ACTUARIAL RESEARCH CLEARING HOUSE
1997 VOL. 1

Large Deviation Estimate in Ruin Theory

Jinhua Tao

Central Missouri State University

Warrensburg, MO 64093

Abstract

The main purpose of this paper is to study the ruin probabilities of insurance
surplus process over an extended period of time. The traditional large deviation
techniques are used to obtain asymptotic exponential bound for the probability of
ruin occurring at time ¢ when the aggregate claim process is compound Poisson.
The exponential bound is naturally expressed in terms of the large deviation rate

function.

1. Introduction

Let X1, X,, - be a sequence of i.i.d. random variables with common distri-
bution function F(z) and mean u. Let N(t) be a Poison process with intensity
A and be independent of all X;’s. For ¢ > 0, let S; denote the aggregate claims
up to time ¢ and let U(t) denote the insurer’s surplus at time ¢, then we have the

following two processes:

Si=X1+Xo+ -+ Xy,

the insurance risk process and

Ult) =u+ct— 5y,

the insurance surplus process. Here u is the initial surplus of the insurer and
we assume that premium is collected continuously at rate ¢. Ruin occurs when

S; > ct + u for the first time. The probability of eventual ruin is defined to be

¥(u) = P(T(u) < o0)
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with T'(u) = min{t: S; > ct + u}.
It is well known that when ¢ < Ay, ¥(u) = 1 for any u > 0 and when
c> A, 0 < ¢¥(u) <1 foru>0. In this paper we are mainly concerned with the

probability that ruin occurs at the end of a particular planning year, i.c.

P{S; > u+ct} (1)

when ¢t = positive integers and ¢ > Au. It will be shown that when ¢ is large this

t

probability is approximately equal to e} where 7(¢) < 0 and depends only on ¢

and the original process.

2. Main results

We start with a known fact about the mean and moment generating function

Of St.

Lemma 2.1 Let m(8) be the moment generating function of X, then
(i). B[St = Aut

(11). Moment generating function of S,
E[ef%] = Mmi®)-t

Next we introduce two important functions which will be used frequently in
proving our main results.

Let h(8) be a function which is equal to

R(6) = Alm(8) — 1]

and let function r(a) be the convex conjugate of 2(9), i.e.

r(a) = i%f{h(ﬁ) —af}. (2)
We call function r(a) the ratc function of our compound Poisson process for

the reason which will become clear in the main results. This function has the

following properties.
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Lemma 2.2 Assume that m(8) < oo for § in some open interval D,, containing
origin and assume that for each a, the solution 8, to the equation a = 2’(8) exists
and lies in the interior of D,,. Then

i) r(a) is strictly concave down and infinitely differentiable with maximum 0 at-
tained at @ = hy;

i) r(a) = A(m(0,) — 1) — ab,, where §, is the unique solution to the equation
a = Am/().
i) For any a > Ap,
l%f{h(&) —ab} = égg{h(a) — ab}.

Proof: Since m(#) is finite in an open interval around origin, m(#) is infinitely

differentiable in D,,. Furthermore,
R"(8) = Am"(8) > 0,

This implies that h(#) is strictly concave up and that e = A'(8) defines a 1-1
strictly increasing and infinitely differentiable mapping. The corresponding pair

a and 0, satisfies:
r{a) = h(8,) — 0,a, when a = h'(8,).
The inverse mapping is actually given by
b= —r'(a).
Consequent]
quently r”(a):_%:_ 1
da R"(9)

which implies that r(a) is a concave down function.

<0,
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The proof of iii} could be easily obtained from the following picture about the

relation between functions y = A(8) and y = a8 with a > Ag.

y y=h@® y=¢0

'y

y=Apd

Our first result is an upper bound for the probability in (1).
Theorem 2.1 Assumec that () < oo for § in some open interval 1, containing

origin, then for any ¢t > 0

PlSi>ct+u] < er (o)t

Proof: For any 8 > 0,

PlSe>ct+u] < P[S > ct]
p [ees. N eGst]
S e—@clE(SGSg)
— e[—€c+/\(m(9)—l}t). (3)
(The inequality is Chebycheff’s.) Take infimum for all § > 0 on the right hand

side, by Lemma 2.2 iii) we recognize that the exponent is simply r(c)t. This proves
the upper bound. QED

As to the lower bound we consider the special case when t is a positive integer.

Note that by Lemma 2.1, S; is equivalent to the sum of i.i.d. random variables
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Yy, -+, Y, with E(Y]) = Ap and E[e®"1] = ¢* (™)~ By the Law of large numbers,

HmP(%wem):L

t—oo

The event {S; > u+ ct} with ¢ > A is a event for S, to be away from its central
mean Aut on a large scale (scale of n). Consequently the probability is very small.
Further since u is a fixed constant, the change in u is relatively small (scale of
constant) compared with the change in ¢. Therefore the asymptotic expression
for the probability P(S; > ¢t 4+ u) in the case of u = 0 is almost the same as in
the case of u > 0. We will provide the proof of the lower bound only for the case
that u = 0.

Theorem 2.2 Assume that m(#) < oo for 8 in some open interval D,, containing
origin and assume that the solution @, to the equation ¢ = Am’(8) exists and lies
in the interior of D,,. Then for every 0 < € < e"(©) there exists a number ng > 0

such that for every positlive integer ¢t > no,

PS> ct] > (e — ¢)".

Proof The main idea to prove the lower bound is first to shift the center of the
process to ct using Esscher transform, then to use the Central Limit Theorem to
estimate the transformed probability.

First we let Y}, Y,, - be a sequence of 1.1.d.’s whose common moment gener-
A(m(6)

ating function is equal to e ~1) and whose distribution function is denoted by

F*(y). Then

P(S;>ct) = PYi+ - +Y,>ct)

[ dF* (1) dF"(y1)
n+tye>ct

/ ... / C—Gr(y1+---+y:)69cy1 dF'(y1) L eecy'dF*(yt),
vy et

i
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Define the Esscher transform of £*(y) by

_ 2 €PvdF (y)
Gly) = Mm(E)-1)

Then

PS> ) = e[ ] e 0TG- dG ).
yit by et
Now we claim that Eg(Y)) = ¢. This 1s because

irglf{)\(m(H) — 1) — b} = A(m(8.) — 1) — cb.

so 8, satisfies

c = Im'(h)

Jye®dF(y)
my(e)

[viGw.

where my (6) = eM™®-1. Now, by the Central Limit Theorem, we see that if the

Y; were distributed as G, then for any € > 0,

Pc[C<Y1+---+K

1
<C+e]—>—2-asn~—+oo.

Hence, for each € > 0 there exists an ng > 0 such that for ¢ > ng we have

| -

R R AR O

Now

P(Si>et) = S [ ] e 0t b 4Gy, ) - - dGy.).
y1+-tye>et
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V)

eA(m(eC)—llt/ o /c<~y;+-—; +n<c+€e_9°(y1+'“+y:)dG(yl) - dGly.)

> eA(m(ea—l)te—éc(cﬂn/.../Ky - <C+€d(;(y,)...d(}(y,)
t

2 ler(c)te—-d}ct
which implies the lower bound. QED

3. Examples

We look at two specific moment generating functions for the claim size random
variables and calculate their rate functions.
Example 1. Let X; = 1 with probability 1, i.e. all the claim sizes are the same,

equal to one unit. Then mx(4) = € and

B(e*S) = A1)

This implies that S; is a Poisson Process with parameter A. The rate function is

calculated by equations:

Aefe = a,
and
r(a) = A ~ 1) — 8,a.
Hence
ric) =(c—A) — cln(%).

Let ¢ = (1 + a)A, where a > 0 is the security loading, then

ric)=aA - (1+a)rin(l +a).

By Taylor expansion, the right hand side is approximately equal to —%A (assum-

ing o < 1).
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Example 2. Let A =1 and m(9)

=162+ 1. Then

2

E(ef5) = 37,

i.e. S;is a normal random variable with mean 0 and standard deviation v/{. A

simple calculation gives

62 c?

r(c) = sgp(‘— —fc) = —5

Theorems 2.1 and 2.2 state that

2

2

P(S > cl)me T

In this special case we can actually estimate the probability directly, since

standard normal random variable. Hence
P[S;>ct] = P[Z>cV1]
1 © 2
— —24/2
= — € dz.
2T /cxﬂ
But
oQ 00
/ e~ 12, < / ie_’2/2a’z
T T I
< _e—:r:2/2
-z
and

o 2
/ e~ 5 12d;

I _ap
z+1/z

Vv

v

r+l/z N
/ I iy,
T xr + I/I
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3L is a
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SO

1 8_%t,
V2ric

which agrees with the exponential order in (3.1).

PS> ct] =
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