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A b s t r a c t  

The main purpose of this paper is to study the ruin probabilities of insurance 

surplus process over an extended period of time. The traditional large deviation 

techniques are used to obtain asymptotic exponential bound for the probability of 

ruin occurring at t ime t when the aggregate claim process is compound Poisson. 

The exponential bound is naturally expressed in terms of the large deviation rate 

function. 

1. Introduct ion 

Let X l ,  X2, ' ' '  be a sequence of i.i.d, random variables with common distri- 

bution function F ( x )  and mean /t. Let N ( t )  be a Poison process with intensity 

A and be independent of all X~'s. For t >_ 0, let St denote the aggregate claims 

up to t ime t and let U(t)  denote the insurer's surplus at time t, then we have the 

following two processes: 

S t = X 1 + X2 + . . .  + XN(t), 

the insurance risk process and 

u ( t )  = u + c t  - S , ,  

the insurance surplus process. Here u is the initial surplus of the insurer and 

we assume that premium is collected continuously at rate c. Ruin occurs when 

St > ct + u for the first time. The probability of eventual ruin is defined to be 

~(u)  = P ( T ( u )  < oc) 
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with T(u) = min{t  : St > ct + u}. 

It is well known that  when c _< A#, ~b(u) = 1 for any u _> 0 and when 

c > Ag, 0 < ~b(u) < 1 for u _> O. In this paper we are mainly concerned with the 

probabili ty that  ruin occurs at the end of a particular planning year, i.e. 

P{S, > ~+c t}  (1) 

when t = positive integers and c > A#. It will be shown that  when t is large this 

probabil i ty is approximately equal to e T(~)t where r(c) < 0 and depends only on c 

and the original process. 

2. M a i n  r e s u l t s  

We start  with a known fact about  the mean and moment  generating function 

of St. 

L e m m a  2.1 Let m(0) be the moment  generating function of X1, then 

(i) .  ~ [ s , ]  = .x~,t 

(ii). Moment  generating function of St 

E[e °s,] = e,X(,~(0)-l) t 

Next we introduce two impor tant  functions which will be used frequently in 

proving our main results. 

Let h(O) be a function which is equal to 

h(0)  = ~ [ ~ . ( 0 ) -  1] 

and let function r(a) be the convex conjugate of h(O), i.e. 

r (a )  = ig f {h(O)  -- aO}. (~) 

We call function r(a) the rate function of our compound Poisson process for 

the reason which will become clear in the main results. This function has tile 

following properties. 

248 



L e m m a  2.2 Assume tha t  re(O) < oc for 0 in some open interval Dm containing 

origin and assume that  for each a, the solution 0~ to the equat ion a = h'(0) exists 

and lies in the interior of Din. Then 

i) r(a) is str ict ly concave down and infinitely differentiable with m a x i m u m  0 at- 

ta ined at a = ~/~; 

ii) r(a) = A(rn(O~) - 1) - aO~, where O~ is the unique solution to the equat ion 

iii) For any a > ;~#, 

a = ,~rn'(O). 

inf{h(O) - aO} = 0>0inf{h(O) - aO}. 

P r o o f :  Since re(O) is finite in an open interval around origin, re(O) is infinitely 

differentiable in Din. Fur thermore,  

h"(O) = ~,m"(O) > O, 

This  implies tha t  h(O) is strictly concave up and tha t  a = h'(O) defines a 1-1 

s tr ict ly increasing and infinitely differentiable mapping.  The  corresponding pair  

a and O~ satisfies: 

r(a) = h ( O ~ ) -  Oaa, when a = h'(O~). 

The  inverse mapp ing  is actually given by 

0 = - - r ' ( a ) .  

Consequent ly  
dO 1 

r " ( a ) -  d a -  h"(O) 

which implies tha t  r(a) is a concave down function. 

< O, 

249 



The  proof  of iii) could be easily obta ined from the following picture about  the 

relation between functions y = h(O) and y = aO with a > ),#. 

y y = h(O) y = c 0 

/ 
y = klaO 

/ 

.... ~ 0  4 0  

Our  first result is an upper  bound for the probabi l i ty  in (1). 

T h e o r e m  2.1 Assume tha t  re(O) < oo for 0 in some open interval I),,~ containing 

origin, then for any t _> 0 

P r o o f :  For any 8 > O, 

P [S t  > ct + u] < e ~(c}' 

e[S,>c t+ ,4  -< e[S,>ct] 
= ,,[eos,>~ ec,] 
<_ e-OC'E(eOS') 

= e [-ec+~('~{e)-q'). (3) 

(The  inequali ty is Chebycheff 's . )  Take inf imum for all 8 > 0 on the right hand 

side, by L e m m a  2.2 iii) we recognize tha t  the exponent  is s imply r(c)t .  This  proves 

the upper  bound.  QED 

As to the lower bound we consider the special case when t is a posit ive integer. 

Note t ha t  by L e m m a  2.1, St is equivalent to the sum of i.i.d, r andom variables 
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Y1, • ' ' ,  Y* with E(Y1) = X# and E[e or'] = e a(m(e)-~). By the Law of large numbers ,  

lim P ( ~ - - - +  k # ) = 1 .  
t ~ O O  

The event {St > u + ct} with c > ~/z is a event for St to be away from its central  

mean ,k#t on a large scale (scale of n). Consequent ly  the probabi l i ty  is very small .  

Fur ther  since u is a fixed constant ,  the  change in u is relat ively small  (scale of 

cons tant )  compared  with the change in c. Therefore the  a sympto t i c  expression 

for the  p robabi l i ty  P(S~ > ct + u) in the  case of u = 0 is a lmost  the  same as in 

the  case of u > 0. We will provide the  proof of the  lower bound  only for the," case 

tha t  u = 0. 

T h e o r e m  2.2 Assume tha t  re(O) < oc for 0 in some open interval  Dm conta in ing  

origin and assume tha t  the solution 0¢ to the equat ion c = ~m'(0)  exists  and lies 

in the  in ter ior  of Din. Then for every 0 < e < e *(c) there  exists  a number  no > 0 

such tha t  for every posi t ive integer t >_ no, 

e IS, > ct] >_ (~,(cl _ ~),. 

P r o o f  The  main  idea to prove the lower bound is first to shift the  center  of the  

process to ct using Esscher t ransform,  then to use the Central  Limit  Theorem to 

e s t i m a t e  the  t rans formed probabi l i ty .  

F i rs t  we let Y1, Y2,""  be a sequence of i . i .d. 's  whose common moment  gener- 

a t ing  funct ion is equal  to e ~(mC°)-l) and whose d is t r ibu t ion  f imction is deno ted  by 

F*(y). Then 

P(& > ct) = g ( y l + . . . + V , > c t )  

= f . . .  fu,+...+u,>cdF*(Y,)'"dF*(Y,) 

= f . . .  f e-OC(ul+'"+U')e°~dF*(gl)...e°cU'dF*(y,). 
J Y l  + '"+Yt >ct 
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Def ine  the  Esscher  t r a n s f o r m  of F*(y )  by 

e~(m(o~)-l) 

T h e n  

e(s,  > ct)= ~cm/<-,),j... £,+.. +~,>c c,c/~,+. +~,~d<yl)... d<>). 

Now we c l a i m  t h a t  E e ( Y 1 )  = c. This  is because  

so O~ sat isf ies 

inf{A(m(O) - 1) - cO} = A(m(Oc) - 1) - cOc 

c = Am'(0) 

f y e e y d F ' ( y )  

~r(e) 

= / y d G ( y ) ,  

w h e r e  my(g) = e "~(m(e}-D. N o w ,  by the  Cen t r a l  L imi t  T h e o r e m ,  we see t h a t  if t he  

Y, were  d i s t r i b u t e d  as G, t h e n  for any e > O, 

[ ]1  
Pa  c <  YI + " "  + Yt < c + e --+ - as n --~ ec. 

t 2 

Hence ,  for each e > 0 the re  exis ts  an no > 0 such t h a t  for t _> no we have  

. .  " /  --° c<,~÷;.+~,<,, d e ( > ) . . ,  de (y , )  > 1 
- 4  

Now 
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> 

> 

> 

e~(m(°=)-l)%-oc(c+ot f ... [ dG(y,)., dG(yt) 
Jc<ul+ i +u~ <c+e 

Ler{c)te-eOct 
4 

which implies the lower bound. QED 

3. E x a m p l e s  

We look at two specific moment  generat ing functions for the claim size random 

variables and calculate their rate functions. 

E x a m p l e  1. Let X1 = 1 with probabi l i ty  1, i.e. all the claim sizes are the same, 

equal to one unit. Then rex(O) = e ° and 

E(e °s') = e ~ ' < ~ ° - ' ) .  

This implies that  St is a Poisson Process with pa ramete r  A. The  ra te  function is 

calculated by equations: 

and 

Hence 

~C Oa ~- a, 

r(a) = A(e °° - 1) - O~a. 

t ~ 

r(c) = ( c -  A) - c ln (~ ) .  

Let c = (1 + a)A, where a > 0 is the security loading, then 

r(c) = aA - ( 1  + c~)A In(1 + ~). 

By Taylor  expansion,  the right hand side is approximate ly  equal to - ~ A  (assum- 

ing a < 1). 
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E x a m p l e  2. Let A = 1 and re(O) = ½0 2 + 1. Then 

102 t E(e  °s') = e~ , 

i.e. St is a normal  r andom variable with mean 0 and s tandard deviat ion v~. A 

simple calculation gives 

r(c) = s u p ( ~  - Oc) 
C 2 

0 Z~ z - - ~ - .  

Theorems  2.1 and 2.2 s tate  that  

c 2 

P(S ,  > ct) ,,~ e - T  t. (4) 

In this special case we can actually es t imate  the probabil i ty  directly, since ~ is a 

s tandard  normal  r andom variable. Hence 

But  

and 

P[S,  > ct] 

~ o* e_z2/2dz 

= p [ z  >  Ct] 

_ 1 e_z2/~dz. 

<_ ffoo xZc-~2/2dz 

1 x 2 '2 
<. - e -  / 

32 

> - -  1 e_,:~/2 
x +  l / x  

> F + I / x  z 

- ~ x + 1 / x  
_ _ c -  ~2 /2 dz 
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SO 

1 _@ 
P[S, > ct] ~ ~ t ~ t c  e 

which agrees with the exponential order in (a.1). 
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