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Abstract  

In addition to death and maturi ty  guarantees on the mutual funds 
they sell, some insurance companies make it possible for the investor 
to extend the guarantees for a fixed number of years. In this paper, 
we consider the case when that  option is of the European type; that  is, 
the investor, at maturity, can either close out the contract or extend 
it for the stated, fixed term. When extended, the guarantee is on the 
value of the fund at the original maturi ty date. The fund is assumed 
to be fully invested in common stock. 
The value of that  option, the rollover option, is derived in a risk- 
neutral environment. Mortality is also taken into account when cal- 
culating the value of the option. The formulas obtained are of the 
Black-Scholes type. 

1 I n t r o d u c t i o n  

Compute r iza t ion  and cus tomer  sophistication have rendered  possible and 
necessary financial innovations which insurance companies probably  would 
not  even have considered th i r ty  years ago. 
As a result ,  over the last decade or two, to make their  products  more  a t t rac-  
tive, insurance companies have added inves tment  features to their  insurance 
produc ts  ( e . g .  , variable life insurance).  Likewise, they  have enhanced  their  
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investment products by adding insurance features onto them (e.g., maturity 
guarantees). (For an overview of the later developments in that arena, see 
Mavrogenes and Verrier [7].) 
The latter kind of innovation is of interest here. In particular, maturity guar- 
antees ensure that the payoff to the investor, at maturity, will be of at least 
a certain stated amount. They are valuable in case of downward market 
fluctuations. In Section 2, the results already found in the literature in the 
case of the basic maturity guarantee will be looked at. 
Then, in Section 3, we will define the rollover option. We will also derive the 
pricing formula for that option under the same assumptions as in Section 2. 
As will then be seen, an assumption with respect to the investor's behavior 
is necessary. In that section, the investor will be naive. 
In Section 4, the results of Section 3 will be modified to accommodate the 
case of the investor with optimal behavior. Section 5 will compare the two 
formulae obtained, both theoretically and numerically, with one another as 
well as with the basic guarantee. Section 6 will contain the conclusion to this 
paper. 

2 Basic Maturity Guarantees 

Brennan and Schwartz [4, 5] have done the pioneering work for the valua- 
tion of these guarantees. The Maturity Guarantees Working Party [6] also 
studied their value, but  their approach, based on simulations with the Wilkie 
model, will not be adopted here. Bacinello and Ortu [1, 2] further generalized 
Brennan and Schwartz' work by endogenizing the guarantees. 
Since we will only consider the single premium case with exogenous guar- 
antees for the rollover option, we will limit ourselves to that case as well in 
reviewing the results found in the hterature. 
The basic maturity guarantee is priced easily when its characteristics are rec- 
ognized to be the same as that of a European put option on common stock. 
Indeed, on a single amount invested So at time 0, the investor is guaranteed 
to receive at time T at least K, the guaranteed arnount. This means that, at 
time T, the investor receives maX[ST, K], where ST is the value of the fund 
at time T. Another way to write the same expression, so as to single out the 
guarantee, is ST q- max[0, K - ST]. 
Hence, the value of the guarantee at maturity is the second part of the second 
expression. This element being identical to that of the payoff of a put option, 
its expected value at time 0 is given by the following: 
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where 

Pb(So, K,r,  5, a,T) = K ' e - r T ' N ( - d 2 ) - S o . e - ~ ' r . N ( - d l ) .  (1) 

ln(-~) + (r - 5 +  .5 .  a2)  • T 
dl -- 

a v ~  

d2 = dl - a v ~ ,  

Pb denotes the price of a basic maturity guarantee, r is the riskfree force of 
interest, 6 is the annual dividend payout rate, and a is the annual volatility 
of the stock fund. 
It is important to understand what & actually stands for. It is not the annual 
stock dividend rate, i.e. the rate at which dividends are paid by the company 
to the fund. Rather, it the rate at which dividends are paid by the fund to 
the investor. Hence, if all dividends received by the fund are reinvested (i. e., 
not distributed), 6 is 0. However, if all dividends are distributed, the two 
concepts of "dividend rates" are equivalent and 6 equals the annual stock 
dividend rate. 
The above result is valid in a risk-neutral world, where markets are perfect 
and ffictionless. It is, obviously, the celebrated Black-Scholes result. 
One way to make this formula more applicable to the insurance industry is 
to incorporate the mortality risk into it. It is typical that the guarantee 
upon death will be 100% of the amount invested, even when the guarantee 
at maturi ty  is less than 100%. Assuming deaths occur at end of year and 
the amount guaranteed on death is equal to that guaranteed at maturity, the 
price of the guarantee becomes 

T 
P~ (So, K,r,  6,~,T, T m {J- , Iq=} j=z) = :~-'~ J-zlq=" Pb(So, K,r,  6,~, j)  

j----1 

+ rp= .  

where x is the age of the insured at time 0, j-llq= is the probability that  that 
individual dies in the jth year, and TP= is the probability that he will survive 
the next T years. The superscript m indicates that mortality is accounted 
for. 

3 R o l l o v e r  O p t i o n  - N a i v e  B e h a v i o r  

Now that we have the cornerstone, we are ready to build on it and consider 
the rollover option. That option has other names in the insurance market. 
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However, we have chosen to call it "rollover option" as, at the original ma- 
turity, tile investor has the option to roll over his investment. 
Hence, under the terms of the option studied here, at time T,  the investor 
has the choice between two courses of action: 

• Exercise the guarantee; i.e., receive max[ST, K] at time T. 

• Roll over the guarantee; i.e., renew the guarantee with new face amount 
ST and new guara1:teed amount K .  STs0 ' and receive max[ST, K .  -~] at 
time 2T. 

Of course, the particular terms of that option vary from company to company. 
On the one hand, it may be possible for the investor to roll over the guarantee 
at any time before time T, thereby making the option of the American type. 
On the other hand, the investor may have some discretion as to the new 
maturi ty of the guarantee when rolling over. However, the new guaranteed 
amount, should the guarantee be rolled over, is well-defined in the contract 
and is not an element over which the investor has any control. 
For the sake of simplicity, we deal only with the European option whose 
extended maturity is equal to the original one. We also assume that the new 
guaranteed amount represents the same percentage of ST as K did of So. For 
instance, if the original guarantee is 100% and the single premium is $100, 
then the new guarantee, upon exercise, would be 100% of ST. 
In order to value the guarantee, one first has to understand the decision facing 
the investor at time T, that time at which the guarantee may be renewed 
or the contract closed out. On the one hand, it is clear that if closing the 
contract results in the guarantee having no value (i.e., ST k K ) ,  then the 
guarantee should be renewed as the new guarantee has a nonnegative value. 
On the other hand, one view, somewhat naive, is that if the guarantee is of 
value at time T (i.e., ST < K),  the guarantee should be taken advantage 
of, and the contract terminated. 
According to this naive behavior, the value of the rollover option is given by 
the following equation: 

P~(So, K , r , d , a , T )  = 

+ 

K .  e - r T .  N(-d=)  - So. e -a'T" N ( - d l )  

e - s 'T .  N ( d l )  

• [ K .  e - r T .  Y ( - d = )  - So.  e -a'T" N ( - d l ) ] ,  

(2) 

where dl and dz are as in Equation 1. The first two terms on the right-hand 
side are the same as in Equation 1, since the payoff at time T is the same for 
the rollover option as for the basic maturity guarantee. The multiplicative 
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term on the second line, e -~'r • N(dl) represents the expected value of $1 
(invested in stock at time 0) at time T, discounted back to time 0, given 
that  the accumulated value turns out to be more than K The other mul- 
tiplicative term, on the third line, is the value of the basic guarantee since, 
when renewed, the guarantee takes on the features of a newly issued basic 
guarantee. 
From Equation 2, it is easy to see what the extra value of the rollover option 
is, compared to the basic one. The second and third lines of the equation 
capture the nature of the added feature. However, it is important to remem- 
ber that that is the naive approach, and, in the next section, a better result 
will be derived. 
Again, it is possible to generalize the equation so as to account for mortal- 
ity. It should be relatively straightforward and, using the notation already 
introduced, the price of the rollover option then turns out to be 

P[, (So, K , r ,g ,a ,T ,  2T " 

T 

= ~j_l lq=.Pb(So,  K,r,  5, a, j)  
3"=1 

-b Tp=" Pb(So, K,r,  5,~r,T), 
T 

-4- r P =  " e - J ' T  " Y ( d , )  . [~_,i-,Iq=+rPb(So, g,r,~,~r,j)  
j--I 

-}- T P = + T "  Pb(So, K, r, $, o, T)]. 

As before, the right-hand side can be decomposed into meaningful parts. The 
first two lines recover the expression found for the price of the basic guarantee 
in Section 2. The third and fourth lines have the expected unit value given 
the guarantee is renewed, multiplied by the price of the basic guarantee at 
time T. 

4 R o l l o v e r  O p t i o n  - O p t i m a l  B e h a v i o r  

Now, although it may not be apparent at first sight, the result in Equation 2 
is an underestimation of the true value of the roUover option. The reason is 
that,  at time T, the naive behavior is suboptimal. 
Of course, as was noted earher, renewing the guarantee when it would oth- 
erwise be of no value makes sense. However, it is not necessarily a good 
strategy, in a risk-neutral environment, to exercise the guarantee at time 
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T instead of renewing it when it is only slightly in the money. (The same 
kind of argument is used for the exercise policy under the American stock 
options.) 
What the investor really should do at time T is compare the value of the 
exercised guarantee to the expected value of the renewed guarantee. From 
that comparison, a breaking point can be determined; that point will di- 
vide the distribution of ST into its "exercise" and "renew" regions. At the 
breaking point K*, where indifference between the two actions is reached, 
the foUowing equality holds: 

. ax[0, K - K'] = K ' .  Pb(1, K_ a,- ,  T )  
S O  ' , 

Noting that Pb is always positive and rearranging the above equation, we 
obtain the following expression for K' :  

K ' ( S , K , r , & o ' , T )  = 
K 

1 + Pb(1. K-- r , a , ~ , T ) "  
S o '  

(3) 

Knowing the breaking point, we then can calculate the value of the roUover 
option when the investor is behaving optimally. Hence, if ST <_ K ' ,  the 
investor terminates the contract and takes advantage of the guarantee. So, 
in that case, we are back to the basic guarantee, with the difference that, 
although exercise is determined by K*, the payoff still depends on K. If 
ST > K*, we need to find the expected discounted value of ST conditional 
on that event, and multiply it by the value of a basic guarantee at time T. 
Following that line of reasoning produces the equation below. 

where 

P o  ( S o , I - (  , ,r , eS , o', T) = 

+ 

+ 

K "  . e - ' T  . N ( - ~ )  - So" e -~'T " N ( - ~ )  

N ( - ~ ) .  ( K -  K ' ) .  e - ' v  

e -~ 'T.  g ( ~ )  

• [K .  e - ' ' r .  Y ( - d : )  - So- e -~'r" N( -d l ) ] ,  

(4) 

= av/-  ~ 
(r ~ .5 l n ( K . ) +  -- + . a ~ ) . T  

dl and d2 are as in Equation 1, and K* is as defined in Equation 3. The first 
line on the right-liand side is the value of a basic guarantee with guaranteed 
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amount  K ' .  The second line accounts for the fact that, as a matter  of fact, 
K is the amount guaranteed, even though K" defines the exercise policy. The 
last two lines give the value of the option conditional on ST > K ' .  There 
is a similarity between that  term and the corresponding one in Equation 2; 
however, here, N(d*~) is used instead of N(dx) as the first multiplicative term. 
As will be seen in the next section, through numerical values, Equation 4 
yields larger values than Equation 2, all other things being equal. On the 
one hand, the value attached to the optimal behavior is decreased by the more 
stringent exercise policy at time T. On the other hand, that  loss is more than 
recouped by the additional expected gain from holding the guarantee longer. 
Once more, it is possible to generalize the previous equation to accommodate 
mortality. However, unlike in the previous cases, incorporating the mortality 
rates is slightly more complicated, since the breaking point will also depend 
on them. 8o, that  is, again, the first object to calculate. K* is given by 

K. ,m(S ,K , r ,  8, a,T, T 

K 

I + ~j=IT J-~lq~+T " Ps(So, K,r ,5,  a,j) +TP,+T • Pb(So, K,r ,5,  a ,T)  
K 

1 + P£(S ,  K, r, 5, a, T, {j_llq~+T}T=I )' 

where z is the age of the investor at time 0. That  formula is obtained by an 
argument similar to that  used to get Equation 3. 
Now that  we have K*, it is possible to find the price of the rollover option 
to be 

P~( S, K, r, 5, ~, T, {./_iiq,}~__T1) 
T 

= ~-'Ji-xlq= .Pb(So, K,r ,  5, g,j)  
j = l  

+ TPz" [K ' .  e - ' T .  N(-d*2) - So" e -aT .  N(-d~)  

. ( K  - K ' )  . 

T 

+ TP=" e -aT" N ( ~ ) .  [~--~-llq=+T" Pb(So, g ,r ,d ,~r , j )  
j = l  

+ TP,+T" P~(S0, K, r, 5, ~, T)], 

where it is important  to note that dl, d2, d~ and d~ all are functions of S, K, 
r, ~i,a a n d T .  
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5 N u m e r i c a l  R e s u l t s  

This section features numerical results based on the equations presented in 
the previous sections. We have ignored mortality, but we think that  the ar- 
guments  to be presented should convince the reader that  similar conclusions 
would be reached when taking mortali ty into account. 
All results are based on So = 100, r = .06 and a = .20. The choice of So is 
un impor tan t  - in fact, the ratio So : K is what matters.  However, r and 
a are impor tant  assumptions and should be viewed here as totally arbi trary 
choices. 
The t ime to matur i ty  will take on a range of values. As for the dividend 
payout  rate, 8, it will either be 0 or .03. In the first case, all dividends re- 
ceived by the fund are reinvested. In the second case, under the assumption 
tha t  the stock dividend rate also is .03, all dividends received by the fund 
are dis tr ibuted to the investors. 
Table 1 contains the values obtained when K = 100, while Table 2 contains 
those obtained when K = 75, both for 8=0. Figures 1 and 2 are meant  to 
help visualize the contents of those tables. (All tables and figures are found 
at the end of the paper, after the references.) 
In addition, Table 3 and Table 4 are the counterparts to Tables 1 and 2 in 
the case 8=.03. Again, Figures 3 and 4 are meant to depict the numbers 
found in the corresponding tables. 
In all four tables, the third and fourth columns contain the values obtained 
when using Equations 2 and 4, respectively. As can be seen in the tables and 
on the graphs, these values are very close to one another, especially for later 
maturi t ies.  More comments will be made later on that  initial observation. 
The second column features the value of the basic guarantee. It is only meant  
to provide an idea of the difference in value between that  and the rollover 
option. As seen on the graphs, there is an appreciable difference between the 
two. In view of that ,  ignoring the added value of the roUover option would 
appear to be a significant mistake. 
As for the fifth column, it simply is twice the second one when 8=0. Other- 
wise, it is 1 + e - '~ 'T  times the second one. Interestingly enough, the longer 
the matur i ty ,  the more the values in the fourth and fifth columns seem to 
agree. So, one may wonder what kind of option the fifth column represents, 
if any. As a mat te r  of fact, these costs are those of an option which would 
allow the investor to cash in the value of the guarantee at time T, as well as 
at t ime 2T based on the revised amount set at time T. We will refer to it 
as a " tandem put" .  (See Blazenko, Boyle and Newport [3] for more details 
on the t andem option, which is an option similar to the one just described, 
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except that it is based on calls and does not allow for dividends.) 
In other words, the tandem put is like a rollover option which does not re- 
quire the investor to terminate the contract when exercising the guarantee 
at time T. Since the rollover option only allows exercise once, its value is 
bounded above by double the basic guarantee when 6=0 or, more generally, 
by that of the tandem put. 
As was noted earlier, the third and fourth columns are in close agreement. 
A look at Equations 2 and 4 confirms that the basic difference between the 
naive and optimal behaviors is the value of the breaking point. As seen in 
Table 5, K and K" eventually get closer and closer to one another, as ma- 
turity increases. As a result, the values under the two exercise policies also 
get closer and closer to one another, as maturity increases. 
It was also noted that the fourth and fifth columns are not too far from one 
another, although not the same at any maturity considered. Since both the 
naive and optimal behaviors eventually yield sensibly the same results, Equa- 
tions 2 and 1 will be compared. This considerably simplifies the analysis. P ,  
and Pb are related in the following way: 

P~(S,K,r,a,¢,T): [l+e-"tN(d,)l. Pb(S,K,r,a,¢,T). (5) 

Hence, the closer N(dl) is to 1, the closer P,  is to (1 + e -a . r )  × Pb, which 
the value of the tandem put. Table 6 confirms that N(dl) increases towards 
1 for larger maturities. This results in the restriction of a single exercise 
resulting in less and less of a loss. 
Based on these earlier observations, it then seems that, for large maturities, 
using the simpler result provided by P,~ would provide a satisfactory approx- 
imation. Likewise, (1 + e -a ' T) x Pb may also provide a ballpark figure. 
When 6=0, the factor e -~ " T disappears in Equation 5. As a result, past a 
certain T, the ratio of P ,  to Pb strictly increases towards 2. 
However, when 6 > 0, that exponential factor goes to 0 faster than N(dl) 
goes to 1. Hence, for strictly positive values of 6, the value of the rollover 
option also eventually gets close to that of the basic maturity guarantee. 
That means that, eventually, not only does the value of the rollover option 
get closer, from below, to that of the tandem put, but also that  the rollover 
option is worth little more than the basic maturity guarantee in the long run. 
That fact is due to the readjustment of the guaranteed amount at time T. 
One final observation may be worth making. For the basic maturity guar- 
antee, the larger 6 is, the more valuable the guarantee becomes. That is so 
because of the risk-neutrality assumption: the expected return must be the 
same regardless of the value of 6. This implies that the larger 6 is, the smaller 
the expected capital gain is. 
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However, the same comparison is not so straightforward in the case of the 
rollover option. Again, because the expected capital gain decreases when 5 
increases, larger values of d have a positive impact on the value of the rollover 
option. The readjustment of the guaranteed amount at time T, though, has 
the opposite effect, as larger values of 5 lead to smaller expected renewal 
guaranteed amounts. Based on the values found in Tables 1 to 4, it appears 
that the former effect prevails and, thus, that a full reinvestment of dividends 
makes the rollover option most valuable. 
Of course, that argument only looks at the value of the guarantee being of- 
fered. Front the investor's point of view, all cash flows should be taken into 
account. However, all cash flows other than the guarantee payoff add up 
to the same expected value at time 0 no matter what 5 is equal to. That 
statement also holds at time T. Hence, the same conclusions are reached 
even when considering all cash flows. 

6 C o n c l u s i o n  

In this paper, we have derived formulae to value the roUover option in a risk- 
neutral environment. We have done so under two types of behavior: naive 
and optimal. Differences between the two behaviors have been analyzed qual- 
itatively and quantitatively. The rollover option has also been compared to 
the basic guarantee, thereby showing how much more valuable it really is. 
Although these results are interesting in themselves, determining how to 
hedge the rollover option, if feasible, would be of value. One could then 
study the impact of discretization as well as of transaction costs. Of course, 
whether or not hedging is possible would be the first issue to address. While 
it is clear that hedging could be done at time T if and when the guarantee 
is renewed, it is not clear that hedging could effectively be done starting at 
time 0. 
Likewise, calculating the value of the roUover option under other hypotheses 
regarding the stock market and the investor's behavior might yield more rel- 
evant results. In any case, pinpointing the optimal course of action at time 
T reInains central to the solution. 
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Table 1: Prices of Different Options 
So=100, K=100, r=.06, 5=0, ~r=.20 

Original Basic Naive Optimal 2 x Basic 
Maturity Guarantee Rollover Rollover Guarantee 

1 5.166 8.552 8.784 10.332 
2 5.890 10.096 10.292 11.779 
3 6.026 10.580 10.735 12.052 
4 5.920 10.586 10.705 11.840 
5 5.697 10.337 10.428 11.394 
6 5.415 9.945 10.015 10.831 
7 5.107 9.474 9.527 10.214 
8 4.790 8.963 9.003 9.580 
9 4.475 8.435 8.466 8.950 

10 4.168 7.908 7.931 8.337 
11 3.874 7.391 7.409 7.748 

12 3.594 6.890 6.904 7.188 
13 3.330 6.411 6.422 6.660 
14 3.081 5.956 5.964 6.163 
15 2.849 5.525 5.531 5.698 
16 2.632 5.120 5.124 5.264 
17 2.430 4.739 4.743 4.860 
18 2.242 4.384 4.386 4.484 
19 2.068 4.052 4.054 4.136 
20 1.907 3.743 3.745 3.813 
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Table 2: Prices of Different Options 
S0=100, K=75, r=.06, $=0, a=.20 

Original Basic Naive Optimal i 2 x Basic 
Maturity Guarantee Rollover Rollover Guarantee 

1 0.279 0.548 0.548 0.557 
2 0.766 1.489 1.490 1.532 
3 1.109 2.148 2.150 2.219 
4 1.324 2.563 2.566 2.648 
5 1.447 2.805 2.808 2.895 
6 1.507 2.927 2.929 3.015 
7 1.523 2.964 2.966 3.047 
8 1.509 2.942 2.944 3.018 
9 1.474 2.880 2.881 2.948 

10 1.425 2.789 2.790 2.850 
11 1.367 2.680 2.681 2.733 
12 1.303 2.559 2.560 2.606 
13 1.236 2.431 2.432 2.472 
14 1.168 2.300 2.301 2.335 
15 1.100 2.170 2.170 2.200 
16 1.033 2.040 2.041 2.066 
17 0.968 1.914 1.915 1.936 
18 0.906 1.792 1.793 1.811 
19 0.846 1.676 1.676 1.692 
20 0.789 1.564 1.564 1.578 
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Figure 1: Comparison of Different Option Prices 
So=100, K=100, r=.06, d=0, ~=.20 
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Figure 2: Comparison of Different Option Prices 
So=100, K-75,  r=.06, $=0, ~r=.20 
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Table 3: Prices of Different Options 
So=100, K--100, r=.06,  5=.03, a=.20 

Original Basic Naive Optimal 
Matur i ty  Guarantee Rollover Rollover 

1 6.267 9.908 10.258 
2 
3 

7.770 
8.493 

12.439 
13.674 

12.793 
13.997 

4 8.834 14.251 14.536 
5 8.949 14.432 14.678 
6 8.919 14.356 14.566 
7 8.793 14.108 14.286 

(1 + e -~'T) x Basic 
Guarantee 

12.349 
15.087 
16.255 
16.668 
16.651 
16.369 
15.920 

8 8.600 13.743 13.893 15.365 
9 8.363 13.300 13.426 14.747 

10 8.095 12.806 12.911 i 14.093 
11 7.808 12.279 12.367 
12 7.509 11.736 11.809 

13.422 
12.748 

13 7.204 11.186 11.247 12.082 
14 6.898 10.638 10.689 11.430 
15 6.593 10.097 10.140 10.797 
16 6.293 9.568 9.604 10.186 
17 5.998 9.055 9.084 9.600 
18 5.711 8.559 8.583 9.039 
19 5.432 8.081 8.101 8.505 
20 5.163 7.640 7.623 7.997 
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Table 4: Prices of Different Options 
So=100, K=75, r=.06, 6=.03, ~r=.20 

Original 
Maturity 

1 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Basic 
Guarantee 

0.394 
1.174 
1.816 

2.294 

2.641 
2.885 

3.049 
3.152 

3.206 

3.222 
3.209 
3.173 
3.118 

3.050 
2.971 
2.885 
2.793 

2.697 

2.599 

2.499 

Naive 
Rollover 

0.759 
2.186 

3.304 

4.103 

4.654 

5.017 
5.239 

5.354 
5.386 

5.356 

5.278 
5.165 
5.025 
4.867 
4.695 

4.515 

4.329 
4.141 

3.954 
3.768 

Optimal 
Rollover 

0.759 
2.190 

3.311 
4.113 
4.666 
5.031 

5.253 

5.366 

5.398 

5.366 
5.288 
5.174 
5.033 
4.874 
4.701 
4.520 

4.333 
4.145 
3.957 
3.770 

(1 + e -*'T) x Basic 
Guarantee 

0.776 
2.281 
3.475 

4.329 

4.914 

5.295 
5.521 

5.631 

5.654 

5.610 
5.516 
5.386 
5.230 
5.054 
4.866 
4.670 
4.470 
4.268 
4.068 
3.871 
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Figure 3: Comparison of Different Option Prices 
So=100, K=100, r=.06, 6=.03, ~=.20 
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Figure 4: Comparison of Different Option Prices 
So=100, K=75, r=.06, 5=.03, ~r=.20 
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Table 5: Breaking Points 

T 
1 
2 
3 
4 
5 

6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 
20 

5 = 0 5 = .03 
K = 100 K = 7 5  K =  100 K =  75 

95.088 74.792 94.103 74.706 
94.438 74.430 92.791 74.129 
94.317 74.177 92.172 73.663 
94.411 74.020 91.883 73.318 
94.610 73.930 91.786 73.070 
94.863 73.886 91.811 72.897 
95.141 ~ 73.875 91.918 72.781 
95.429 1 73.885 92.081 72.708 
95.717 73.910 92.282 72.670 
95.998 73.946 92.511 72.659 
96.270 73.989 92.757 72.668 
96.531 74.035 93.015 72.694 
96.777 74.084 93.280 72.732 
97.011 74.134 93.547 72.780 

97.230 74.184 93.815 72.836 
97.436 74.233 94.080 72.897 
97.628 74.281 94.341 72.962 
97.807 74.327 94.597 73.031 
97.974 74.371 94.847 73.100 
98.129 74.413 95.090 73.171 
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Table 6: Values of N(dl) 

T 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

= 0 [ ~ = .O3 
K =  100 K =75  [ K = 1 0 0  K = 7 5  
0.65542 0.96700 0.59871 0.95433 
0.71420 0.94327 0.63816 0.91476 
0.75579 0.93616 0.66750 0.89679 
0.78814 0.93564 0.69146 0.88862 
0.81445 0.93794 0.71192 0.88538 
0.83641 0.94145 0.72985 0.88485 
0.85504 0.94542 0.74583 0.88592 
0.87105 0.94949 0.76025 0.88794 
0.88493 0.95347 0.77337 0.89055 
0.89705 0.95726 0.78540 0.89351 
0.90769 0.96083 0.79649 0.89668 
0.91707 0.96414 r 0.80676 0.89995 
0.92538 0.96720 0.81631 0.90326 

! i i 

0.93276 0.97002 0.82521 0.90656 
0.93933 0.97261 0.83354 0.90982 
0.94520 0.97498 0.84134 0.91302 
0.95045 0.97715 0.84868 0.91615 
0.95516 0.97913 0.85558 0.91920 
0.95938 0.98094 0.86208 0.92216 
0.96318 0.98259 0.86822 0.92502 
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