Economic Scenario Generator for Insurance and Pension Rational Decision Making Under Uncertainty

by

Steve Craighead and Mark Tenney

Abstract

We develop a stochastic generator for the generation of scenarios of the S \& P 500 index, dividend yield, consumer price index, and U.S. Treasury yields. We first create a set of "stylized facts" for these series. We estimate statistical models for these series. These in-sample statistical models are themselves not suitable for generation of scenarios for decision making, but instead are additional "stylized facts" that assist in model development. The "best" statistical model according to standard statistical model selection criteria can easily lead to a model that is highly unsuitable for generation of scenarios for decision making. We develop a stochastic generator that is suitable for decision making under uncertainty.

Key Words: Stylized Facts, Double Mean Reverting Process ${ }^{\text {M1 }}$, ARIMA models, transfer functions, Green's Functions, diffusion models, Rational Decision Making, Insurance, Pension, Uncertainty.

General Observations

Examples, Continued

Economic scenarios could be used in the bond and stock asset mix analysis in pension plans and casualty insurance companies

IIIIIIIII

Qualitative Stylized Facts

Quantitative Stylized Facts

These are specific numerical observations of specific marker processes.
These are less stable than quilitative facts, and can change through time.
-These would be qualitative observalions that are true over long time interval and across econvmies. They are not episode dependent.

Philosophy, Continued

2. We find an approximate model. We constrain the functional form of the model to conform to qualitative stylized facts. We may constrain the parameters of the model to satisfy the quantitative stylized facts. We may estimate the model with a criterion function based on multiple measures of in-sample fit.

Tenney's Interest Rate Razor

- Interest rates do not go to zero or infinity but stay within a reasonable range.
- Interest rates can spend up to several years within a narrow band or trading range.
Short- and long-term rates are correlated but not perfectly.

Philosophy, Continued

2. Continued: In the above estimations we may create rough quantitative stylized facts from qualitative stylized facts. However, the approximate model may not pass all statistical tests.

Modified Becker's Interest Rate Razor

E Interest rates are nonnegative

- Interest rates do not go to yero nor do they go 'low' and stay low indefinjtely.
- Interest rates do not go to 'infinity' nor do they grow 'large' and stay large indefinitely.

Becker's Razor, Continued

- Interest rates neither increase or decrease rapidly with significant frequency.
- Inlerest rate have an appearance of mean reversion

Becker's Razor, Continued

E Higher absolute interest rate levels are offen associated with higher absolute interest rate volatility

- Short- and long-term rates are not perfectly correlated, but do often move together.
- Short rate volatility is higher than long rate volatility

Mark Tenney's DMRP ${ }^{\text {TM }}$

- Mark has effectively modeled the above two Razors using his Double Mean Reverting Process ${ }^{\text {TM }}$.
His use of Green's Functions and the efficient solution of stochastic differential equations, allows the DMRPTM model to be a good starting point for an economic generator.

Our Sword, Continued

- The rate of inflation has trended upward from the bottom of the depression to the early 80 's and then significantly lower up to 1996. (Modificed from Wilkie)

Higher absolute inflation rate levels are often associated with higher absolute inflation rate volatility. (Modified from Wilkie)

Our Sword, Continued

- The stock price return is weakly correlated with interest rates.*
- The stock index tends to trend up
- Stock prices can cluster in 'trading ranges' or narrow bands (sometimes for extended periods)
*This similar to Vishwenath Tirupattur's results

Trading Strategy I

- The first month that the spread was less than 58 bp , invest $\$ 100$ in S\&P 500 and $\$ 100$ in T-bills.
- Stop the strategy the first month the spread exceeds the 58 bp spread. Compare the returns

Trading Example

- Calculate S\&P 500 total monthly return by adding the month end $S \& P$ index and the Dividend index and divide the total by the prior month end $S \& P$ index value.

Date 12/55	Spread 40 bp	TotaI Return	S\&P lnvest 100.00	T-Bill Invest 100.00
01/56	44bp	0.9664	96.64	100.21
02/56	47 bp	1.0377	100.27	100.41
03/56	65bp	1.0721	107.51	100.60

Trading Strategy II

The first month that the spread is between 37 bp and 135 bp , invest $\$ 100$ in S\&P 500 and $\$ 100$ in T-bills.

- Stop the strategy the first month the spread moves outside of the above spread interval. Compare the returns

Trading Strategy III

- The first month that the spread is between 112 bp and 237 bp , invest $\$ 100$ in S\&P 500 and $\$ 100$ in T-bills.
- Stop the strategy the first month the spread moves outside of the above spread interval. Compare the returns

Dates 204<spread<414bp

STARTING ENDLNG DATE DATE

$08 / 1982$	$09 / 1982$
$10 / 1982$	$06 / 1983$
$07 / 1983$	$02 / 1986$
$09 / 1986$	$11 / 1986$
$04 / 1987$	$09 / 1988$
$03 / 1991$	$02 / 1994$

AVERAGE SIDDEV

S\&P ARI	112.77	17.06
TBILLARI	105.28	6.45
DELTA	7.49	12.21
S\&P ROR	1.25%	1.96%
TEILL ROR	0.55%	0.25%

Trading Strategy V

10 Year to 3 Month Spread

Name	a	b	R^{2}
90 Dav	.0249	-.00079	26.6%
180 Dav	.0220	-.00061	27.5%
1 Year	.0214	-.00064	28.7%
2 Year	.0164	-.00035	21.1%
3 Year	.0149	-.00024	20.4%
5 Year	.0146	-.00028	20.9%
7 Year	.0150	-.00037	22.0%
10 Year	.0147	-.00039	20.6%
30 Year	.0150	-.00051	23.1%

Interest Rate Volatility

Using a more complex multivariate linear regression for each maturity, the R^{2} values increased, however the overall appearance between each maturity was similar to the prior slide.
With this primitive test, we observe that volatility is effected by the level of the rates, but the effect is not that strong.

Eigervector 178.69%

Eigervector 3 368\%

Interest Rate Volatility

Eigenvector 1 (shift), demonstrates empirically say that 79% of the change in volatility is parallel across the yield curve. - Eigenvector 2 (tilt) is a seesaw effect, where 14% of the change is related to if the 10 year rate volatility goes up the 90 day will go down and vice versa.

Eigenvector 4 4.26%

Interest Rate Volatility

Eigenvector 3 (flex) explains that 4% of the change is where the volatility for the 90 day and the 10 year rate goes up and the 1 year volatility goes down (and vice versa).
E The remaining 3% of the change is explained by 5 more complex eigenvectors with no easy interpretation.

