually adjusts for these. This short term adjustment process is referred 
to as an error correction process. Engle and Granger (1987) proved that for any co- 
integrated series an error correction model exists. The error correction model captures 
both the short term departures from the long run equilibrium and the long run 
equilibrium in the model structure. 

The series that appear to be co-integrated are the interest rate series and the CPI so 
that a multi-variate error-correction mode[ can be estimated for these series. An 
investment model should incorporate such an error-correction structure. This will 
ensure an equilibrium exists in the model between the levels of  the interest rates. 
Otherwise if differences in interest rates are modelled as stationary variables with no 
error-correction structure then the levels of  interest rates will have stochastic trends 
and "shocks" to interest rates will be permanent. In such a model interest rates could 
"wander" off  to arbitrarily high and low levels in a manner inconsistent with the 
historical data. 

I f  the interest rate at time t is denoted by rt and the logarithm of  the CPI by FI, both o f  
which are non-stationary, then the previous analysis indicates that a regression of  rt on 
Ft results in stationary errors (under standard unit root tests). This means that r, - cqF~, 
where ctl is the regression coefficient, is a stationary process representing the long run 
(linear) relation between the two series. It is necessary to incorporate this equilibrium 
relationship between the series into any model. This is incorporated using an error 
correction model as Art = a + b(r~ - ~lFt) + et. Standard stationary time series modelling 
techniques will not detect the long-run relationship captured in the error correction 
term given by b(rt - cqF0. A similar model for the rate of  inflation in error correction 
form will also need to be estimated. It is worth stressing that ignoring any 
cointegrating relationships ignores important information about long-run equilibrium 
relationships between the series. 

Research suggests the need for at least two and preferably three interest rates to be 
included in an investment model (Sherris, 1995). Thus a short interest rate such as a 3 
month yield (the 90 day Bank Bill yield), a medium term interest rate (either the 2 or 5 
year Treasury yield) and a longer term yield (the 10 year Treasury yield) should be 
used in a model. This will allow the model to capture parallel shifts in the yield curve, 
changes in the slope of  the yield curve and changes in the curvature of  the yield curve. 
For liabilities that are sensitive to the yield curve such a model will be essential for 
developing realistic immunisation strategies. 

It is somewhat of  a concern that the equity and CPI index were not found to be co- 
integrated. This could be a result of  a lack of  power of  the statistical tests used and the 
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relatively short period o f  data available for the quarterly time interval The reason that 
this is of  concern is that the level of  the SPI will have a stochastic trend and there will 
no equilibrium relationships in the model that will constrain the relative value o f  the 
index This is not consistent with studies that have detected long run mean-reversion in 
equity values. This aspect of  the results needs further investigation. 

S T A T E  SPACE M O D E L S  

Wilkie (1986, 1995) and Carter (1991) use transfer functions to develop their models. 
This approach allows the estimation o f  a cascade structure for a stochastic investment 
model where causality in one direction is assumed. The main driving variable in these 
models is the rate of  inflation. 

Transfer functions were examined in this research. The results are not reported in any 
detail here since it was found that after fitting these models there was evidence of  
feedback between the different variables. This means that transfer functions will not 
adequately capture the relationship between the different series since they impose a 
uni-directional causality that is not supported by the empirical data. 

An alternative model is the Vector Autoregressive or VAR model. These models are 
used in practice for asset models and have the advantage that they allow for feedback. 
VAR models were fitted and it was found that too many lags were required and the 
models were difficult to interpret Introducing a moving average term into these 
models is equivalent to an infinite number of  auto-regressive terms so that a Vector 
Autoregressive Moving Average (VARMA) model should provide a more 
parsimonious model than a VAR model. 

State space models provide a more succinct method of  representing a stochastic 
investment model. They have an equivalent (VARMA) representation which has fewer 
lagged variables than the VAR models. Transfer function models are nested in the 
VARMA models. A state space model can be written as a state equation: 

Zl+ 1 : F zt + G et+l 
and an observation equation: 

yt = H z t  

where yt are actual observations at time t, zt is the state of  the model at time t, F, G 
and H are matrices o f  parameters and e, is a vector of  mean zero, serially uncorrelated 
disturbances with covariance matrix 5".. The statistical package SAS was used to fit 
state space models using its state space procedure that selects the best model using the 
AIC model selection criteria. We assume that the state o f  the system is observed 
without error and that the series used in the model are the relevant state variables. 

Returns and inflation 
To examine the relationships between asset returns and inflation, state space models 
were fitted using each of  the individual asset returns series and inflation. Models were 
fitted to the return on the equity index, the growth rate of  dividends, the 10 year bond 
rate and the rate o f  inflation since actuaries often focus on rates of  return and inflation 
when assessing premiums and liabilities. These models also allow a comparison with 
the transfer function models fitted by others. 
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EQUITY INDEX (SP1) AND INFLATION (CPI) 
The following state space model for equity index and inflation rates was fitted as the 
"best" model using the quarterly data from September 1948 to March 1995: 

iyl i011 [1 it r n+l zt = x, , F = 0 0 , G = 0 , et+l = , 
LY~+~J 0 0.905 0.432 Let+t 

Let~tj L_7.18xl 0 5 884X10 3 J" 

where the variables are the differences in the logarithms of  the series, or the 
continuously compounding returns, adjusted for the mean of  the series as follows: 

B)X t - 0.0161] 

with Y t :  log(CPI)t, Xt = log(SP0t, and yt+llt = ytq-nt+l is the "predicted" value for time 
t+ 1 conditional on information at time t. Note that the vectors e,+~ are assumed to be a 
sequence o f  independent normally distributed random vectors with mean 0 and 
covariance matrix Y.. 

From the covariance matrix the standard deviation of  the residuals after fitting the 
model are 0.0092 for the quarterly continuously compounding rate o f  inflation and 
0.094 for the quarterly continuously compounding rate of  growth of  the SPI with a 
correlation between the residuals of-0.0834. 

The parameter estimates were: 

Parameter  Est imate  Std. Error t value 
F(3,3) 0.905 0.041 22.326 

..G(3,1). 0.432 0.066 6.563 

For simulation studies such as in asset-liability modelling it is important to recognise 
that this model does not capture parameter or model uncertainty and has been 
calibrated to historical data over the time period September 1948 to March 1995. The 
variances in asset returns and rates o f  inflation are assumed to be homoscedastic in this 
model whereas the analysis carried out later in this paper provides evidence o f  
heteroscedasticity 

The model can be written as an equivalent VARMA model as follows: 

[yt+, ] = [0.75 O][yt ] + late, +[-0;73 O]le t 
xtq O_]LXtJ Ln,+l] ]Oj~_nt 
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Note that using this modelling approach the best model for log(SPI)t is a random walk 
with drift and an ARMA model is required for log(CPI)t. This model is very different 
to that suggested by Wilkie. 

EQUITY DIVIDENDS AND INFLATION (CPI) 
The following state space model for equity dividends and inflation was fitted as the 
"best" model using the quarterly data from September 1967 to December 1994: 

I Xt 
Yt 

Zt = Yt.lit 
Yt,21t 

, F  = 
i o oo]i  o , 

0 0 I 0 , G = 0.258 , 

0 0 0 -00021 0.382[ 

LOO3O 0340 0.236 0.481 _ 0.440J 

Iet ' l  1' var[el+l et,1 = ~= 
Lnt~l Ln~l I 4.26x10 ~ 4.93x10 sl  

493x10 s 622x10 5 j  

with 

"'l [¢1- mxt-°°2°81 
X t = 

y, L(1 - B)Y, - 00178J 

and Xt = Iog(DIVS),, Yt = log(CPI)t. 

The parameter estimates were: 

Parameter Estimate Std. Error t-value 
F(5,1) 0.030 O010 3.038 
F(5,2) 0.340 0.121 2.800 
F(5,3) -0.236 0.082 -2.864 
F(5,4) 0.481 0.150 3.208 
G(3,2) 0.258 0.091 2.837 
G(4,1) -0.021 0.010 -2.057 
~(4,2) 0382  0.089 4.290 

.. G(5,.2) 0.440 0.089 4.971 

An equivalent VARMA model can be readily developed from the above state space 
model. 

t0-YEAR TREASURY BOND RATES (TBI0) AND CPI 
Using the quarterly series from March 1958 to December 1994 the state space model 
was: 
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x l iooo o y, 0 0 1 0 
Z t =  , F =  

yt  ,< lit 0 0 0 1 
LYt+2i, j 0 0 0.675 -0.308 

, G =  

1 

0 

0 

0.382 

0.126 ' 

0.1823 

L n t , i ] '  Ln> l_ l  L5.O9xlO 6 7.79X10 ~J" 

with 

[x, ]  [ (1 -  B)X, - 0.02171 
Xl = 

Yt (1-B)Y,  0.0147] 

and X , :  (TBIO),, Yt = log(CPI)t. 

The parameter estimates were: 

Parameter  Est imate Std. Error t-value 
F(4,3) 0.675 0.042 16.146 
F(4,4) -0.308 0.057 -5.448 
G(3,2) 0.126 0.056 2.245 
G(4,1) 0.382 0.073 5.232 

. ~ 4 , 2 )  0.182 0.052 3.516 

The equivalent VARMA model fit is given by the following equation. 

[x,+,]__[: 0  rx, +ro o lrx,,1,[, ° o>, +ro o lre, l+ 
Y,+I -o3o8JLy,] L 0 0.675~yt,] I jLn.,j L o 0.434]Ln, J 

[o3O o 
-°454]Ln, ~ ] 

These bi-variate models capture the relationship between these variables and assist in 
understanding the nature of these series and their interrelationships. However it can be 
seen that the models for the inflation series differ in each of the above models. This 
suggests that a model incorporating all of the series could provide more information 
about the best model for inflation since it will incorporate the interrelationships 
between the series. Such a model was fitted and the resulting model was complex and 
difficult to interpret so it has not been set out in this paper. 

Other models 

Models were also fitted to the SPI and the dividend series as well as the SPI and the 10 
year bond yield to examine the relationships between these series 

119 



EQUITY INDEX (SPI) AND EQUITY DIVIDENDS 
The best state-space model using the quarterly series from September 1967 to 
December 1994 was found to be: 

Z=va r l e t . l l= I4 .26x103  567x104] 

knt.lj L5.67x104 128x10 z]. 

where 

x = I x , l  ( I -B)X~-0.0208]  

y, (1- B)Y, 0.0177J 

and X~ = log(DIVS)t, Y, = log(SPI)t. 

The model indicates that these series are random walks with drifts and correlated 
errors. Note that the model is for an equity dividend index and not for a dividend yield. 
The dividend yield is given by the difference in the dividend index divided by the value 
of the share price index. Models that assume that the dividend yield is stationary and 
mean-reverting will not necessarily be consistent with this fitted model. 

EQUITY INDEX (SPI) AND 10-YEAR TREASURY BOND RATES (TB10) 
The best state-space model for the quarterly series from March 1958 to December 
1994 was: 

, =~x, Ly~,7'~: E°? ~ °01, o: L; ~1' ~'~': yn,~,, ~°'~ ~ 

L n , ~ , j = L  5 2 " 

where 

X I = = 

Yt L ( l - B ) Y , -  0.0177J 

and Xt-  (TBI0),, Yt = log(SPI)t. 

The parameters were: 

Parameter  Est imate  Std. Error T-Value  
~.~1,1) 0.982 0.016 63.029 
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Note that the fitted 10 year bond yield model is close to a random walk with drift and 
the equity index is a random walk with drift. 

Summary 
These models have all been bi-variate models. Ignoring heteroscedasticity, they provide 
support for the random walk model for the equity index. They also provide support for 
modelling the difference in interest rates as a stationary series and not the level of  the 
series. These features are not found in many of the stochastic models that have details 
available in the public domain. For asset liability studies it will be important to have a 
model to project the equity returns, dividends, inflation and interest rates as a multi- 
variate system. As noted earlier such a model appears to be rather complex and 
difficult to interpret. This is an important issue that requires further investigation. The 
analysis of  the variances of  the series indicates the need for models that incorporate 
heteroscedasticity. In the state space approach the parameters in F and G can be 
allowed to be time varying. The models can incorporate parameter uncertainty. The 
Kalman filter maximum likelihood approach can be used with state space models to 
estimate these model parameters. 

It should also be noted that tests of  the assumptions of  the model concerning the 
residuals have not been performed for these models. The results are based on the 
assumptions of  i.i.d, and normally distrbuted errors. The analysis of  ARCH/GARCH 
models reported later in this paper cast doubt on the validity of  these assumptions. 

S T R U C T U R A L  BREAKS AND HETEROSCEDASTICITY 

STRUCTURAL BREAKS 
Chow (1960) suggests a test for structural change in parameters. The test divides the 
time period of  the data into two sub-periods and fits a model to each of the sub- 
periods. The test determines whether using different parameters for the two sub- 
periods is significantly different from using constant parameters for the whole time 
period. I f  there is a significant difference then this suggests evidence of  a structural 
change in the series. 

The Chow tests were applied to models that fitted a constant mean and variance to the 
continuously compounding quarterly return on the SPI (March 1939 to March 1995), 
the continuously compounding quarterly return on the CPI (September 1948 to March 
1995), the continuously compounding quarterly growth in the Dividend index 
(September 1967 to December 1994), the 90 day bank bill yield and changes in the 90 
day bank bill yield (September 1969 to December 1994), the 2 year Treasury bond 
yield and changes in the 2 year Treasury bond yield (September 1964 to December 
1994), the 5 year Treasury bond yield and changes in the 5 year Treasury bond yield 
(September 1969 to December 1994), and finally the 10 year Treasury bond yield and 
changes in the 10 year Treasury bond yield (March 1958 to December 1994). 

The results of  applying this test to the data were as follows: 

SPI 

the mean quarterly (continuously compounding) return on the SPI did not have a 
statistically significant structural break during the data period. 
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( "PI 

the mean quarterly rate of inflation appears to have a structural break at December 
1950; December 1956; March 1963; September 1975; June 1986; and March 1993 
since the mean rate in the period prior to these dates is significantly different to the 
mean rate after these dates. 

Dividends 

the mean quarterly growth rate of the Dividend index in the period prior to the 
following dates is significantly different to the mean rate alter these dates - June 1988 
and September 1990 The June 1988 date is consistent with the introduction of 
dividend imputation. 

90 day hank hill yields" and changes in yield.; 

90 day bank bill yields appear to have different means prior to and after both 
September 1984 and June 1989 Changes in 90 day bank bill yields appear to be 
constant except for when September 1974 is included for the first time. 

2 year Treasury bondyields and changes in yields 

2 year Treasury bond yields appear to have different means prior to and after March 
1987 and December 1990. Changes in 2 year Treasury bond yields appear to be 
constant. 

5 year Treasury hondyield~ and changes in yields" 

5 year Treasury bond yields appear to have different means prior to and alter 
September 1987 and March 1990 Changes in 5 year Treasury bond yields appear to 
have different means prior to and after December 1971, December 1973, December 
1981 and December 1983. 

10 year Treasury bond yields and changes in yields 

10 year Treasury bond yields appear to have different means prior to and alter March 
1989. Changes in 10 year Treasury bond yields appear to be have a constant mean. 

These results suggest that rates of inflation have been changing during the time period 
of the data analysis. They also suggest that the introduction of dividend imputation had 
an impact on dividends in the 1980's and this needs to be allowed for in any investment 
model that estimates parameters based on historical data. The data also suggest that if 
a model is based on the level of interest rates then this model will have to allow for 
structural changes particularly in the 1980's. These changes are consistent with the 
deregulation that occurred in Australian financial markets in the 1980's. The need to 
allow for structural changes in interest rates does not appear as important when 
differences in interest rates are modelled. 

M O D E L L I N G  V A R I A N C E S  - A R C H  A N D  G A R C H  

The plots in Appendix B indicated the possibility of heteroscedasticity. There are 
various forms of heteroscedasticity Models that have found favour and have received 
empirical support are the ARCH models introduced by Engle (1982) and the GARCH 
models introduced by Bollerslev (1986). The ARCH model allows the variance, hi, to 
be a function of past "shocks", at, using the equation: 
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q 

jq 

where q is the order of the ARCH process. The model does not allow the variance to 
depend on the level of the series. 

The GARCH model allows the current variance to depend on previous values of the 
variance as well as past shocks using the equation: 

q p 

h , - - S o  + i + Z + J h ,  J 
j=l j=l 

which is referred to as a GARCH(p,q) process. 

The models can also allow the variance to be a function of an another variable or the 
level of  the variable being modelled. This type of model is the basis of the ERCH 
model developed by Harris (1995) where the real rate of GDP growth has the role of 
an exogenous variable, In this case the variance can be modelled using the ARCH or 
GARCH process along with the exogenous variable. An example of such an exogenous 
variable model for the variance based on the ARCH process would be: 

q 

h~ = ~g~ + ct o + Z I ~ j ~  j 
j=l 

Various ARCH and GARCH models were fitted to the uni-variate series to determine 
the need to model the variance. The models fitted assumed a constant mean. After 
fitting the ARCH/GARCH models the residuals were tested for normality using the 
Jacques-Bera Lagrange Multiplier test, The results are set out and discussed below. 
The tables show the parameter estimates along with t-statistics. They also show the 
log-likelihood of  the model and the Jacques-Bera Lagrange Multiplier (JBLM) test 
statistic for the model residuals. 

Rates (continuously compounded) of inflation 
Variable:  September 1948 to March 1995 
ALogCPI  
Model ARCH(I)  Mean 0.0136 

Parameters t-statistic 17.88 Loslikelihood Residuals 
Variance ~to oq 559.323 JBLM 
equation (d.f=2) 

0.0000902 0.48039 26.8721 
t-statistic 5.979 3. 167 

Model GARCH(I , I )  Mean 0.0104 
Parameters t-statistic 17.74 Lo~likelihood Residuals 

Variance eto cq a2 d~l 570.299 JBLM 
equation (d.f.=2) 

0.0000106 0.28700 0.65127 3.8338 
t-statistic 2.063 3.211 7.948 
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This shows that a GARCH(1,1) process provides a reasonable fit to the differences in 
the logarithm of the CPI confirming that there is heteroscedasticity in the rate of  
inflation over this period. The model residuals do not exhibit significant non-normality. 
Various authors, including Wilkie (1995), have suggested the use of  GARCH models 
in stochastic investment models for actuarial applications. In fact the earliest 
application of these models was to the modelling of inflation - Engle (1982). 

Rates (continuously compounded) of return on the SPI 
Variable: March 1939 to March 1995 
ALogSPI 
Model ARCH(l) Mean 0.0146 

Parameters t-statistic 2.914 Lo~likelihood Residuals 
Variance m~ oq 244.639 JBLM 
equation (d£ =2) 

0.0049172 036074 53.8019 
t-statistic 7.736 2.821 

Model GARCH( 1,1 ) Mean 0.0103 
Parameters t-statistic 2.486 Loglikelihood Residuals 

Variance Cto cq q~l 253013 JBLM 
equation (d.£ =2) 

0.0005377 0.34470 0.64138 44.9515 
t-statistic 2,196 3637 8.628 

Model GARCH(I,2) Mean 00103 
Parameters t-statistic 2 512 Lo~likelihood Residuals 

Variance cs.o ctl ~1 d~2 253.120 JBLM 
equation (d.f. =2) 

0.0004826 0.31818 078166 -0.10819 452157 
t-statistic 2.045 2.751 2324 -04342 

Despite the GARCH(1,1) model giving an improved log-likelihood the residuals of  the 
model are not normally distributed after allowing for this form of heterogeneity. The 
residuals remain negatively skewed and fat-tailed This model requires further 
investigation and the use of an exogenous variable such as real GDP growth is a 
possible alternative. There is however evidence of heteroscedasticity in SPI returns and 
this must be included in a stochastic investment model since the variance will have an 
significant impact on asset allocation strategy and on solvency assessments. 

Further investigation is required to determine the form of heteroscedasticity for the 
share price index series. The variance could be allowed to depend on the level of  the 
series, the absolute value of the shocks or on an asymmetric function of the shocks. It 
would also be possible to assume that the residuals have a conditional t-distribution 
rather than a conditional normal distribution These issues require further investigation. 

One concern with adding the complexity of ARCH and GARCH to stochastic 
investment models is that the number of parameters to be estimated increases 
dramatically if all of the series are allowed to be heteroscedastic. The other point to 
note is that the conditional variance is deterministic in these models and a stochastic 
variance model could be more appropriate. 
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Rates (continuouslv compounded) of  growth in dtvidend~ on the SPI 
Variable: September 1967 to December 1994 
ALogSD 
M o d e l  ARCH(l) Mean 0.02288 

Parameters t-statistic 3.98 Lo~likelihood Residuals 
Variance ~o a~ 146.873 JBLM 
equation (d£=2) 

0.0031814 023854 1.0665 
t-statistic 5.577 1.663 

M o d e l  GARCH(I, 1) Mean 0.02347 
Parameters t-statistic 4.39 Loslikelihood Residuals 

Variance c~ cq ~b~ 147.374 JBLM 
equation (d£=2) 

0.0041067 0.28427 -0.24097 0.8086 
t-statistic 3.426 1.935 -1.363 

Model GARCH(1,2) Mean 0.0328 
Parameters t-statistic 10440 Loslikelihood Residuals 

Variance so ct~ ~1 ~2 153.076 JBLM 
equation (d.f.=2) 

0.0053923 0.2158l -0.16664 -0.37923 0.2347 
t-statistic 3.848 2.288 -3.528 -1.852 

The dividend growth rate shows evidence of heteroscedasticity and a GARCH(1,2) 
model appears to fit the series variance adequately. The assumption that the model 
residuals are normally distributed can not be rejected using the JBLM statistic. 

90 day bank bill yields 
Variable: September 1969 to December 1994 

BB90 
Model ARCH(1) Mean 11.191 

Parameters t-statistic 47.16 Lo~likelihood Residuals 

Variance Oto oq -274.547 JBLM 
equation (d.f.=2) 

3.7416 0.83263 9.624 
t-statistic 3.254 4.247 

Model GARCH(I,1) Mean 10.797 
Parameters t-statistic 44.37 Loslikelihood Residuals 

Variance o~0 oq qb~ -273.986 JBLM 
equation (df.=2) 

5.4778 0.81864 -0.12508 7.5378 
t-statistic 3.351 4.271 -2.929 

These results provide evidence that bank bill yields are heteroscedastic. The residuals 
after fitting the model are skewed but the kurtosis is not significant. 

The earlier analysis in this paper provided evidence that changes in interest rates are 
stationary rather than their levels. Since this suggests that the differences in interest 
rates are the variables that should be included in a stochastic investment model it is 
preferable to examine heteroscedastic models for the differences of the interest rate 
series. 
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Differences of 90 day bank bill yields 
Variable: September 1969 to December 1994 
ABB90 
Model ARCH(1) Mean 0.145 

Parameters t-statistic 0.791 Lo~,likelihood Residuals 
Variance (Zo oh -210.865 JBLM 
equation (d£=2) 

2.9923 0.2785 110.4545 
t-statistic 5.385 1.720 

Model GARCH(1,1) Mean -0.076 
Parameters t-statistic -0.460 Loglikelihood Residuals 

Variance eto ct~ ~j -208.917 JBLM 
equation (d.f=2) 

0.65957 0.30228 0.58907 156.0198 
t-statistic 1.736 1.980 3.779 

There is evidence of  heteroscedasticity for the differences in the 90 day bank bill yields. 
However  the residuals after fitting the model are far from normally distributed. This is 
because o f  both positive skewness and positive kur tosis  

Differences of 2 year Treasury bond ywlds 
Variable: September 1964 to December 1994 
A2~'rTB 
Model ARCH(I) Mean 0.05706 

Parameters t-statistic 0.695 Log, likelihood Residuals 
Variance ~ oq - 160.691 JBLM 
equation (d.f.=2) 

0.76162 0.10080 11.6134 
t-statistic 6.487 0.9900 

Model GARCH(1,1) Mean 0.0547 
Parameters t-statistic 0.690 Lo~likelihood Residuals 

Variance (zo ctt d~l -159.085 JBLM 
equation (df.=2) 

0.27822 0.05076 0,58226 8.5677 
t-statistic 0.6949 0.7131 1.034 

The variances for the 2 year bond rate do not appear to be heteroscedastic or at least 
the A R C H / G A R C H  models do not appear to capture any heteroscedasticity. None  o f  
the parameters are significant. The residuals after fitting the model have significant 
kurtosis and the assumption that they are normally distributed is rejected. 

A R C H / G A R C H  models do not appear to be satisfactory for modelling the differences 
in the short term interest rates. 
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Differences of  5 year Treasu~ bond yields 
Variable: June 1969 to December 1994 
A5yrTB 
Model ARCH( 1 ) 

Parameters 
Variance o.o ~q 
equation 

0 58092 0.13269 
t-statistic 5.744 1.085 

Mean 0,0472 
t-statistic 11596 Loglikelihood Residuals 

-121.958 JBLM 
(d.f.=2) 
67868 

Mode l  GARCH(I,I) Mean 00367 
Parameters t-statistic 05402 Lo~likelihood Residuals 

Variance ~ oh ff~ 
equation 

0.11730 0.30900 0.56834 
t-statistic 1516 2.095 3.181 

-118.184 JBLM 
(d.f.=2) 
2.7205 

Model  GARCH(1,2) Mean 0.0579 
Parameters t-statistic 0.897 Loglikelihood Residuals 

Variance (~o c~1 (~1 
equation 

O. 11057 0,19754 1.1606 -0.49587 
t-statistic 3062 2,107 6.802 -4,300 

-116.309 JBLM 
(df=2) 
1.4678 

Heteroscedasticity in the differences in the 5 year Treasury bond yields appears to be 

well modelled using a GARCH(1,2) process  

l)Jfferences of  10 year Treasu~ bond yields 
Variable: March 1958 to December 1994 
AI0vrTB 
Model ARCH( 1 ) Mean 0.01564 

Parameters t-statistic 0.03367 Loglikelihood Residuals 
Variance ct(, at JBLM 
equation (df.=2) 

028507 0.26768 -131.279 101.6980 
t-statistic 7.100 2.063 

Model GARCH(1,1) Mean 0.03203 
Parameters t-statistic 1.232 Loglikelihood Residuals 

Variance ct~ cq ~1 JBLM 
equation (d.f.=2) 

0.0053803 032538 0,75591 -102.652 33.0265 
t-statistic 1.603 3.572 14.17 

There were problems finding the maximum likelihood when fitting the GARCH models 
to the differences of  the 10 year Treasury bond yields. The GARCH(1,1) parameters 
are not reliable and higher order models suffered similar problems. There is evidence of 
heteroscedasticity but even after fitting the GARCH models the residuals still exhibit 
high kurtosis. 

Although the differences of the interest rates appear to exhibit heteroscedasticity the 
results of fitting the ARCH/GARCH process to the differences in the interest rate 
series are not very encouraging. Even after fitting ARCH/GARCH models the residuals 
still remain skewed and "fat-tailed". This is an important issue that requires further 
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investigation. The results do however demonstrate the need to allow for 
heteroscedasticity. 

CONCLUSIONS 

This paper has set out the results of research into the structural features of  a stochastic 
investment model for actuarial applications using Australian data. This analysis is 
fundamental to the construction of a soundly based model, It has analysed Australian 
investment data using a quarterly time period. It has formally tested for stationarity of  
all the series and tested to see which series are co-integrated and therefore maintain a 
long run equilibrium relationship. It has also examined the appropriateness of  transfer 
function models that assume one way causality between series using Australian 
investment data. Finally the nature of heteroscedasticity in the series has been explored. 

The results of  the research suggest that the stationary variables in the Australian 
investment data are the rate of  (continuously compounding) growth in the Share Price 
Index (SPI), the rate of (continuously compounding) growth in the Consumer Price 
Index (SPI), the rate of  (continuously compounding) growth in a Dividend index 
representing the dividends on the SPI, and differences in the interest rate series The 
statistical analysis did not provide evidence that the interest rate levels were stationary. 

The cointegration tests indicated a long-run equilibrium relationship exists between the 
interest rates and the logarithm of the inflation index (CPI) whereas there was no 
evidence to support such a relationship between equity values, as measured by the SPI 
and a Dividend index, and the level of the inflation index (CPI) 

Transfer functions models were fitted to the various series and inflation but they were 
not found to capture the relationships between these series. Thus it was necessary to 
use state space models to allow for feedback between the different series. State space 
models for the different series and inflation were fitted to provide a comparison with 
transfer function models fitted by other researchers. 

Finally, heteroscedasticity for the different stationary series was examined using 
ARCH/GARCH models. The investment series display heteroscedasticity but the 
standard ARCH/GARCH models did not always capture the correct form of the 
heteroscedasticity. 

This research demonstrates that further investigation is required in order to understand 
the appropriate structure for a stochastic investment model. It does highlight some 
important lessons for those wishing to construct and use stochastic investment models. 
It indicates the type of variables that should be used in these models and the nature of  
the relationships that should be built into them. It also highlights the need to include 
time varying parameters in these models particularly for the variances. These matters 
are fundamental to the construction of stochastic investment models. 
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A P P E N D I X  A 

AUSTRALIAN INVESTMENT DATA - SUMMARY STATISTICS 

Different series were available for different time periods, In the analysis in the paper 
the longest time period available for the series have been used where possible. 
Statistics for these series over different time periods are summarised in this Appendix. 

(I) Consumer Price Index - all groups (CPI) and All Ordinaries Share Price Index (SPI) 
Quarterly data was available for these series for the period September 1948 to March 
1995. Table A I sets out summary statistics for these indices, the logarithm of the index 
and the change in the logarithm. 

Table A1 
Summary statistics of CPI and SPI, logarithm of CPI and SPI and first 

differences of logarithms of CPI and SPI. 
Statistics 
CPI 
iog(CeI) 
AIog(CPI) 
SPI 
iog(SPI) 
Alog(SPI) 

N Min Max Mean St Dev Skewness Kurtosis 
187 6.70 114 .70  39.1064 34.0734 1.0008 -04688 
187 1 .9021 4.7423 3.2964 0.8573 0.3615 -1.2894 
186 -00087 0.0704 0.0153 0.0132 1.1935 2.0125 
187 84.60 2238.70 561.5283 567.3915 1.3879 0.6055 
187 44379 7.7137 5.8806 0.9354 0.3983 -0.9342 
186 -0.5728 0.2613 0 . 0 1 6 1  0.0940 -1.6993 8.7947 

Note the negative skewness and high kurtosis for the continuously compounding return on the SPI - 
given by the variable Alog(SPI). 

(2) C o n s u m e r  Price Index - all groups (CPI) and Share Dividends (DIVS) 

Quarterly data for the period September 1967 to December 1994 was available for the 
CPI and dividend yields. The Dividend yield series is the Melbourne weighted (M.W.) 
series from September 1967 to December 1982. This was merged with the Australian 
dividend yield (AY.)  series that is available from September 1983 to March 1995 by 
taking 2/3M.W.+I/3AY. for March 1983 and I/3M.W.+2/3A.Y. for June 1983. The 
share dividend series (DIVS) is derived as the product of the SPI and the dividend 
yield for each quarter. It represents an annualised amount of dividends paid over the 
prior 12 months. Table A2 sets out summary statistics for these series, the logarithms 
of the series and the differences in the logarithms of the series. 
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Table A2 
Summary statistics of CPI and DIVS, logarithm of CPI and DIVS and first 

differences of logarithms of CPI and DIVS. 
Statistics 
CPI 
Iog(CPl) 
Alog(CPI) 
DIVS 
Iog(DIVS) 
Alog(DIVS) 

N Min Max Mean St Dev Skewness Kurtosis 
l lO 1620 112.80 569036 33.2526 0.3283 -1.3353 
110 2.7850 4.7256 3 8406 06678 -02351 -1.3759 
109 -00046 0.0566 0 0178 00116 0.7168 1.0666 
110 747.40 9398.25 3526.76 2603.95 0.8094 -0.6369 
110 66166 91483 78808 07802 0.0526 -1.3005 
109 -01987 02132 00208 0.0653 -03005 12734 

(3) Interest Rates 
Quarterly interest rate data is available for 90-day Bank Bills (BB90) from September 
1969 to December 1994. The summary statistics of  BB90, log(BB90) and 

Alog(BB90)t = log(BB90)t - log(BB90) t-i are given in Table A 3  Data for 5-year 
Treasury Bonds (TB5) is available for the period June 1969 to December 1994. The 
summary statistics of  TB5 and A (TB5)t = TB5t-  TBSt.1 are also given in Table A3. 
Data for 10-year Treasury Bonds (TB10) is available for the period March t958 to 
December 1994. The summary statistics o f  TB 10 and A(TB 10)t = TB 10t - TB 10t.1 are 
also given in Table A3. 

Table A3 
Summary statistics of Interest rates and first differences of Interest rates. 

Statistics N Min Max Mean St Dev Skewness Kurtosis 
BB90 
Iog(BB90) 
Alog(BB90) 
TB5 
A(TB5) 
TBI0 
A(TBIO) 

102 4.45 19.95 10.9093 4.1029 03310 -0.8313 
102 14929 29932 2.3148 03981 -0.2784 -0.8812 
101 -04002 06213 00034 01712 0.6058 14652 
103 00128 0.0394 0.0253 0.0072 -00909 -1.0977 
102 -0.0060 0.0050 0.0001 0.0019 -0.1966 1.2405 
148 0.0106 0.0394 00216 0.0085 0.2654 -1.3368 
147 -0.0056 00048 000008 0.0014 -0.1179 3.7768 

(4) All series 
Quarterly data for all series was available from September 1969 to December 1994. 
Table A4 provides summary statistics for this time period. The data are CPI - 
Consumer Price Index, LogCPI - logarithm of  (CPI), AWE - Average Weekly 
Earnings, LogAWE - logarithm of  (AWE), SPI - Share Price Index, LogSPI - 
logarithm of  (SPI), SDyields - Share dividend yields, SDiv - Share dividends series, 
BB90 - 90-day bank bills yields, TB2 - 2-year treasury bond yields, TB5 - 5-year 
treasury bond yields, TB 10 - 10-year treasury bond yields. 
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Variable 
CPI 
LogCPI 
AWE 
LogAWE 
SPI 
LogSPI 
SD yields 
SDiv 
BB90 
TB2 
TB5 
TB10 

Table A4 
Summary statistics of all series 

Quarterly Data from September 1969 to December 1994 
Mean St.Dev. Max Min Median Mode Skewness Kurtosis 
60074 32.462 11280 17000 55300 107 60 02375 -1.3631 
39220 0.62386 4.7256 28332 40128 46784 -0.3408 -1.2288 
776.57 39830 13643 17690 796.33 1000.8 -0.0145 -1.3769 
64806 064460 7.2184 51756 6 6800 6 9086 -06544 -08507 
865.01 59505 2238.7 194.30 60340 2238.7 06797 -1.0008 
6.5177 0.71137 77137 52694 6.4026 77137 0.1667 -1.4523 
4.4506 1.1496 77300 20700 45000 5.8500 0.2237 -0.1128 
37415 25840 9398.3 86174 2877.4 9398.3 0.7365 -0.7603 
10909 4.1029 19,950 4.4500 10350 15450 0,3310 -0,8313 
10185 3.2623 16.400 4.6000 9.9400 15.150 0.0137 -1.1443 
10465 29845 16400 52000 10030 13.850 -0,0775 -1.0843 
10.648 2.8299 16400 57500 10.180 9.5000 -0.0997 -1.0091 

Table A5 
Jarque-Bera Asymptotic LM Normality Test 

September 1969 - December 1994 
Chi-squared 2DF 5% Critical Value 5.99 

Variable Chi-Square 

CPI 
LogCPI 
AWE 
LogAWE 
SPI 
LogSPI 
SD yields 
SDiv 
BB90 
TB2 
TB5 
TBI0 

Statistic 
8.74* 
832* 
796* 
1027" 
11 97* 
9.28* 
947* 
11.55' 
4.87 
5.60 
515 
4.57 

*significant at 5% level 
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APPENDIX B 

TIME SERIES PLOTS 

This Appendix provides time series plots of all the series and the first differences of the 
series for the quarterly Australian data used in this research. 
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