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Abstract 

This paper studies the joint distribution of the time of ruin, the surplus immediately before 

ruin, and the deficit at ruin. The classical model is generalized by discounting with 

respect to the time of ruin. We show how to calculate an expected discounted penalty, 

which is due at ruin, and may depend on the deficit at ruin and the surplus immediately 

before ruin. The expected discounted penalty, considered as a function of the initial 

surplus, satisfies a certain renewal equation, which has a probabilistic interpretation. 

Explicit answers are obtained for zero initial surplus, very large initial surplus, and 

arbitrary initial surplus if the claim amount distribution is exponential or a mixture of 

exponentials. We generalize D.C.M. Dickson's formula, which expresses the joint 

distribution of the surplus immediately prior to and at ruin in terms of the probability of 

ultimate ruin. Explicit results are obtained when dividends are paid out to the 

stockholders according to a constant barrier strategy. 
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1. Introduction 

CoUective risk theory' has started in 1903 with the doctoral thesis of Filip Lundberg, 

a Swedish actuary, and it has been developed throughout this century. It is now an area 

rich in useful ideas and sophisticated techniques. Many of its tools can be applied to solve 

problems in other areas. A recent example is the method of Esscher tran~fforms, which was 

used by Gerber and Shiu [23] to price financial derivatives. 

Two particular questions of ruin theory are (a) the severi~' qfruin, and (b) the 

time of ruin, both of which have been treated separately in the literature. In this paper 

certain answers to both questions are given at the same time. We study the joint 

distribution of the deficit and the time of ruin. From a mathematical point of view a 

crucial role is played by the surplus immediately before ruin occurs. We incorporate the 

time of ruin in the model by discounting. We show how to calculate an expected 

discounted penalty, which is due at ruin and may depend on the deficit at ruin and the 

surplus immediately prior to ruin. The expected discounted penalty, considered as a 

function of the initial surplus, satisfies a certain renewal equation. The renewal equation 

and its convolution series solution have natural probabilistic interpretations. For the 

former one considers the first time when the surplus falls below the initial level, and 

distinguishes according to whether or not ruin takes place at that time. For the latter the 

distinction is made according to which of the record lows of the surplus process causes 

ruin. Explicit answers are obtained for zero initial surplus, very large initial surplus, and 

arbitrary initial surplus if the claim amount distribution is exponential or a mixture of 

exponentials. Additional insight is obtained from a pair of exponential martingales. As 

an application we generalize D.C.M. Dickson's [7] formula, which expresses the joint  

distribution of the surplus immediately prior to and at ruin in terms of the probability of 

ultimate ruin. Similarly, explicit results are obtained when dividends are paid out to the 

stockholders according to a constant barrier strategy. 
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The paper generalizes and adds to a better understanding of classical ruin theory, 

which can be retrieved by setting the interest rate equal to zero. For example, in the 

classical model, the adjustment coefficient is the solution of an implicit equation, which has 

0 as another solution. If the interest rate is positive, the situation is suddenly symmetric: 

the corresponding equation, called Lundberg'sfimdamental equation, has a positive 

solution and a negative solution. Both solutions are important and are used to construct 

exponential martingales. We also present some results concerning the finite-time ruin 

function and its Laplace transforms. 

This paper was motivated by the problem of pricing American options. The 

classical model uses the geometric Brownian motion to model the stock price process. 

Such a process has continuous sample paths, which facilitate the analysis of an American 

option: the option is exercised as soon as the stock price arrives on the optimal exercise 

boundary, and the price of the option is the expected discounted payoff. On the other hand, 

we would like to price an American option in a perhaps more realistic model where the 

stock price may have jumps. The resulting mathematical problem is more intricate, 

because now, at the time of the exercise, the stock price is not on but beyond the optimal 

exercise boundary. If the logarithm of the stock price is modeled by a shifted compound 

Poisson process, this leads to the type of problems that are discussed in this paper. 

Evidently "penalty at rain" has to be replaced by "payoff at exercise." Thus the paper lays 

the mathematical bases for a financial application. Since it is substantial and of an 

independent interest, we decided to present the application to the pricing of American 

options in a subsequent paper. 

2. When and How Does Ruin Occur 

We follow the notation in Chapter 12 of Actuarial Mathematics [4]. Thus u _> 0 is 

the insurer's initial surplus. The premiums are received continuously at a constant rate c 

per unit time. The aggregate claims constitute a compound Poisson process, {S(t)}, given 
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by the Poisson parameter ~. and individual claim amount distribution function P(x) with 

P(O) = O. That is, 
N(t) 

s(t) = Y_, xj ,  (2.1) 
j = l  

where {N(t)} is a Poisson process with mean per unit time X and {Xj} are independent  

random variables with common distribution P(x). Then 

U(t) -- u + ct - S(t) (2.2) 

is the surplus at time t, t _> O. For simplicity we assume that P(x) is differentiable, with 

P'(x) = p(x) 

being the individual claim amount  probability density function. 

Let T denote the time of ruin, 

T = inf{t[ U(t) < 0} (2.3) 

(T = o~ if ruin does not occur). We consider the probability of ultimate ruin as a function 

of the initial surplus U(0) = u _> 0, 

~g(u) = Pr[T < oo I U(0) = u]. (2.4) 

Let p! denote the mean of the individual claim amount distribution, 

Pl = IO x p(x) dx = E(Xj). 

We assume 

c > ~-Pt (2.5) 

to ensure that {U(t)} has a positive drift; hence 

lim U(t) = oo (2.6) 
t - - )~  

with certainty, and 

~ff(u) < 1. (2.7) 

We also consider the random variables U(T-), the surplus immediately before ruin, 

and U(T), the surplus at ruin. See Figure 1. For given U(0) = u _> 0, let f(x, y, t I u) denote 

the joint  probability density function of U(T-), IU(T)I and T. Then 
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JoloJof(x, y, t l  u)dxdydt = PrIT < o~1 u(0)= ul = v(u>. 

Because of (2.7), f(x, y, t I u) is a defective probability density function. 

f ( x , y , t  lu)  = 0 

for x > u +c t .  

(2.8) 

We note that 

~,'(0 

: /  :T 
,..... ~ (1(z'-) 

Figure 1. The Surplus Immediately before and at Ruin 

It is easier to analyze the following function, the study of which is a central theme 

in this paper. For 5 _> O, define 

f(x, Y l u) = loe~t f (x ,  y, t I u) dt. (2.9) 

Here ~ can be interpreted as a force of interest, or, in the context of Laplace transforms, as 

a dummy variable. Note that the symbol f(x, y l u) does not exhibit the dependence on 5. 

If 8 = 0, (2.9) is the defective joint  probability density function of U(T-) and IU(T)I, given 

U(0) = u. Also, if t3 > 0, then 

e ~Sw = e --'ST I(T < o~), 

where I denotes the indicator function, i.e., I(A) = I if A is true and I(A) = 0 if A is false. 
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Let w(x, y) be a nonnegative function of x > 0 and y > 0. We consider, for tl _> 0, 

~(u) = E[w(U(T-), IU(T)I) e -ST I(T < oo)[ U(0) = u] (2.10) 

= G T j 2 w ( x ,  t t u) dt dx d,  

= J,Tl w(x, y)f(x,  Yl u) dx dy. , 2 . , , )  

With 8 = 0 and w(x, y) = w(-y),  0(u) is denoted as ~(u ;  w) in the Proof of Theorem 12.4 

of Actuarial Mathematics [4]. If we interpret ~ as a force of interest and w as some kind 

of penalty when ruin occurs, then O(u) is the expectation of the discounted penalty. We 

should clarify that, while it can be very helpful to consider 8 as a force of interest in this 

paper, we are dealing with the classical model in which the surplus does not earn any 

interest. 

Our immediate goal.is to derive a functional equation for O(u) by applying the law 

of iterated expectations to the right-hand side of (2.10). For h > O, consider the time 

interval (0, h), and condition on the time t and the amount x of the first claim in this time 

interval. Note that the probability that there is no claim up to time h is e -xh, the 

probability that the first claim occurs between time t and time t + dt is e-Xt)~dt, and 

x > u  + c t  

means that ruin has occurred with tile first claim. Hence 

th .tu+ct _ x)p(x)dx]e-(6 + ~.)t ~vdt ¢(u) = e -(5 +x)hc~(u+ch) + ]o[]o ¢ ( u + c t  

+ l,",llu+c w(u + ct, x - u - c t ) p ( x ) d x ] e  (5+ ~)' )~dt. (2.12) 

Differentiating (2.12) with respect to h and setting h = 0, we obtain 

= - ( 8  + k)*(u) + c¢'(u) + ~ o  O(u - x) p(x) 0 dx 

+ Klu w(u, x - u ) p ( x ) d x  

. ¢  u 

= - (5+X)O(u)  + c0'(u) + ~0  ¢ ~ ( u - x ) p ( x ) d x  + )~o)(u), (2.13) 

where 

j ~ 

~(u)  = w(u, x - u) p(x) dx. 
U 

With X denoting the individual claim amount  random variable, 

(2.14) 
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C0(u) = E[w(u, X - u) I(X > u)]. 

Also, by a change of variable, 
oo  

Co(u) = IO w(u, y) p(u + y) dy. 

For further analysis, we use the technique of integrating factors. 

(~p(U) = e-P u O(u), 

(2.15) 

(2.16) 

Let 

(2.17) 

where P is a nonnegative number to be specified later. Multiplying (2.13) with e-P u, 

applying the product rule for differentiation, and rearranging yields 
U 

cO~'p(u) = (8 + ~ -  cp)Op(U) - kloOp(U - x)e-pxp(x)dx - )~e-puol(u). 

Define 

(2.18) 

7(~) = ~i + ~. - c~; (2.19) 

hence the coefficient of ~p(u) in (2.18) is [~(p). In this paper we let f denote the Laplace 

transform of a function f, 

f(~) = Ioe-~ x fix) dx. (2.20) 

The Laplace transform of p, ~(~), is defined for all nonnegative numbers ~,, and is a 

decreasing convex function because 

= -Joe-~X xp(x) dx < 0 

and 

~"(~) = ]oe-~ x x 2 p(x) dx > 0. 

Consider the equation 

Since 

~(~) = Xt3(~). (2.21) 

0(0) = 8 + ; ~ > _  X =  X0(0) 

and by (2.5) 

~'(0) = - c  < - ~ , P l  = ~ 0 ' ( 0 ) ,  

equation (2.21) has a unique nonnegative root, say ~1. It is obvious from Figure 2 (which 

corresponds to Figure I 1.7.1 of Panjer and Willmot [27]) that ~1 is an increasing function 

151 



of 5, with ~1 = 0 when 8 = 0. Furthermore, if the individual claim amount density 

function p is sufficiently regular, equation (2.21 ) has one more root, say ~2, which is 

negative. This negative root, which will be denoted as -R,  plays an important role later. 

As we shall see in Section 8, both roots are related to the construction of exponential  

martingales.  When ~5 = 0, (2.21 ) is equivalent to (12.3.1) in Actuarial Mathematics [4] and 

R is the adjustment coefficient. Equation (2.21) is equivalent to Beekman [3, p. 41, top 

equation],  Panjer and Wil lmot  [27, (11.7.8)], and Seal [34, (4.24)]. Lundberg [26, p. 144] 

points out that the equation is "fundamental to the whole of collective risk theory," and 

Seal [34, p. 111] calls it "Lundberg ' s  (1928) 'fundamentaL' equation." (It is incorrect for 

Seal [34, p. 112] to assert that the second root is also positive.) 

L 

Figure 2. The Two Roots of Lundberg 's  Fundamental Equation 

The trick for solving 12.18) is to choose 

p = Y-,l, 

so that (2.18) becomes 

(2.22) 
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U 

c(~'p(u) = X#(p)%(u) - ~'fo*p(U - x)e-pXp(x)dx - ~.e-PU00(u) 

U 

= )~[0(p)%(u) - t0 *P(x)e-p(u-x)p(u-x)dx - e-pUoXu)]. (2.23) 

For z > 0, we integrate (2.23) from u = 0 to u = z. After a division by )~, the resulting 

equation is 

~ [%(z )  - %(0)1 

^ Z Z II Z 

= p(p)/0%(u)du - 1 0 [ I  0 dOp(x)e-p(u-x)p(u - x)dx]du - J0e-pu~(u)du 
Z Z Z Z 

: P(P)f0%(u)du - f0[Ixe-p(u-x)p(u - x)du],p(x)dx - f0e-puc°(u)du 

Z 

= 10%(x)[lz°°_xe-PYp(y)dyldx-J0e-pUo3(u)du. (2.24) 

For z ---) co, the first terms on both sides of (2.24) vanish, which shows that 

%(0) = ~ I0 e-put-°(u)du = ~ ~(P) '  (2.25) 

Finally, substituting (2.25) in (2.24) and simplifying yields 

L z ~ lz e-pu~(u)du} '  z > O. (2.26) ,p(Z) = E-{lo*p(X)[lz_xe-PYP(y)dy]dx + o~ 

For two integrable fun~:tions fl and f2 defined on [0, oo), the convolution of fl and 

f2 is the function 

(fl*f2)(x) = /ofl(y) f2(x - y) dy,  x > o. (2.27) 

Note that 

With the definitions 

and 

fl*f2 = f2*fl. 

gO(x) = ~I?e-PYp(y)dy, x _> 0, (2.28) 

hp(x) = a ~ l?e--puo3(u)du, x > O, (2.29) 

equation (2.26) can be written more concisely as 

~)p : *p*gp + hp. (2.30) 

In the literature of integral equations, (2.30) is classified as a Volterra equation of the 

second kind. The function gp is a nonnegative function on [0, o~) and hence may be 
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interpreted as a (not necessarily proper) probabil i ty density function; in probabil i ty theory, 

(2.30) is known as a renewal equation for the function 09. 

Unlike 0, the function 0p does not have a probabilistic interpretation. Hence it is 

preferable to work with the function 0. It follows from (2.27) that for each constant k 

ekx(fl*f2) = (ekxfl)*(ekxf2). (2.3 I ) 

This enables us to convert (2.30) into a renewal equation for 0 using (2.17), which is 

~(x) = ePXOp(x), x _> O. 

With the definition 

and 

we have 

g(x) = epX gO(x) 

=  12e P(Y-X)p(y)dy (2.32) 

= ~12e~:~Zp(x + z )  dz, x_>O, (2.33, 

h(x) = eP x hp(x) 

= ~ fxe-p(u-x)co(u) du (2.34) 

X Io  e pz ~o(x + z) dz, x > O, (2.35) 

0 = 0*g + h. (2.36) 

The solution of (2.36) can be expressed as an infinite series of functions, sometimes called 

a Neumann series, 

0 = h + g*h + g*g*h + g*g*g*h + g*g*g*g*h + . . . .  (2.37) 

This general izes what is called Beekman's convolution series in the actuarial literature. 

One may obtain (2.37) from (2.36) by the method of successive substitution. 

Remarks (i) Two useful expressions for h are 

h(u) : ~ luJO e-p(x-u)w(x, y ) p ( x  + y ) d y  dx. 

and 

(2.38) 
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h(u) = ~JoJoe-PZ w(u + z, y ) p ( u  + z  + y ) d y  dz. (2.39) 

(ii) With 5 = 0 and hence p = 0, it is well known [4, Theorem 12.4] that the differential 

g(y) dy = ~[1 - P(y)]dy, (2.40) 

can be interpreted as the probabili ty that the surplus will ever fall below its initial level u, 

and will be between u - y and u - y - dy when it happens for the first time. Furthermore, 

with 5 -- 0 and w --- 1, we have 

h(x) = l ; g (y )dy ,  

which is the probabil i ty that the surplus will ever  fall below its initial level u, and will be 

below u - x when it happens for the first time. The renewal equation (2.36) generalizes 

Exercise 12.11 of Actuarial Mathematics [4]; see also (9.44) below. In Section 5 we shall 

see how the functions g and h can be interpreted for 3 > O, and hence probabil ist ic 

explanations of (2.36) and (2.37) can be given. 

(iii) It follows from the conditional probabili ty formula, 

Pr(A n B) = Pr(A) Pr(B] A), 

that the joint  probabili ty density function of U(T-), IU(T)I and T at the point (x, y, t) is the 

joint  probabil i ty  density function of U(T-) and T at the point (x, t) multiplied by the 

condit ional  probabil i ty density function of IU(T)I at y, given that U(T-) = x and T = t. The 

latter does not depend on t and is 

p(x + y) p(x + y) 
- 1 - P ( x ) '  Y > 0  

f ~  p(x + y ) d y  

Hence 

f ( x , y , t [ u )  = [ f : f ( x , z ,  t l u )  dzlP(X + y )  - P ( x ) "  ( 2 . 4 1 )  

With the definition 

f(xl u) : f : f ( x ,  y lu)  dy 

= JoJg°e -at f(x, y , t  [u) dt dy, (2.42) 
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multiplying (2.41) with e -St and then integrating with respect to t yields 

f(x, y[ u) = f(x[ u) p(___x 
+ Y) 
P(x) " (2.43) 

With 6 = 0, (2.43) was first pointed out by Dufresne and Gerber [I 3, (3)]; another proof 

can be found in Dickson and Egfdio dos Reis [9]. Also, it follows from (2.10), (2.41), 

(2.42) and (2.16) that 

~(u) = JotoJoW(X, y ) e  ~St f(x, y , t  In )d t  dx dy 

~, oo ~, . I p ( x  + y )  
= 1010 I0 w(x, y)e~St [ lof(X, z , t  l u ) a z ] ~  dt dx dy 

.p(x + y) 
= Jo/oW(X, y ) f (x  I u ) q ~ f f ~  dx dy 

r ~ . . f(x l u) 
= ]0 c ° ~ ' x ) T ~ - ~  dx. (2.44) 

(iv) It follows from an integration by parts that 

- ~/oe-~X[I - P(x)] dx, (2.45) ~(~) 1 

with which we can rewrite Lundberg's  fundamental equation (2.21) as 

6 = c~ - )~[1 - ~(~)] (2.46) 

~4oe-~X[1 - P(x)] dx}. (2.47) tic 

Hence 

- - c  -  fot' - P ( x ) l d x  

= c - )~Pl, (2.48) 

which is the drift of {U(t)}. With i5 = 0, the negative root ~ = ~2 of (2.47) or (2.21) is 

determined by the equation 

loe-~X[1 - P(x)] dx = ~ ;  (2.49) 

this condition to identical to the one in Exercise 12.7 of Actuarial Mathematics [4]. 

(v) Equation (2.36) may be solved by the method of Laplace transforms (Spiegel [37]). 

Taking Laplace transforms, we have 

o r  

$(~) = $(~)~(~) + fi(~), (2.50) 
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~(0 - fi(O ( 2 . 5  l) 
1 - ~ ( 0  

Hence ~ can obtained by inverting or identifying the right-hand side of (2.51 ). In terms of 

complex integration, 

1_2._ i b+i~ /a(~) e~ u d~, (2.52) 
~(u) = 2/ti Jb-io~ 1 --- ~-(~) 

where i = dZ7-, and the path of integration is parallel to the imaginary axis in the complex 

plane, with the real number b being chosen so that all the singularities of the integrand lie 

to the left of the line of integration (Spiegel [37, p. 201]). Furthermore, if we expand the 

right-hand side of (2.51) as a geometric series, we obtain 

oo 

~(O = Z ° ~(O ° ~(O, (2.53) 
I 1 =  

which is the Laplace transform of (2.37). 

(vi) From (2.32) and by changing of the order of integration we see that 

=  loe- Xtlxe-.,y- , p(y) dy]dx 

- c(o  . fole'P-Oy - le-PY p(y)dy 

--- ~ [ ~ ( ~ )  - ~(p)]. (2.54) 

Because p satisfies Lundberg's fundamental equation (2.21), it follows that 

~ .~(O + c o  - 8 - Z, 
f~(O = c ( p  - ~,) ' ( 2 . 5 5 )  

o r  

~.[1 - ~ ( O ]  + ~ 5 -  c ~  
1 - ~(~) = c ( p -  ~) (2.56) 

We note that (2.21) is the condition that the numerator on the right-hand side of (2.56) 

vanishes. Hence the negative root F~2 of (2.21) is determined by the condition that 

f~(~,) = 1. ( 2 . 5 7 )  

(vii) Writing (2.54) as 
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and differentiating with respect to ~, we obtain 

g'(~) = p - - ~ [ g ( ~ ) +  ~0 ' (~)] .  (2.58) 

Since the negative root ~,2 satisfies (2.57), a particular case of (2.58) is 

g'(~2) = p _ ~ 2 [  I + ~0'(~2)] .  (2.59) 

(viii) From (2.34) and by changing the order of integration, we get 

l~(~) = ~10e-~X[ t ? e  p(u-x, co(u)du]dx 

= c ( p ~ ) I O [ O ( e 4 U - e - p u )  w(u, y) p(u + y )du  dy. (2.60) 

(ix) Consider the special case with the penalty function w(x, y) --- I. Then (2.60) becomes 

X I~l%e_~U fa(~) = ~ 1 0 J 0 t  -e-PU) p ( u + y ) d u d y  

- c ( ? _ ~ l o ( e - ~ U  - e-PU) [ 1 - P(u)] du 

1 du + ~ - c } ,  (2.61) - c(p ~ -Jo 

because p satisfies (2.47). Applying (2.45) yields 

- + - c }   262) 

Hence,  with w(x, y) - 1, 

fi(~.) ,~(~.) - 

l - ~.(~) 
= kp[ l  - 0(~)1 + ~ ( 8 -  cp) (2.63) 

~p{a.ll-0(~)] + 6-c~} 

by (2.62) and (2.56). In deriving (2.63) it is assumed that & and hence 13, are positive. 

The case where 8 = p = 0, and hence (~ = ~,  is best treated as a limiting case: From (2.63) 

and (2.48) we obtain 

Z[I - Pl~ - t3(~)] (2.64) ~(~) = ~ { ~ [ I - 0 ( ~ ) 1  - c ~ } '  

which can be reconciled with (12.6.9) in Actuarial Mathematics [4] by the formula 

]c~ °e~u v ' ( , )  du = -V~0) + ~, ~,(~). (2.65) 
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3. F in i te -Time Ruin Probabi l i ty  

Adopting the notation in Actuarial Mathematics [4, ( 12.1.4)], we let 

~(u, t) = Pr[T _< t ] U(0) = u] (3.1) 

be the probability of ruin by time t, t _> 0. Then 

~(u, t) = I0[f0] 0 f(x, y, s] u)dxdy]ds, (3.2) 

or 

Hence 

~ ( u ,  t) = Io]of(X, y, t] u)dxdy. (3.3) 

E[e~ST I(T < oo3[ U(0) = u] = JO ~t v(u '  t) e-& dt 

= 8f0 ~(u, t) dt (3.4) e~t  

by an integration by parts. Formula (3.4) shows how the Laplace transform of the 

defective distribution of the time of ruin can be expressed in terms of the single Laplace 

transform of the finite-time ruin function. Because the left-hand side of (3.4) is ¢,(u) with 

w(x, y) --- I, the double Laplace transform of the finite-time ruin function is 

,(~, 55 = Iofoe~U-~'V~u,  t5 dt du 

= -~Ioe-~ u •(u) du 

= Lp[1-O(~)] + ~ (~ -cp )  ~ > 0 , 5 > 0 ,  (3.5t 

by (2.63). 

Historically, some actuarial researchers have preferred to study the survival 

(3.6) 

function 

cy(u,t) = 1 - ~/(u,t). 

Its double Laplace transform is 

~(~, 85 : 1 2 j 2 e + - ~ t  ~ u ,  t)dt du 
1 

= ~ - q,(~, 85 
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p - ~  
~p{).ll-~(~)] + 8-c~ ,}  

1 1 ~ - ~  
= ~[1 - ~(~)] + 8 -  c~,' ~ > 0, 8 > 0, (3.7) 

which is the same as Seal [34, (4.26)] and Panjer and Wit lmot  [27, Theorem 11.7.4]. 

Through an integration by parts, (3.7) is equivalent to Beekman [3, p. 40, Corollary 1]. 

Note that the denominator  on the right-hand side of (3.7) is the difference of the two sides 

in Lundberg ' s  fundamental equation (2.21). 

A particularly elegant result is the Laplace transform of the survival function with 

zero initial surplus, cy(0, t), which can be readily obtained with the Init ial  Value Theorem 

of Laplace Transforms (Spiegel [37, p. 5, Theorem 1-16]). The theorem states that, for a 

sufficiently regular function f, 

ulim0 f(u) = ~lirn ~ f(~). (3.8) 

Apply ing  it to (3.7) yields 

f0 ~ e -St ~(0, t) dt = ~ ~, ~-(~, a) 

1 = ~-p, 8 > 0 .  (3.9) 

Formula  (3.9), which is the same as Seal [34, (4.25)] and Panjer and Wil lmot  [27, 

Theorem 11.7.2], may also be derived using (4.9) below. An explicit  formula for ~(0, t) is 

given by (8.23). 

Most  of the results in this section can be found in Arfwedson [1]. However,  Seal 

[34, p. 111] points out that they are "implici t  in Segerdahl ' s  (1939) work on the moments  

of the t ime to ruin." To conclude this section, let us suggest an analogy with Life 

Contingencies which may be useful to some readers. Interpret 8 as a force of interest. 

Identify T, the time of ruin, with T(x), the remaining time till death for a person now aged 

x. Then ~(u,  t) and o(u, t) correspond to the probabili tes tqx and tPx, respectively. With 

w -= 1,0(u) corresponds to A x, while JO e~St ~(u, t)dt corresponds to a x. 
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4. Zero initial surplus 

In this section we study functions such as f(x I 0) [defined by (2.42)] and f(x, y] 0) 

[defined by (2.9)]. With initial surplus U(0) = u = 0, some very explicit results can be 

obtained. Since 0 satisfies the renewal equation (2.36), it follows that 

0(0) = h(O). (4.1) 

Applying (2.11) and (2.38) to (4.1) yields 

lofoW(X,y) f(x, yl 0) dxdy = ~JoIoe-pXw(x,y)  p ( x + y ) d x d y .  (4.2) 

Because the function w is arbitrary, it follows that 

f(x, Y] 0) = ~ e-P x p(x + y), x > 0, y > 0. (4.3) 

This formula plays a central role; an alternative proof and additional insight will be given 

in Section 8. Some immediate consequences can be obtained by integrating over x, y, and 

both: 
~ r  

y I o)dx = p(x + y) d x  

= g(y) ,  (4 .4 )  

as defined by (2.33); 

f(x I 0) = Iof(X, Y l 0) dr 

= ~e-PX JO p(x + y) dy 

= ~e-px[l - P(x)]; (4.5) 

E[e -ST I(T < oo)1U(0)= 0] = Io/of(X, y 10)dy dx 

 /oe- X = [1 - P(x)] dx. (4.6) 

As a check, note that (4.3) and (4.5) satisfy (2.43) with u = 0. 

With 8 = 0, and hence p = 0, (4.3) reduces to a result of Dufresne and Gerber [13, 

(10)]. Here 

f(x, Y l 0) = f(y, x I 0). (4.7) 

Dickson [7] has pointed out that this symmetry can be explained in terms of "duality." 

Figures 3.a and 3.b illustrate the duality. Further discussion can be found in Dickson and 
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Egfdio dos Reis [9], and in Section 9 below. For ~5 > 0, formula (4.7) does not hold any 

longer. 

For 8 = O, (4.6) reduces to the famous formula 

= P ( x ) l d x  

kP ~ (4.8) c , 

which, of course, can also be derived from (2.25). For ~5 > O, we can use (4.6) and the fact 

that p is a solution of (2.47) to see that 

E[e~ST I U(O) = O] = E[e ~ST I(T < co) [ U(O) = O] 

= 1 6 cp" (4.9) 

This result is equivalent to (3.9). Formula (4.8) can be obtained as a limiting case of (4.9) 

because of (2.48). 

Example  Let us look at the case of an exponential individual claim amount distribution, 

p(x) = 13e-[ 3x, x > 0, (4.10) 

with [3 > 0 and c > ~,Pl = ~.  The number !3 is ~j,  the nonnegative solution of (2.21), which 
M 

is 

o r  

Hence 

8 + k - c %  - 13 + %' 

c,~2 + ( c l 3 -  6 -  Z.),5, .- 136 = o.  

P = %1 

X +  8 - c[3 + ~/(cl3 - 8 - K) 2 + 4c[38 

2c 

( N o t e  that ,  i f  8 = O, then 13 = ~1 = 0.)  Then  

fix, y l 0) = ~ -  e-(P + 13)x- [~y : ~ e-(P + 13)x p(y); 

~.13 ~ 
g(y) = ~ e-13y = c ( - ~ - - ~ p ( y ) ,  

f(xl O) = ~ e-(O + ~)x: 

(4 .11)  

(4 .12)  

(4.13) 
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E[e 6T](T<oo) I U ( 0 ) = 0 ] =  t o l o f ( x , y [ 0 )  dydx  

k 
- c(~ + p) (4.14) 

= 2~ (4.15) 
C~ + ~ "t- ~, + 4 ( C ~  -- ~ -- ~)2 + 4c[38 " 

An alternative to (4.14) and (4.15) is formula (4.9), which is simple and general at the 

same time. In Section 7 we shall show that 

E[e ~ST I(T < ~o) I U(0) = u] = E[e -fiT I(T < oo) I U(0) = 0] e{2U (4.16) 

where ~2 is the negative root of (4.11); see (8.33) and (8.38). Hence it follows from (3.4), 

(4.16) and (4.14) that 

loe_& ~/Ku, t) dt = k eg2U. (4.17) 

On the other hand, using (4.9) instead of (4.14) yields 

I0e- t ,(u,t)dt _ -  _ + e 2U (4,8)  

Finally, we note that (2.43) can be simplified to 

f (x ,y [u )  = f(x[ u) p(y), u > _ O , x > O , y > O .  (4.19) 

5. Positive Initial Surplus  

Results concerning "ruin" for zero initial surplus can be translated into results that 

are related to the event that the surplus falls below the initial level in the more general 

situation where the initial surplus is positive. We can use (4.3) and (4.4) to derive the 

renewal equation (2.36) by probabilistic reasoning. We condition on the first time when 

the surplus falls below the initial level. For given initial surplus U(O) = u > O, the 

probability that this event occurs between time t and time t + dt, with 

u + x < U ( t - ) < u + x + d x  

and 

is 

u - y -  dy < U( t )_<u-y ,  

f(x, y, t ] O) dx dy dt. (5.1) 
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Furthermore, the occurrence 

y > u  

means that ruin also takes place with this claim. Thus 

~(u) = IoIoIoe-St ~ ( u -  y)f(x,  y, t[ 0 )d t  dx dy 

+ LJoJoe~St w(x + u , y - u ) f ( x ,  y, t[ 0 )d t  dx dy 

U 

= 1010 ~ ( u -  y)f(x,  Yl 0)dx  d r + tuloW(X + u , y -  u)f(x,  Yl 0 )dx  d e. (5.2) 

Applying (4.4) and (4.3) to the right-hand side of (5.2) yields 

~(u) = 0¢(u - y)g(y)dy + w(x + u, y - u)e-pXp(x + y)dxdy 

 Fl,TW(X = (~*g)(u) + 0 + u, s)e-pXp(x + u + s)dxds 

= (~*g)(u) + h(u) 

by (2.39). This is the probabilistic proof of (2.36). 

Let 8 be considered as a force of interest. Then O(u) is the expectation of the 

discounted penalty. From the calculations above we see that h(u) is the expectation of the 

discounted penalty if ruin occurs at the first time when the surplus falls below the initial 

level u. Because 

g(y) = JoJoe~Stf(x, y, t l 0 )  dx dt, (5.3) 

the differential g(y)dy is the discounted probability that the surplus will ever fall below its 

initial level u and will be between u - y and u - y - dy when it happens for the first time. 

The two terms on the right-hand side of the renewal equation (2.36) correspond to whether 

or not ruin occurs at the first time when the surplus falls below the initial level u. 

Formula (2.37), the representation of ~ as a series of functions, has a natural 

probabilistic interpretation as follows. We observe that ruin occurs at a time when the 

surplus process { U(t) } attains a record low (cf. Section 12.6 of Actuarial Mathematics 

[4]). For j = 1,2, 3 . . . . .  let zj denote the time of the j-th record low of the surplus process. 

Then 

I(T < co) = ~ I(T = xj), (5.4) 
j= =1 
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and hence 

¢(u) = E[e -ST w(U(T-), IU(T)I) I(T < oo)[ U(0) = u] 

= £ E[e -ST w(U(T-), IU(T)I) I(T = xj) [ U(0) = u], u > 0. (5.5) 
j= = l  

It remains to show by mathematical  induction that the j-th term in (5.5) is identical to the 

j- th term in (2.37). From the calculations in (5.2) and (5.3), we see that 

h(u) = fuIO/O e-6t w(x + u , y - u )  fix, y, t[ 0 )d t  dx dy 

= E[e ~'T w(U(T-), IU(T)I) I(T = Xl)[ U(0) = u], u > 0. (5.6) 

Thus (2.37) and (5.5) have the same first term. Let j be an integer with j > 2. Assume that 

it has been proved that (2.37) and (5.5) have the same (j - l)-th term, 

E[e -ST w(U(T-),  IU(T)I) I(T = "~j-l) [ U(0) = u] = ( g . g *  ...*g*g *h)(u). (5.7) 

j - 2  

W e  are to show that (2.37) and (5.5) have the same j-th term. Because zj - "c I has the 

same distribution as Xj-l, we have 

E[e ~5T w(U(T-),  IU(T)I) I(T = zj)[ U(0) = u] 

= E[e-'SxJ w(U(T-),  IU(T)I) I(T = xj)[ U(0) = u] 

= E[e-~Xt +z,-x,) w(U(T-), IU(T)I) I(T = xj)[ U(0) = u] 

= [g*(g*g* ...*g*g *h)](u) 

j - 2  

= ( g . g *  ...*g*g *h)(u), (5.8) 

j - I  

which is the j-th term in (2.37). Hence (2.37) has a probabilistic interpretation. 

If we consider f(x [ u) and f(x, y[ u) as functions of u, they satisfy renewal 

equations similar to (2.36). By distinguishing whether or not ruin occurs at the first t ime 

when the surplus falls below the initial value u, we see that 

uf f ( x , y [ u )  = I0 ( x , y [ u - z ) g ( z ) d z  + f ( x - u , y + u ] 0 ) ,  0 _ < u < x ,  (5.9) 

and 
U 

f(x, y I u) = 10f(x, y[ u - z)g(z)dz, O < x < u .  (5.10) 
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By (4.3), 

f(x - u, y + u I O) = ~ e-P(x-u) p(x + y). (5.1 I) 

Hence, for u _> 0, x > O, y > 0, 
U 

f(x, y l u )  = /0f(x, y l u - z ) g ( z ) d z  + ~e-p(x-u)p(x +y ) I (x  >u) .  (5.12) 

From this and (2.43) it follows that, for u _> O, x > 0, 

f ( x l u ) - - / , L i f ( x l  u - z ) g ( z ) d z  + ~ e - P ( x - u ) [ l - P ( x t ] I I x  >u) .  (5.13) 

We observe that, as a function of x, f(x ] u) has a discontinuity of amount 

~ [ l  - P(u)] (5.14) 

at x = u. Remarkably ,  it does not depend on 8. 

Equations (5.12) and (5.13) can be viewed as special cases of (2.36). Let xo be a 

posit ive number. Consider  w(x, y) as the "general ized" density function with mass 1 for 

x = xo and 0 for x ¢: xo (and independent of y). Then 

, (u )  = f(x0[ u), (5.15) 

and, by (2.38), 

h(u) = "~c 1¢~o1,~o l(x > u)e-P(x-u) w(x, y ) p ( x  + y ) d y  dx 

= ~ e-P,:X,, u)[ 1 - P(x0)] I(x0 > u) 

= f(xoI 0) epUI(x0 > u). (5.16) 

Hence (5.13) is a special case of (2.36). 

From (5.13) it follows that 

f ( x l u )  -- htu) + (g*h)(u) + (g*g*h)(u) + (g*g*g*h)(u) + . . . ,  (5.17) 

with 

h(u) = f (x ]  0) epuI(x > u). (5.18) 

Note that this series has a probabil ist ic interpretation similar to (2.37): The j-th term 

represents the contribution to f(x I u) of the event that ~j = T. With the definit ion 

rl(u ) = eP u I(x > u), (5.19) 

(5.18) becomes 

h(u) = f(x t 0) rl(u), (5.20) 
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and we can rewrite (5.17) as 

f ( x l u )  = f(x[0)[rl(u ) + (g*rl)(u) + (g*g*~l)(u) + (g*g*g*rl)(u) + .. .].  (5.21) 

6. Key Renewal Theorem 

Let f(x) and z(x) be two nonnegative functions on [0, oo). Consider the integral 

equation 

Z(x) = (f*Z)(x) + z(x), x _> 0, (6.1) 

which is a renewal equation for Z(x). The so-called key renewal theorem, originally 

formulated by Walter  L. Smith, gives the asymptotic behavior of the solution of a renewal 

equation. It states that, if f is a proper probabil i ty density function, i.e., 

Iof(x)dx = 1, (6.2) 

and the function z is sufficiently regular, then the solution of the renewal equation (6. I ) 

satisfies 

f o  z(y) dy 
xli~rn Z(x) - oo (6.3) 

0 y f ly) dy 

In earlier days there was some confusion about this result because it was given under a 

variety of hypotheses.  Finally,  Feller [17, p. 362] clarified the situation with what he 

called the direct Riemann integrability condition. The condition requires that the function 

z be Riemann integrable and not oscillate too much in a neighborhood of infinity. This 

notion can be found in Norbert Wiener ' s  work on Tauberian theorems. In our 

applications,  this condition is always satisfied. A recent book with a long chapter on 

renewal theory is Resnick [321. Several actuarial books ([51, [19], [34]) contain 

discussions on applying renewal theory to risk theory. 

If the function f is not a proper probabili ty density function, i.e., if 

f(0) = Jof(x)dx , I, (6.4) 

then we try to find a real number R such that 
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~(-R) = JoeRXf(x)dx = 1. (6.5) 
f ~  

Apply ing  (2.31) with k = R to (6.1) yields a proper renewal equation for the function 

eRxZ(x), 

eRxZ = (eRxf)*(eRxZ) + eRxz. (6.6) 

The key renewal theorem is applicable to (6.6), yielding 

f o  eRy z(y) dy 
x l i ~  eRxZ(x) = o= 

fO y f(y) dy eRY 

2(-R) 
- - f ' ( - R )  ' ( 6 . 7 )  

The number  R satisfying (6.5) is unique, because 

d--~f(-~) = /oe~Xx f (x )dx  > 0. 

If 7(0) < 1 (f a defective density), then R > 0; if f(0) > 1 (f an excessive density), then 

R < 0. Let f l (x)  and re(x) be two functions; we write 

f l ( x )  ~ f2(x)  fo r  x ~ oo (6 .8)  

if 

l im fl(x) 1. 
x -~ ~ f2(x) - 

Then (6.7) can be restated as 

Z ( x )  ~ - -  2(-R) e_Rx for x - ~ .  (6.9) 
- f ' ( - R )  

R e m a r k s  (i) The reader who is familiar with complex analysis might recognize that the 

right-hand side of (6.9) can be interpreted as a residue. As pointed out in Remark (v) of 

Section 2, a renewal equation can solved by the method of Laplace transforms. From (6.1) 

we have 

and hence 

7,, = ?Z + 2, (6.10) 

2 
= 1 - V (6.11) 
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Consequently, 

(b+ioo ~(~) e~ x d E, (6.12) 
Z(x) = 12/tidb_i~ 1 - ~ )  

The residue of the integrand at the simple pole ~ = -R is: 

¢ I~rnR (~ - -R)  z(~)_ e~ x 2(-R) e_Rx ' (6.13) 
1 - f ( ¢ )  = - f ' ( - R )  

(ii) With f being a proper density function, formula (6.3) can be obtained by applying the 

Final Value Theorem of Laplace Transforms (Spiegel [37, p. 6, Theorem 1-17]), The 

theorem states that, for a sufficiently regular function Z, 

x l i ~  Z(x) = ¢li m ° ~ Z(¢). (6.14) 

Here 
• . 2 ( ¢ )  

~(o) 
-?'(o)' 

because f(0) = I. 

7 .  L a r g e  I n i t i a l  S u r p l u s  

We now apply the key renewal theorem to find an asymptotic expression for 0 

satisfying (2.36), 

= ¢*g + h, 

where g and h are defined by (2.33) and (2.34), respectively. Since p _> O, we have 

~(0) _< ~-p~ < 1, 

which means that (2.36) is a defective renewal equation. Thus we seek R > 0 such that 

= ~(-R) = l0 g(x) dx, (7.1) 1 eRx 

which is equation (2.57). Hence 

R = -~2, 

where ~2 is the negative root of Lundberg's fundamental equation (2.21). Note that both p 

(or El) and R (or 1~21) are increasing functions of 15 and do not depend on the penalty 
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function w. When confusion may arise, we write p(~5) for 9 and R(6) for R. 

that p(0) = 0, and Ri0) is the adjustment coefficient in classical risk theory. 

It follows from the key renewal theorem that 

la(-R) e_Ru 
do(u) ~ - ~ ' ( - R )  

By (2.60), 

~ ( - R )  - 

By (2.59), 

Hence 

We observe 

for u --~ o~. (7.2) 

c (R~-~[of (7 (eRu-  e-9 u) w(u, y)p(u + y )dy  du. (7.3) 

l [I + ~I3'(-R)]. (7.4) g ' ( - R ) -  9 +  R 

X f / f 0  ~ w(x, y)(e Rx- e ~x) p(x + y) dx dy 

d0(u ) ~ e -Ru for u --~ oo. (7.5) 
-XO'(-R) - c 

Now, consider the special case where w(x, y) -- 1 and S = 0. Then O = W, and the 

renewal equation (2.36) is 

= ~*g + h, 

with 

(7 .6 )  

and 

g(x) = ~[1 - P(x)] (7.7) 

Equation (7.6) is the same as Exercise 12.11 in Actuarial Mathematics [4]. Because R is 

the solution of (2.49), we have 

/,T/o(e R x - I ) p ( x + y ) d x d y  = ]o(e R x - 1 ) [ l - P ( x ) ] d x  

- -  t dx 
= ~ - Pl. (7.9) 

170 



Hence (7.5) simplifies as 

c - LPl e_Ru for u - - ) ~ .  (7.10) 
~(u) - ~ ' ( - R )  - c 

Seal [34, p. 131] points out that the asymptotic formula (7.10) was first published by the 

Swedish actuary F. Lundberg in 1926; the special case of (7.10) for constant { Xj } was 

derived by A.K. Erlang in 1909 in the context of telephone calls. 

We can also obtain an asymptotic formula for e 4t  ~(u, t) dt, 8 > 0. By (3.4), 
I 

f o r e  St ~(u, t) dt - (7.11) O(u) 
8 '  

where w(x, y) - I. It follows from (2.62) and (2.46) that 

Hence 

, 
ta(-R) - c ( R + l  9 ) 

_ (5 t l  , 1~  (7.12) 

5 1 1 e_Ru for u ---) (7.13) 
, (u)  - -~.0'(-R) - c(R- + O) 

[which can also be derived by applying (2.47) to (7.5)]. Substituting (7.13) in (7. I 1) 

yields 

f o  ~ 1 1 1 e_Ru foru---~ (7.14) e -& ~(u, t) dt -X~'(-R) - c (R + -0-) o~. 

Lundberg's  asymptotic formula (7.10) is, of course, a special case of (7.13): 

v(u) - -  ,(u) 

• l t5 ~ e_R(8)u, --  ~l~rn0 - )~ ' ( -R(8))  - c [ R ~  + 9 - ~  ] for u ---) oo, (7.15) 

which, by (2.48), is (7.10). A more interesting way to retrieve (7.10) is by applying the 

Final Value Theorem (6.14): 

~(u) = lira ~(u , t )  
t ----> ~ 

= ~ o  8J o e -a  v (u '  t) dt, 

which, via (7.14), is (7.15) again. 

Since w(x, y) can be an arbitrary function, comparing (2.11 ) with (7.5) yields the 

asymptotic formula 
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f(x, y [ u) ~ ~'(eRX - ewx) p(x + y) e_Ru for u --9 ~,  (7.16) 
-~.O'(-R) - c 

which generalizes Dufresne and Gerber [13, (24)]. Because (5.13) is a renewal equation 

for f(x, y [ u) (as a function of u), it can also be used to derive (7.16) here 

h(u) = f(x, y ] 0) eP u I(x > u), (7.17) 

and 

h(-R) = fix, y I 0)/O eRu e9 u I(x > u) du 

e(R + p)x _ 1 
= f(x, y l 0 )  ~ - 7 ~ -  

~(e Rx - e-PX)p(x + y) 

c(R + 9) 
(7.18) 

Exam ple  For the exponential individual claim example in Section 3, we have 

~. + (5 - cl3 - V/(cl3 - 8 - ~)2 + 4c13 8 
- R  = ~2 = 2c  (7.19) 

and the adjustment coefficient is 
c [ 3  - 

R(O) - c (7.20) 

From (4.13) 
x13 

fg(F.,) = c(13 + p)(13 + ~) '  (7.21) 

and hence 

-~ ' ( -R)  = c([3 + 9)([3- R) 2 (7.22) 

Now, let us consider the particular case where w(x, y) = w(y), a function not depending on 

x. Then 

re(x) = loW(Y) p(x + y) dy 

= [3e-13Xlow(Y ) e-!3y dy 

= [],e-13x ~v(13), (7.23) 

and 
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h ( x )  = ~ ] o e ~ Z m ( u  + z ) d z  

= 

_ )~, 13 ¢,v(13) e -13x 

c(13 + p)  
(7.24) 

Hence  

f i ( ~ )  = 
c([3 + o)([3 + ~ )  

(7.25) 

It fo l lows  f rom (7.25) and (7.22) that 

f i ( -R) 
-~-W~-R) - '~(13) (13 - R) .  

Thus,  with w(x,  y) = w(y),  and P(x) = I - e-!3x, 

*(u) ~ ¢,'(13) (13 - R) e -Ru for u --4 ,,o. 

(7.26) 

(7.27) 

In the next  sect ion,  we  shall  see that (7.27) is in fact  an equal i ty  val id  for all u > 0. 

Fur thermore ,  (7.16) is 

f(x, Y l u) 
~,(e Rx - e ~ x )  13e-~( x + y) 

2.13(~ - R) -2 - c 
e -Ru for u --~ oo. (7.28) 

Because  p and - R  are the roots of  (4.11), we have  

c(13 + 0)(13 - R)  = c ( - D  2 + (c13 - 8 - ~.)(-13) - 138 

= ;q3 .  (7.29) 

It f o l l ows  f rom (7.29) and some  a lgebra  that (7.28) can be rewri t ten as 

f(x, y[ u) ~ ;~13(13 - R) [eRx _ e -px] e_13(x+Y)e_R u for u --4 oo. 
c(R + p) 

(7.30) 

A p p l y i n g  (4.19) to (7.30) yie lds  

)~(13 - R) [eRx _ e -px] e_!3xe_R u 
f ( x l u )  ~ c(R + p) for u--+ o,,. (7.31) 

It turns out  that (7.30) and (7.31) are exac t  for 0 < x < u; see (9.40) be low.  IIII 

To  conc lude  this section we look at the Laplace  t ransform of  T,  g iven  that ruin 

occurs:  
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E[e 4 T  I(T < ~)  I U(0) = u] 
E[e ~ST ] T < oo, U(0) = u] = 

E[I(T < ~o) I U(0) = u] 
~(u) 
~ (u ) '  

f i ( - r )  
where w =- 1. Consider ~ as a function o f&  and write it as C(6). 

(7.2) that, for u -+ oo 
~(u) ~ C(6)e- R(;6)u 

~(u) C(0)e- R~0~u 

If 8 > 0, then R(8) > R(0), and hence 

which means that 

Thus, for each t > 0, 

C(6) 
- C(0)  e [R(8) - R ( 0 ) l u .  

uli~n e [R(~5)-R(O)lu = O, 

u l ~  E[e-"ST I T < oo U(0) = u] = 0. 

(7.32) 

It follows from 

(7.33) 

(7.34) 

u l ~  Pr[T < t I T < oo, U(0) = u] = 0, (7.35) 

which implies that, for a large initial surplus u and given that ruin occurs, it occurs late. 

The result (7.35) is compatible with the observation that the conditional expectation 

E[T I T < ~,  U(0) = u] 

is essentially a linear function in u in some cases; see (8.43) below, Gerber [19, p. 138, 

Example 3.2], and Seal [34, p. 114]. 

8. M a r t i n g a l e s  

Further insight can be provided to the reader who has some familiarity with 

martingales. Let ~ be a number. Because {U(t)}t_> 0 is a stochastic process with stationary 

and independent increments, a process of the form 

{ e-& + ~U(t)}t_>0 (8.1)  

is a martingale if and only if, for each t > 0, its expectation at time t is equal to its initial 

value, i.e., if and only if 

E[e~St + ~,u(t) I U(0) = u] = e 4 0  + ~u 

= e~ u. (8.2) 
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Since 

E[e~ t  + ~,u(t) ] U(0) = ul = exp(-~t + ~u + ~ct + ~,t[~(~) - 1]), 

the martingale condition is that 

0 = - ~  + c~ + Z,[~(~,)- l l, 

which is (2.21), Lundberg 's  fundamental equation. Thus, for (8.1) to be a martingale, the 

coefficient of U(t) in (8.1) is either ~1 = 9 -> 0 or ~2 = - R  < 0. 

With such a ~, (8.2) holds for each fixed t, t _> 0. However, if we replace t by a 

stopping time which is a random variable, then there is no guarantee that (8.2) will hold. 

Fortunately, it holds in two important cases, as we shall see in this and the next paragraph. 

If the stopping time is T, the time of ruin, the optional sampling theorem is applicable to 

the martingale with ~ = -R.  For 0 _< t < T, 

& + RU(t) > 0, 

and hence 

0 < e ~ t -RU( t )  < 1. 

With {e -St -RU(t); t < T} being bounded, the optional sampling theorem is applicable and 

we obtain 

E [ e - f T -  RU(T) [ U(0) = u] = e -Ru . (8.3) 

Furthermore, it follows from (2.6) that, even if ~ = 0, 

E[e~ST- RU(T) I(T = oo) 1 U(0) = u] = 0. 

Consequently,  we can rewrite (8.3) as 

e-Ru = E [ e ~ T -  RU(T) I(T < ~o) I U(0) = u], ~5 > 0, u > 0. (8.4) 

The above is a proof by martingale theory of a generalization of Theorem 12.1 in 

Actuarial Mathematics [4]. 

We now show that the quantity e-O(x-u), which appears throughout this paper 

(usually with u = 0), has a probabilistic interpretation. For x > U(0) = u, let 

Tx = rain { t l U ( t ) =  x} (8.5) 
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be the first time when the surplus reaches the level x. We can use equality to define the 

stopping time Tx because the process {U(t)} is skip-free (jump-free) upward. Then, for 

0 - < t < T x ,  

e-qSt + pU(t) < epX. (8.6) 

Hence we can apply the optional sampling theorem to the martingale {e -'St + 9u(t)} to 

obtain 

e-,50 + 9u = E[e~Tx + pufro I U(0) = u] 

= E[ e~T~ ] U(0) = u] eP x, 

or 

e -0(x-  u) = E[e-6Tx [ U(0) = u]. (8.7) 

With ,5 interpreted as a force of interest, the quantity e-P( x - u) is the expected discounted 

value of a payment  of l due at the time when U(t) = x for the first time. We note that 

(8.7) remains valid even if u is negative. The required condition is x > u; the condition 

u >_ 0 is not needed anywhere in the derivation. Formula (8.7) was probably first given by 

Kendall  [25, (14)], although he did not provide a complete proof. It can also be found in 

Cox and Miller [6, p. 245, (184)], Gerber [21, (1 I)], Prabhu ([30], [31, p. 79, Theorem 

50); p. 105, #41), and Tak~cs [38, p. 88, Theorem 8]. 

Formula (8.7) can be used to give an alternative proof of the important formula 

(4.3). For x > u = U(0), let gl(X, t t u), t > 0, denote the probability density function of the 

random variable Tx. Hence (8.7) is 

f 0 e ~ t  ~l(X, t] u) dt = e-p(x-u).  (8.8) 

The differential ~l(X, t l u)dt is the probability that the surplus process upcrosses level x 

between t and t+dt and that then this happens for the first time. For U(0) = u _> 0, x > 0, 

let r~2(x, t I u), t > 0, be the function defined by the condition that rc2(x, t] u)dt is the 

probability that ruin does not occur by time t and that there is an upcrossing of the surplus 

process at level x between t and t+dt. It can be proved by duality, a notion to be 

discussed in the next section, that 
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~ l ( x , t [ 0 )  = r t2(x , t [0) ,  x > 0 ,  t > 0 .  (8.9) 

Now, f(x, y, t I u)dtdxdy can be interpreted as the probabili ty of the event that "ruin" does 

not take place by t ime t, that the surplus process upcrosses through level x between t ime t 

and t ime t+dt, but does not attain level x+dx, i.e., that there is a claim within @ time 

units after Tx, and that the size of this claim is between x+y and x+y+dy. Thus 

f(x, y, t l u) dt dx dy = [rt2(x, t I u) dt] [% _d~] [p(x + y) dy], (8.10) 

from which it follows that 

f(x, y, t I u) = ~ p(x + y) 7t2(x, t] u). (8. I 1) 

This formula is particularly useful if u = 0: It follows from (8.9) that 

f(x, y, t I 0) = ~ p(x + y) 7tl(x, t l 0). (8.12) 

If we mult iply (8.12) by e ~St, integrate from t = 0 to t = oo, and apply (8.8) with u = 0, we 

obtain (4.3), 

f(x, y[ 0) = ~ p(x + y) e-P x, 

once again. 

R e m a r k s  (i) For  x > u = U(0) > 0, the functions tel(X, t] u) and 7t2(x, t[ 0) can be 

expressed in terms of 7t3(x, t I u), the passage time density of the surplus process at the 

level x. The differential rt3(x, t ] u)dt is the probabili ty that the surplus process upcrosses 

level x between t and t+dt. This is the same as the probabili ty that the surplus at time t is 

between x--dx and x with dx = c dt. Hence, we have 

7t3(x, t I u) = c fs(t)(u + ct - x), (8.13) 

where 

fs(t)(s) = e -kt ~ '  ()~t)n n=/'U0 n! P*n(s) (8.14) 

is the probabil i ty  density function of S(t), the aggregate claims up to t ime t. The 

fol lowing version of the ballot theorem, 

r c | ( x , t [ 0 )  = xt~3(x,  t l 0 ) ,  x > 0 ,  t > 0 ,  (8.15) 
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was first given by Kendall  [25, (17)]; see also Cox and Miller [6, p. 251, #12], Dinges 

[12], Keilson [241, Prabhu [31, p. 81, Theorem 61, Seal [35, p. 471 and Tak~ics [38, p. 87, 

Theorem 6]. For  x > u and t > 0, because 

rtl(x, t lu) = ~ l ( x - u , t [ 0 )  (8.16) 

and 

we have 

n 3 ( x , t ] u )  = r t 3 ( x - u ,  t l0 ) ,  (8.17) 

x - u  t t u )  (8.18) rtl(×, tl u) = ~T---re3(x, 

Gerber  [20, Theorem 2] has given a proof  of 

rt l(x,  t I 0) = ~tt rt3(x, t] 0) = rt2(x, t I 0) (8.19) 

by martingales.  The second equality of (8.19) is equivalent to equation (2.1) on page 112 

of Gerber  [ 19]. 

(ii) The differential 7t2(x, t t u)dt can be interpreted as the probabil i ty that ruin does not 

occur by time t and that the surplus at time t is between x -dx  and x, where dx = c dt. By 

(3.6), 

c (u ,  t) = Pr[T > t l U(0) = u] 

= fo~z(X, tl u) -~ .  (8.20) 

Hence, it follows from the second equality of (8.19) and from (8.13) that 

f[x  3(x, tl ~(0,  t) = ~ 

= -~ x fs(t)(ct - x) dx, (8.21 ) 

which is a result first given by Prabhu [30, (4.6)]; see also Seal [34, (4.8)]. Let 

Fs(t)(s) = e -kt ~" (~t)n P*n(s) (8.22) 
. ~ 0  n! 

be the probabil i ty distribution function of S(t). Then integrating the right-hand side of 

(8.21) by parts and noting that Fs(t)(s) = 0 for s < 0 yields 
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~3(O,t) = 0 - 0 + ~ F s a ) ( c t - x ) d ×  

1 [-ct 
= ~ 3 o  Fs (o (c t -  x) dx 

I [-ct 
= c-t J0 Fs(°(s) ds, (8.23) 

which is the same as Gerber  [19, p. 113, (2A)], Panjer and Wil lmot  [27, Theorem 11.7.3], 

and Seal [35, p. 48, (6)]. 

(iii) By (8.20), (8.9), and (8.8), the Laplace transform of the survival function cy(0, t) is 

°°e 'St 0(0, t ) d t  = f ~ e  ~t  [ ~ 0  a:2(x, t} O)~8.]dt  
dO 

lfo~fo = 6- e-St ~;l(X, t ] 0) dt dx 

= ~- e-P x dx 

= ~ ,  (8.24) 

which is the same as (3.9). 

(iv) For  u > 0, t > O, consider the probabili ty 

Pr[U(t) >_ 01 U(0) = u] = Fs(tX u + ct). 

By condit ioning on whether or not ruin occurs before time t and distinguishing according 

to the time "r when the surplus process upcrosses the level 0 for the last time, we have the 

fol lowing equation for the survival function o(u,  t), 

Fs(t)(u + ct) = cJ(u, t) + n3(0, z l u) o(0, t -x)  d'~, (8.25) 

which, in the context of Risk Theory, was first given by Prabhu [30, (3.3)]. With (8.13), 

formula (8.25) is the same as Gerber [19, p. 114, (2.13)], Panjer and Wil lmot  [27, 

Theorem 11.7.5], Seal [34, (4.16)] and Seal [35, p. 44, (1)]. As t --~ oo, (8.25) becomes 

1 = ~(u, oo) + rt3(O, "t I u) 0(0, oo) dz, 

or 
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w(u) = [1 - y(O)1 J x,(0, ‘I I u) dT (8.26) 
0 

c-hp, = 
=c s 

%(O, -c I u) d% u 2 0. (8.27) 
0 

One may view formula (8.27) as another version of the ballot theorem. Seah [33, p. 4261 

has pointed out that (8.27) “is not practical for computing.” 

(v) It follows from (8.26) that, for x < u = U(O), 

x3(x, t 1 u) dz = n3(0,z]u-x)dr 

w(u - xl II--- 
1 - w(O) 

(8.28) 

For the case x > u = U(O), because (U(t)] has a positive drift. the surplus will reach 

level x with probability I. Hence, for x > u, 

x3(x, z( u) dz = 1 + x3(x, z I x) dT (8.29) 

= 1 + wx-x) 
1 - w(O) 

=&ig (8.30) 

by (8.28). Furthermore, (8.29) can be generalized as 

n3(x, ~1 u) e-6rdr = e-P(x-u)[ 1 + 
s 
om x3(x. ‘5 1 x) e&r dr] 

= e-P(X-U)[l + ~u~~~(O,.~IO)edrdr], x>u.&>O. (8.31) 

Further results are given in Remark (vi) of Section 9. 

Example Again, consider the case where the individual claim amount random variable 

has an exponential distribution, p(x) = pe-ox. Then R is given by (7.19). Applying (4.19) 

to (8.4) yields 

e-Ru = [I,“eRWy)dy] We AT I(T < -) I U(0) = u] 

= 0(-R) E[eAT I(T < -) 1 U(0) = u] 

Hence 

= ---!-E[edT I(T < -) I U(0) = u]. 
P-R 

(8.32) 

E[eq’b(T c -) ( U(0) = u] = ye-Ru. (8.33) 
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Formula (8.33) should be compared with the first line of (12.3.8) in Actuarial 

Mathematics [4] which is only for (5 = 0. To reconcile (8.33) for u = 0 with (4.9) we need 

to show that, for (3 > 0, 
R 6 
]3 - cp" (8.34) 

Equation (8.34) holds because the product of the two roots of the quadratic equation (4.11) 
-138 

is ~ - - .  As a further check, we want to see that (8.33) with u = 0 is consistent with (4.14); 

here we need the identity 
[ 5 - R  ~, 

13 - c (~-TN'  (8.35) 

which is true because of (7.29). It follows from (4.13) and (8.35) that 

g(y) = ([3-  R)e-13y - p(y) ~ ( - R )  (8.36) 

In the particular case where w(x, y) = w(y), a function not depending on x, we can 

apply (4.19) and (833)  to obtain an explicit expression for 0(u): 

0(u) = E[e -ST w(IU(T)I) I(T < ,,~)1 U(0) = u] 

o o  

= [f0 w(y)p(y)dy] E[e -~  I(T < ~)1U(0) = ul 

= [IoW(y)e-13ydy]([3- R)e-Ru 

= q¢(13)(13 - R)e -Ru. (8.37) 

This shows that the asymptotic formula (7.27) is actually an exact formula, and 

~(u) = ~(0)e -Ru. (8.38) 

Furthermore, for (5 > 0, 
E[e ~ST w(IU(T)I) I(T < oo) ] U(0) = u] 

E[e~STw(IU(T)I) ] T < o% U(0) = u] = E[I(T < oo) I U(0) = u] 

¢(u) 
~(u) 

_ ~,(13)[13 - R(8)] e_[R(8 )_ R(0)lu. (8.39) 
[3[[3 - R(0)I 

Because of (8.35) [or (7.29)], we can rewrite (8.39) in terms of 9((5) and p(0). Noting that 

i)(0) = 0, we have 

E[e-6Tw(IU(T)I) ] T < ~,, U(0) = u] - ~,(13) exp(_L[ 1 1]u). (8.40) 
13 + p((5) c I + p((5)I13 
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Differentiating (8.39) with respect to 8 and then setting 8 = 0 yields 

E[T w(IU(T)I)I T < ~ ,  U(0) = u] - 
~(13)R'(O) + ~¢(fl)R'(O) 

]3I 6 - R(O)] [3 

which is a linear function in u. By (7.20) 

- R ( o )  : 

From (7. l 9) 

- - u ,  (8.41) 

Hence 

X 
R'(0) - (8.42) 

c(c13 - X) 

E[T w(IU(T)I) I T < oo, U(O) = ul - ff(13)--R'(O)[3 '-~[c + u]  

~(13) z. c u]. 
- + (8.43) 

Here, 

9. G e n e r a l i z a t i o n  o f  D i c k s o n ' s  F o r m u l a  

In [7] Dickson gives the following result for the case 8 = 0: 

1 - ~ ( u )  
/ f i x  I o) i = V~05' 

f(xl u) \ tC(u - x) - tg(u) 
- f ( x  Io)  ~ - ~ - o ~  ' 

x > u ~ 0 ,  (9.1) 

0 < x S u .  (9.2) 

f(xl o) = ~X[l - P(x)]; (9.3) 

see (4.5). The purpose of this section is to generalize (9.1) and (9.2) to the case where 

8 > 0 .  

A first question is how to extend the definition of ~(u)  for 8 > 0. It turns out  that 

the appropriate definition is 

~(u)  = E[e -"ST + pU(T) I(T < co) [ U(0) = u], u > 0. (9.4) 

Thus ~(u)  = ¢~(u) with w(x, y) = e-PY; see (2.10). ]Compare (9.4) with (8.4).] Then 

Dickson ' s  formula can be generalized as 
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with 

eP u - ~(u) 
; f(x { 0) x > u >_ 0, (9.5) 

f(x) u) = ( I - V(0) ' 

\ eOXgt(u - x) - gt(u) 0 < x < u, (9.6) 
f(x 10) 1 - ~t(0) ' - 

f ( x l 0 )  = ~e-pX[l - P(x)l (9.7) 

according to (4.5). Hence, as a function of x, f(x I u) has a discontinuity of amount 

f(u I 0) eP u = ~ [ I  - P(u)] (9.8) 

at x = u. This is the same result as (5.14). [Compare formulas (9.5) and (9.6) with (5.21).] 

To prove (9.5) and (9.6) we need some more concepts. We begin by extending 

the definition of  the stopping time Tx as given by (8.5). For a real number x, we now let 

Tx denote the time of the first upcrossing of  the surplus through the level x; we set 

Tx = oo if the surplus never upcrosses through the level x. For x > U(0), this is the same 

as (8.5). For x < U(0), the surplus has to drop below the level x before it can ever  upcross 

through x. We call the stopping time T0 the time ofrecoveo,; it is the first time when the 

surplus reaches zero after ruin. It follows from (8.7) that, for a < b, 

E[e-&Tb-T~) [ Ta < Tb] = e-P(b-  a). (9.9) 

Hence 

EleCT,, I(T < ,,o) I U(0) = u] = E[e ~ST e ~ [  0 - U(T)] I(T < oo) [ U(0) = u] 

= ~ ( u ) .  ( 9 . 1 0 )  

This formula shows that ~(u)  can be interpreted as the expected present value of  a 

payment of  1 that is made at the time of  recovery, if ruin takes place. 

F o r a _ < u < b ,  

Pr[Ta < '~ ] U(0) = u] < 1 (9.11) 

and 

Pr[Tb < ,,o I U(0) = u] = 1 (9.12) 

because the surplus process {U(t)} has a positive drift. We define the stopping time 

Ta,b = min(Ta, Tb), (9.13) 
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and consider  the functions 

A(a, b[ u) = E[e-~Y,.b I(U(Ta,b) = a) I U(0) = u] 

= E[e -;6T. I(Ta < Tb)[ U(0) = u], 

and 

(9.14) 

B(a, b[ u) = E[e4T,.b I(U(Ta,b) = b)[ U(0) = u] 

= E[e ~'Tb I(Ta > Tb) l U(0) = u]. (9.15) 

With 8 interpreted as a force of interest, A(a, b [ u) is the expected present value of  a 

payment  of  1 which is made when the surplus upcrosses the level a for the first time, 

provided that the surplus has not reached the level b in the meantime. Similarly, 

B(a, b [ u) is the expected present value of a payment of 1 which is made when the surplus 

reaches the level b for the first time, provided that the surplus has not dropped below the 

level a in the meantime. Note that, for each constant k, 

A(a, b[ u) = A(a+k, b+k[ u+k) (9.16) 

and 

B(a, b [ u) = B(a+k, b+k [ u+k). (9.17) 

It fol lows from (9.10) that, for u _> a, 

A(a, oo[u) = lira A(a ,b  lu)  
b --q. ~ 

= lim A ( O , b - a [ u - a )  
b ---) ~ 

= E[e ~v .  I(To < oo)] U(O) = u - a] 

= ~g(u - a). (9.18) 

Similarly, it fol lows from (9.12) and (8.7) that, for u < b, 

B(-oo, b [ u )  = lim B(a ,b  lu)  
a --q,  ~ 

= e~(b-u).  (9.19) 

Note that, with ~i = 0 and 0 <_ u < b, A(0, b ] u) is the probability of  ruin from an initial 

surplus u in the presence of an absorbing upper barrier at b. 

For a' < a < u < b < b', by considering whether T a < T b or T a > T b, we obtain the 

identities 

184 



A(a, b'l u) = A(a, b l u) + B(a, b l u)A(a, b'l b) (9.20) 

and 

B(a', b lu ) = A(a, b[ u)B(a', b I a) + B(a, b[ u). (9.21) 

With a = 0, b = x, b' = o~ and because of (9.18), (9.20) becomes 

~(u)  = A(0, x] u) + B(0, x I u)~(x). (9.22) 

With a' = ~,~, a = 0, b = x, b' = oo and because of (9.19), (9.21) becomes 

e-P(x-u) = A(0, x [ u)e-P x + B(0, x I u). (9.23) 

For 0 < u < x, formulas (9.22) and (9.23) are two linear equations for A(0, x ] u) and 

B(0, x I u); their solution is 

A(0, x[ u) = 

and 

ePX~(u) - epU~(x) 
epX _ ~(x)  (9.24) 

B ( 0 ,  x l u  ) - e0U _ W(u)  
epX _ W(x)" (9.25) 

With 8 = 0, Segerdahl [361 denotes A(0, x ] u) and B(0, x] u) as ~(u, x) and X(U, x), 

respectively. Formulas (9.24) and (9.25) extend Dickson 's  [7] formulas (1.3) and (1.4) to 

the general case of  fi > 0. 

To prove (9.5) let 0 _< u < x. If ruin should occur with U(0) = 0 such that the surplus 

immediately before ruin is x, then the surplus must attain the level u prior to ruin. Hence 

f(x[ 0) = B(0, u I 0) f(x] u), (9.26) 

o r  

1 
f(x[ u) = f(xl 0) B(0, u I 0) 

mop'; - ~(u) 
= f ( x l - "  l - ~(0) ' (9.27) 

which is (9.5). 

Formula  (9.6) is more intricate because the condition U(0) = u _> x = U(T-) > 0 

means that the surplus is to drop below the level x some time before ruin occurs. Its proof  

is based on the notion of  duality, which as pointed out by Feller [17, p. 395] enables one 



"to prove in an elementary way theorems that would otherwise require deep analytic 

methods." We shall derive the identity 

B(0, u[ 0)f (x]  u ) f ~  p(__x P(x) + Y)e-Or+ d y =  g (x )A( -u ,  01 -x)  e-flu, (9.28) 

valid for 0 < x < u. Solving for f(x I u) and using (4.4) and (9.16) we get 

f(x] u) = 811 - P(x)le-P u 
A(0, u l u x) 

B(0, u 10) (9.29) 

Applying (9.24) and (9.25) to (9.29) yields 

f(x[ u) = ~[1 - P(x)l ~t/(u x) e 9X~(u) 
1 -- ~(0) (9.30) 

which is indeed (9.6). 

To prove the identity (9.28), we multiply it by dx; the expression on the left-hand 

side can be interpreted as 

E[e -;6T,, I(Tu < T < oo x < U(T-) < x+dx) I U(0) = 0], (9.31 ) 

while the expression on the right-hand side is 

E[e-ST. I ( -x-dx  _< U(T) < - x ,  rain U(t) < u) I U(0) = 0]. (9.32) 
T<t<T~ 

The equality of (9.31) and (9.32) can be explained by duality. A dual process {U*(t)} of 

the process {U(t)} with U(0) = 0 is defined as follows: I f T  = ,:,o, we set U*(t) = U(t), and if 

T < oo, we set 

~ - U ( T  o-- t) for 0 <_ t <_ T o 
U*(t) = (9.33) 

U(t) for t > T 0 

See Figures 3.a and 3.b. In other words, suppose that {U(t)} has n jumps before time TO, 

and that the jump of size Xi occurs at time ti, ti < To, i = 1 . . . . .  n; then {U*(t)} has the 

same n jumps before time TO, except that the jump of size Xi occurs at time TO - ti, i = 1, 

. . . .  n. This is a measure-preserving correspondence, and hence the process {U*(t)} 

follows the same probability law as the process {U(t)}. That is, if a certain event in terms 

of {U(t)} is translated as an event that is formulated in terms of {U*(t)}, the probabilities, 

or, as in the case of (9.31) and (9.32), the contingent expectations, are identical. 
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l U(t) 

u !_ .......... ~ /  

-31 .......... 

Figure 3.a. A sample path of the process {U(t)} which contributes to (9.31) 

0 

- -X  

- I A  
iiiiiiii  ....... 

U*(t) 

Incidentally, this duality also explains the symmetric formula (4.7), which is for the case 

8=0 .  

Figure 3.b. The dual sample path which contributes to (9.32) 
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Using (2.43) we obtain from (9.5) and (9.6) the formula 

f(x, y I O) epu - ~(u)  

f(x, Y l u) -- (/  I - v(o)  ' 
\ f(x, y I 0) ePX~(u - x) - ~(u)  

I - v ( o )  

with 

f(x, Y l O) = ~e-pxp(x + y) 

according to (4.3). 

x > u >_ O, (9.34) 

O < x < u ,  (9.35) 

(9.36) 

E x a m p l e  One consequence of (9.34) and (9.35) is that there is an explicit  formula for 

f(x, y[ u) whenever there is an explicit  expression for the function ~t(u). This is the case 

for an exponential  claim amount distribution, 

p(x) = 13e-13x, 

Here we have, for u > 0, 

~¢(u) 

x>_O. 

= E[e~ST + pU(T) I(T < ~ )  [ U(0) = u] 

[~ - R e_Ru = ~ + p  (9.37) 

according to (8.37) [with w(y) = e-PY]. Then 

Ilt(u - x) = eRx~(u). (9.38) 

Hence,  by (9.5) and (9.6) we obtain 

2, e-fp + 13)x [([3 + p)e 0u _ ([3 - R) e-RU], x > u > 0, (9.39) 
I c(R + p) 

f(x I u) = M[3 - R) e-(P + fi)x [e(R + p)x _ 1] e -Ru, 0 < x -< u. (9.40) 
c(R + p) 

To determine f(x, Y l u) we apply (4.19). We may use the formula 

o f(xl u) dx = E[e ~ST I(T < oo) I U(0) = u] 

as a check for the validity of (9.39) and (9.40). After some calculation the left-hand side 

simplif ies as 

)" e -Ru, (9.41 ) c(--ff7-£ 

1 8 8  



while the right-hand side is 

- ~ - - ~  e -Ru (9.42) 

by (8.33). These two terms are the same because of (8.35). It is amusing to note that the 

integral of expression (9.40) from x = 0 to x = ,,o is also (9.41). IIII 

R e m a r k s  (i) With w(x, y) = e-PY, 

h(u) = /ue-P(z-u) g(z) dz (9.43) 

by (2.34), (2.16) and (4.4). It follows from (2.36) [with ~(u) = gt(u)] that 

~l/(u) = (gt*g)(u) + h(u) 

U 

I0 gt(u - z) g(z) dz + /ue-P(z-u) g(z) dz, (9.44) 

which generalizes Exercise 12.11 of Actuarial Mathematics [4]. With u = 0, (9.44) 

becomes 
i, 

~(0) = ]0 e -PZg(z)dz  = ~(p); (9.45) 

recall that ~( -R)  = 1. 

(ii) As an alternative proof, we would like to show that (9.5) and (9.6) satisfy the renewal 

equation (5.13), or equivalently,  with the definition 

eP u, x > u _ > 0 ,  
q0(u) = (9.46) 

\ ePX~l/(u - x), 0 < x _< u, 

that 

q~(u) - ~(u)  = [({p- Ig)*g](u) + [t - q/(0)] eP u I(x > u) (9.47) 

holds. A direct verification of (9.47) seems difficult. However,  we can confirm its 

validity by means of Laplace transforms. Taking Laplace transforms of (9.44) yields 

~(~) = ~(~),~(~) + '~(~), (9.48) 

where 

~(~) = , -  r , ~  joe+Lj e_p(z_0)g(z) dz]du  

~(~) - f ~ ( p )  (9.49) 
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by changing the order of integration. Hence 

~ ( ~ )  - f i ( ~ )  

i - ~ ( ~ )  

~(~) - ~(p) 
[ l  -~(~)](p-~) (9.50) 

F rom(9 .46)  
e(p -,~)x _ l 

~)(~) - P _ ~ + e (P -~ )x~(~ ) .  (9.51) 

Thus 
e(O-~)x _ I I - ~(p) ,(~) - ~ ( ~ )  - 

p - ~ l - ~(~) 
e (p-~)X - I 1 - ~(0)  

p - ~ l - ~ ( ~ )  
(9.52) 

by (9.45). We now see that (9.47) holds. 

(iii) As we pointed out earlier, it follows from our generalization of Dickson ' s  formula that 

there is an explicit  formula for f(x I u) [and hence fix, Y l u)] whenever there is an explicit  

expression for the function ~(u).  If u~(~) is a rational function, then, by locating its poles 

(singularities),  we can determine ~(u).  It follows from (9.50) that ~(~)  is a rational 

function if and only if ~(~) is a rational function; by (2.54) ~(~) is a rational function if and 

only if 0(~) is a rational function. It also follows from (9.50) that the singularities of ~ (~ )  

are exactly the roots of the equation 

~ ( ~ ) - -  1. (9.53) 

We should clarify that here the functions ~(~),  ~(~) and 0(~) are defined on the whole 

complex plane by analytic continuation. Consider the example where p(x) = [3e-13x; 

although the integral 

/oe-gX p(x) dx 

is not defined for complex numbers ~ with Re(G ) _< --[3, the rational function ~1 ~ i s .  

Consequently,  while (2.57) has at most one solution, (9.53) can have multiple solutions. 

Now, let - r l ,  -r2 . . . . .  - rm be the distinct roots of (9.53) and n i, n2 . . . . .  nm be their 
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multiplicit ies.  Then it follows from Heaviside's expansion formula (Spiegel [37, p. 73]) 

that 
dnk- I 

1 l_~im_rk ~ [ (~ + rk) nk i~/(~) e~U], (9.54) ~(u)  
k=l  ( n k - 1 ) !  ~, 

where qt(~,) is given by (9.50). In the special case where all poles of ~(~)  are simple, i.e., 

n I = n 2 . . . . .  n m = 1, then (9.54) simplifies as 

= ~-I"-~1 f i ( - rk)e_rku  
= - ~ )  

k~a'l~ g(-rk)  -- ~ (p )e - rku .  (9.55) 
= 

By (9.53) and (9.45), 

Similar  to (2.59), we have 

f~(-rk) - 2(P) = I - ~I/(0). 

' l  
-~ ' ( - rk) (p  + rk) = -~P ' ( - rk )  - 1. 

Hence (9.55) simplifies as 
e --l"kH i l l  

v(u) = [l - v(O)lk~'= -~-'(-rk)~P - l ' 

Putting u = 0 in (9.56) and rearranging, we obtain 

I 
1 - W ( 0 )  = 

1 + 
k= l_~o , (_ rk  ) _ 1 

which can be substituted in (9.56) yielding 
c ~ e-rk u 

qt(u) = x ~  C k= 1 -)LP'(-rk) - c 

I + k -z'- -~,-'(---P-rk) = |  c 

Consider  the case where p(x) is a mixture of exponential  distributions, 

where 

p(x) = --~1Aj ~j e-I~jx, x _> 0, 
j= 

o < ~ l < ~ : <  ... < ~ n ,  

(9.56) 

(9.57) 

(9.58) 

(9.59) 
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and 

Then 

__•IAJ = 1. 
j= 

~(~) = _ _ ~ ] ~ ,  (9.60) 
J 

and Lundberg's fundamental equation (2.21) becomes 

aj[3j  
8 +  )v-c~  = Kj__~ 1 ~j---f~. (9.61) 

The nonnegative solution of (9.61) is p and the negative solutions are the poles of ~t(~). 

We now impose the condition that Aj > 0, j = 1,2 . . . . .  n. Then (9.61) has n distinct 

negative roots {-rk} with 

O<r l  = R < ~ l < r 2 < ~ 2 <  ... < rn<~n .  

(Inequalities (12.6.15) of Actuarial Mathematics [4] are for the case 8 = 0; see also Figure 

12.7 of Actuarial Mathematics [4].) It follows from 

--~1 Aj lSj 
P'(~) = - i=  (13j + ~)2 (9.62) 

and (9.58) that, given the roots {-rk}, we have an explicit formula for ~(u) [and hence 

explicit formulas for both f(x I u) and f(x, y I u)]. On the other hand, by (2.54) and (9.60), 

~(~) = c¢o-~_ ~[P(~) - PIP)] 

- j= l(~j + ~)([~j + P)'  (9.63) 

from which we obtain 
- - _ A j  

p - ~ j= (~j + ~)([~j + p/2 

and 

(9.64) 

--~1 Aj~ j  
C'~j= (J3j + ~)2(~j + p) (9.65) 

It follows from (9.55), (9.64) and (9.65) that we have the following alternative formula for 

u/(u), 
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Aj6j 
- -  - rk)( j + 

p)2 

= Aj ~j 
J ~  (13j r02(13j + p) 

Note that in the special case n = 1 we obtain again (9.37). 

(iv) Substituting the asymptotic expression of ~(u),  

tl/(u ) '~' Ce-Ru 

m (9.35) yields 

f(x, Y l u) 

Because 

C 

e - - I ' k  u . 

C [ePXe_R(u_x ) _ e_RU] f(x, y[ 0) 1 - ~?(0) 

c[l  ~C~(0)] (eRx - e-pX) p(x + y) e -Ru 

(9.66) 

for u --~ oo, (9.67) 

for u ---) oo. (9.68) 

f~(-R) - f~(p) 
-ff(-R)(p + R) 

1 - ~ (0 )  

-[~'(-R)(p + R) 
1 - ~ ( 0 )  

- , (9.69) 
-~ ' ( -R) -  1 

the asymptot ic  formulas (9.68) and (7.16) are the same. 

(v) The expression 

E[v T ate=,  ~ I(T < ~ ) l  U(O) = u] (9.70) 

is the expected present value of a continuous annuity at a rate of 1 per unit t ime between 

the t ime of ruin and the time of recovery for a given initial surplus u. Because 

(9.70) is 

v T a,r-ffT-,ll = ~ ( e  ~ST - e-81~,,), (9.71) 

[J0r~° f (x  I u) dx - ~(u)] .  (9.72) 

We note that 

~im ° E[v T a ~  l iT < oo) 1 U(0) = u] = El(T0 - T) l iT < oo) I U(0) = u]. (9.73) 

Alternatively,  (9.70) is 
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E[vT 1 - eP U(T) 

because of (9.9). This yields 

E[(T0 - T) I(T < ,,o) I U(0) = u] 

I(T < oo) I U(0) = u] (9.74) 

= ~im ° ~E[IU(T)I I(T < oo) I U(O) = u] 

- c - l kp /E[ IU(T) I  I(T < ~ ) l  U(0) = u] (9.75) 

by (2.48). Formula  (9.75) is intuitively clear because c - Kpl is the drift of {U(t)}. For 

related results see Egfdio dos Reis [16]. 

(%) Recall the function 7t3(x, t I u), the passage time density of the surplus process at the 

level x, an explicit formula for which is given by (8.13) and (8.14). Similarly to (8.31), 

we have, for x <_ u and 5 >- 0, 

f o ~ 3 ( x , ~ l u )  e~SZd~ = / l t ( x - u ) [ l  + f o r t 3 ( x , ' t ] x ) e - & t d ~ ]  

- u ) [ I  + f ~ n 3 ( O , ' c  I O) e-~Xdx]. ~(x  
dO 

(9.76) 

Putting x = u = 0 in (9.76) and solving for the integral yields 
_ ~ ( o )  

f )  ~3(0, x I 0) e -5"t d'r 1 - ~ (0) '  (9.77) 

Applying (9.77) to (8.31) and (9.76), we obtain 
e-p(x- u) 

I I - ~ ( 0 ) '  x > u  

f~" x3(x, x I u) e -&t d"c = 
~(u - x) 

x < u  
1 - v ( O ) '  

(9.78) 

The right-hand side of  (9.78) can be written as a pair of infinite series using the geometr ic  

series formula 

1 _ n__~ 0 ilt(0)n; 
l - ~ ¢ ( 0 )  

the j-th term of  either series represents the contribution of the jth upcrossing at the level x 

to the integral. 
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10. Optimal Dividends 

We now consider a problem that is due to Bruno de Finetti, has been treated by 

Karl Borch and others, and can be found in the textbooks of Biihlmann [5, Section 6.4] 

and Gerber [ 19, Section 10.1 ]. Here the surplus model is modified in that dividends are 

paid to the shareholders of the insurance company. We assume that the dividends are paid 

according to a barrier strategy corresponding to a barrier at the level b. Thus whenever 

the surplus is on the barrier b, dividends are paid continuously, at a rate of c so that the 

surplus stays on the barrier, until the next claim occurs and the surplus falls below b. If 

the surplus is below b, no dividends are being paid. Evidently, ruin will occur with 

certainty in this model. For 0 _< u _< b, let V(u, b) denote the expected present value of the 

dividend payments until ruin. 

Since no dividends are paid, unless the surplus reaches the level b before ruin 

occurs, we have, for 0 <_ u _< b, 

V(u, b) = B(0, bl u) V(b, b), ( t0.1)  

or, by (9.25) 

V(u, b) - epu - u/(u) V(b, b). (10.2) 
e ob ~(b) 

To determine V(b, b), we need a boundary condition at u = b. To obtain it, we compare 

two situations, one with initial surplus b, and the other with initial surplus u = b - e, E > 0. 

If E is sufficiently small, we can be "almost sure" that in the second situation the surplus 

will reach the barrier before a claim occurs; hence the dividends paid in the second case 

will be "essentially" the dividends paid in the first case reduced by ~:, from which it 

follows that 

V ( b -  e, b) - -  V(b, b) - ~. (10.3) 

In the limit, this means that 

--'o3_~_V [ = 1 .  (l  0.4) 
OU I u = b  

Differentiating (10.2) with respect to u and then setting u = b yields 
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Hence 

1 - pepb - gt'(b) V(b, b). 
eP b tlt(b ) 

eP u - ~(u)  0 < u < b .  (10.5) 
V(u, b) - pePb _ ~ ' ( b ) '  

This formula should be compared with ( 1. t 3) in Chapter 10 of Gerber  [ 19]. In Section 

10.1 of [19], the function B(0, b[ u) is denoted as W(u, b). 

Let b be the optimal barrier, i.e., the value of b that maximizes  the expected 

present value of the dividends.  In view of (10.5), b is the value that minimizes the 

denominator ,  i.e., b satisfies 

pZePb - tg"(b) = 0. (10.6) 

An equivalent  condit ion is that 

02V 

~ U 2 u = b  = 0; (10.7) 

this fol lows from the explici t  form of (10.5). 

Example In the case of an exponential  claim amount distribution, there is an explicit  

expression for ~(u) .  Substituting (9.37) into (10.5) yields 

V(u ,b )  = ([3+p)eP u - ( [ 3 -R)e  -Ru (10.8) 
p([3 + p)e pb + R([3 - R)e -Rb" 

The optimal value b is obtained from the condition that 

p2([3 + p)eP b - R2(~ - R)e -Rb = 0. (10,9) 

Thus 
1 , R2([3- R) 

- p + R , n p - ~ + ~  (10.10) 

is the optimal barrier. Illl 
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11. Concluding Remarks 

This paper studies the joint distribution of the time of ruin, the surplus 

immediately before ruin, and the deficit at ruin. Motivated by the problem of pricing 

American options on stocks with jumps, we incorporate the time of ruin in the classical 

model by discounting. New results are derived, many of which have a probabilistic 

interpretation, and additional insight is gained for existing results in the classical model. 

Our next goal is to treat the option pricing problem mentioned in the Introduction. 

The results presented can be generalized in various directions. For example, 

several formulas can be extended to the case where the compound Poisson process is 

replaced by a more general process with positive, independent and stationary increments, 

such as the gamma process or the inverse Gaussian process. In the references there are 

some recently published related papers. 
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