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The Principal-Agent Relationship Between 
the Actuary and the Pension Administrator 

J E N N J U N G  W U  1 

1 Introduction 

The purpose of this study is to examine, in an agency theory context, the rela- 
tionship between a pension fund manager and an actuary. The distinguishing 
characteristic of the agency model is that the agent provides information to 
the principal; the principal then can take remedial action based on that  in- 
formation. Our study concentrates on how the actuary plays a role as an 
information providers on the employers' benefit plans issue. 

The Employee Retirement Income Security Act of 1974 (ERISA) attempts 
to safeguard an employee's pension by mandating many pension plan require- 
ments, including participation rates and minimum funding. These require- 
ments affect an employer's costs significantly. Under this legislation, an em- 
ployer must annually fund the plan in accordance with the actuarial funding 
method to ensure that there is a sufficient fund to pay for pension obliga- 
tions. If funding is not carried out in a reasonable manner, tax deductions 
will be denied and fines will be imposed? 

Under the terms of ERISA, enrolled actuaries determining minimum pen- 
sion plan funding must be engaged on behalf of all pension plan participants 
by the administrator of the pension plan. The actuary plays an important 
role in structuring the defined benefit pension plan. The actuary combines 
prior experience with respect to inflation, salaries, and interest rates to pro- 
duce funding patterns that result in costs that are somewhat constant as a 
percentage of payroll. The assumptions chosen are the actuary's best es- 
timate of future happenings over the lifetime of the plan and do not take 
into account short-term influences. The actuary must also make sure the 

1Mr. Wu is a Ph.D. candidate in the Department of Business Administration at the 
University of Illinois at Urbana-Champaign 

2The plan administrator will face other kinds of penalties imposed by the IRS (see 1997 
Instruction for Form 5500, p.2.) 
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operations of pension plans conform to accounting requirements. 
In order to fulfill legal requirements, administrators have to interact with 

actuaries. Since tile plan administrators lack specialized skills or knowledge 
in actuarial fields, they need to use the work of an actuary. Without  the 
support from the actuary and the administrator of pension plan would not 
run the pension plan well and the plan participants will be exposed to un- 
reasonable financial risks. 

The basic model in agency theory can be sumlnarized as follows: The 
principal signs an employment contract with an agent because the agent's 
effort will produce benefits for the principal. The agent has specialized abil- 
ity that the principal cannot duplicate. Therefore, the principal wants to 
guarantee that the contract aligns the incentives of the agent with those of 
the principal (incentive compatibility); in addition, the principal cannot in 
general observe the actions of the agent. Finally, the agent, must be willing 
to work for the principal (adverse selection). 

In the standard principaL- agent models, working harder means more pro- 
ductive output (see Hohnstrom (1979), Shavell (1979), Antel (1982), Demski, 
Patell and Wolfson (1984), and Christensen and Feltham (193)). Our model 
is designed differently. In our model, working harder means more accurate 
information provided by the agent. If tile agent works harder to provide the 
principal with more accurate information about pension flmding level, then 
the principal could save some remedial action costs. 

2 T h e  P e n s i o n  F u n d  A d m i n i s t r a t o r  - A c t u -  

a r y  M o d e l  

Here we would like to introduce the game that is the focus of our analysis 
and to provide some preliminary results. Our game model is based on an 
assumption that the agent's payoff will depend on the quality of information, 
not the quantity of the production output; this distinguishes our model from 
the usual principal-agent models. The role of the actuary in our model is as an 
agent providing information about the pension fund level; in particular, the 
pension fund. We introduce a game model of a pension fund administrator- 
actuary model. 

The pension fund administrator hires an actuary to reasonably estimate 
the pension fired level. According to the actuary's recommendation, the 
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administrator takes remedial action to (1) adjust the pension fund level to 
comply with the regulation requirements 3 (2) to avoid failing to pay off 
employees' pension, and (3) to avoid potential penalties imposed by IRS or 
the Department of Labor. 

When the pension fund administrator hires the actuary to evaluate the 
pension fund level, the actuary is to take an action a E R that influences 
the quality of information U E R. The quality of information, U, may 
be interpreted as the cost saving in the remedial action from the validity 
of information received by the administrator. We admit uncertainty, so U 
may be dependent on the state of world, 0 E (3, where ~ is some abstract 
state space. The level of the actuary's action will affect the costs of the 
administrator's remedial action. The administrator is to set up a contract to 
induce the actuary to provide more accurate information about the pension 
fund managed by the pension administrator. 

An important feature of our model is the fact the neither the actuary nor 
the administration knows the state of the pension fund with certainty. The 
actuary observes a signal about the level of funding, and relays that signal 
to the administrator. 

In a single period model, we are going to eliminate the need to consider 
reputation issues. Interaction between the administrator and the actuary 
could be depicted in the Figure 1. 

1 2 3 4 

The principal The agent takes The principal U is realized 
contracts with an action a and takes a remedial and then the 
tile agent, sends a signal y action r according principal pays 

about the state 0. to signal y. tile agent. 

Figure 1: Time Line of The Pension Fund Administrator - Actuary Model 

The administrator would like to hire the actuary to evaluate the pension 
fund and offers the actuary a contract. The prior distribution of information 
0 ¢ (~, 1} is known, where/3 e [0,1] is the percentage of funded level. The 
actuary then decides to accept or reject the administrator's contract. The 

3ERISA, FASB 87, 106 
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ac tuary  takes an action a E R + U {0} and a signal y E (0, 1} is realized 
and is sent to the adminis t ra tor ,  y = 0 means tile pension is underfunded 
while y = 1 means the pension is fully funded. Once the adminis t ra tor  
receives the agent 's  signal y, the adminis t ra tor  then takes a remedial action 
r C R to adjust pension fund level, if necessary. When the state  of world is 
realized, the ac tuary  is then paid according to tile contract .  As a increases, 
the accuracy of the information about  ttle state improves. The  ac tuary  and 
the adminis t ra tor  act as Bayesian when updat ing  their beliefs about  the s ta te  
of the pension fund. 

In this study, we assume 4 that  the prior probabil i ty of 0 is Pr(O = 8) = 
1 Pr(O = 1) = ~ and define the probabil i ty of signal y as follows: 

1 
P r ( v  = 0[0 = ~ ,  a)  = 1 - - e  - °  

2 

P r ( y  = 110 = fl, a) = ~e -~ 

P r ( y  = 0]0 = 1, a) = ~e - "  

P r ( v  = 110 = 1, ~) = 1 - ~ e  - °  

I f a  = 0, then P r ( y  = OlO = 3, a) = P r ( y  = 110 =/3, a) = P r ( y  = 0[0 = 
1, a) = P r ( y  = 1]0 = 1, a) = 2' The  information is pure noise, and the 
posterior  probabil i ty will be tile same as the prior probability. 

In contrast ,  i f a  --+ co, then Pr(y  = 0[0 =/3 ,  a) = P r ( y  = 110 = 1 ,a )  -+ 1 
and P r ( y  = 110 = /3, a) = Pr (y  = 010 = 1,a) -+ 0. This is the perfect 
informat ion case. It means if an agent works very hard, his signal should be 
very highly correlated with the true state  of world. 

The  posterior probabil i ty of 0 is computed  using Bayesian updat ing,  and 
can be easily be shown to be as follows: 

4This is done for computational ease and could easily be relaxed. 
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a Pr(O =/31y = O,a) = 1 - ~e- 

PrO = lly = O, a) = ~e -a 

Pr(O = 131y = 1,a) = ~e -~ 

1 
Pr(O = lly = 1,a) = 1 -  - e  -" 

2 

When a = O, the prior probability is equal to the posterior probability. 
7 I W(.) is defined as the agent's wage function where I4 (.) > 0. The agent's 

utility function is W(.) - C(a) where C(a) is the agent's cost of action. The 
principal utility function is U(.)-W(.) .  

2 . 1  T h e  A c t u a r y ' s  A c t i o n  is O b s e r v a b l e  b y  t h e  A d m i n -  

i s t r a t o r  

Suppose that the administrator could observe the agent's actual level action 
taken to verify the level of the pension. 

Now, we define our principal-agent model by the following: 

Eo,y [U(r, 0) - W(v, 0)] 
r,a,W(.) 

Subject to : 

Eo,~ [W(y, O)] - C(a) >_ U 

rl 6 ArgMax E0 [Uly = 1] 

r0 E ArgMax E0 [U]y = 0] 

(1) 

(m) 
(Icpl) 
(ICp2) 

Equation (IR) represents the individual rationality constraint or the par- 
ticipation constraint for the actuary (agent). The agent's expected payoff 
from the principal minus the cost of action should be at least as great as 
the agent's reservation wage. Equation (ICpl) and (ICp2) are like "incentive 
compatibility" constraints for the principal. Receiving the signals y = 0 and 
y = 1 from the agent, the principal will take the best action for each signal. 

The objective function can be written explicitly in terms of the posterior 
probability distributions as follows: 
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Eo,~[~(r ,  0) - W(V, 0)] 

= P" (V = 0){Eo[glV = 0l - W(V = 0, 0)} 

+ P , ' ( y  = 1) (Eo[Uty  = i ] -  W ( y  = 1,0)} 

I 1 ~ ~ 1 
= ~ { ~ e -  (8'g,h -- II),h) + (1 -- ~e -  )(Ue,e - We,e)} 

1 1 a 1 
+ ~ { ~ -  (u~,e - ~,~,~) + (i - ~ -  )(u,,,h - w~,~)} 

Where  

ue,h = u < o ,  o = 1), ue,~ = U<o ,  o = 9) ,  

Uh,h = U(r;, 0 : 1), Uh,e = U ( F 1 , 0  ~-~ }2~), 

l ' V h , e = W ( y = l , 0 = ~ ) ,  I ' I ' ~ , h = W ( y = l , 0 = l )  

In contrast ,  (IR), (ICp~) and ([Cp2) can be wri t ten as follows: 
Constra int  (IR) 

Eo,~[W(> 0)] - C(a) > U 

I 1 . r i -- 
= ~ { ~ e -  [Ilh,e + Wg,h] + (1 - ~e-°)(Wh,h + W~,e)} - C(a)  _> U 

Const ra in t  (ICpl) 

rl E ArgMax Eo[Uly = 1] 
1 a , 1 a 

," 1 - - a  T" 
(1 - ~ c  a)u., .  -H ~c ~'h,~ ~- 0 

Const ra in t  (ICp2) 

ro E ArgMax Eo[UIy = 0] 

l e a  U 1 ro E ArgMax{(1 - ~ ) e,t + ~e -  Ue,h} 

1 . ' 1 -a  / 
( 1 -  ~ e -  ) U ~ , g + ~ e  Le,h = 0  
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Therefore,  we could reorganize the programming problem as follows: 

1 l e ~  U 
M a x  7 { 7  - [ ~,~ - W ~  + Uh~ - Wh,d + r,a,W(.) ' ' 

1 

Subject  to : 

1 a 
1 . 1  "[Wh e + lYe,h] + (1 7e -  )[Wh,h + We,el} - C(a) > U - g t - g e -  , - 

(m) 
1 a ' 1 - a  ' 

(1 - ~ e -  )Uh, h + -~e Uh, e = 0 (ICpl) 

1 e_~U, e,h + (1 le-~)Uet2 , = 0 (ICp2) 

Since the agent 's  action is observable by the principal, you expect  to 
obtain first best solution by using the first order condition m e t h o d )  

E x a m p l e  1. 
Let 's  define a quadrat ic  function 

U(r, 0) = - r  2 + 2(1 - 0)r + C (2) 

where C is a constant ,  and define the cost of agent 's action C(a) = era, where 
c~>O. 
We then want to solve for a, ro, rl, and W(.) .  

Given the function U(r, 0), we could obtain the following results: 

U~,h = U(ro, O = 1) = -r02 + C, 

U~,e = U(ro, 0 = 8) = - rg  + 2(1 - 3) + c, 

u. ,h  = U(r~, 0 = l )  = - r ~  + c, 

Uh,e = V(r~,O = fl) = - r~  + 2(1 - 3) + C, 

U • , h  = --27"0 

U;, h = -2 r0  + 2(1 - 3) 

U[,h = - 2 r l  

U~, h = - 2 r l  + 2(1 - / 3 ) .  

5A different approach, developed by Grossman and Hart (1983), is to focus on contracts 
that induce the agent to choose a particular action, rather than to directly attack the 
problem of maximizing profits. 
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We are going to employ the following steps to solve this mathemat ica l  
programming problem. 

1. Given U(r, 0), we first focus on the constraint equations (ICp~) and 
(ICp2) and solve for the optimal value of r0 and rl. 

. Once we obtain these optimal values of r0 and r~ from the first step, we 
then subs t i tu te  r0 and rl in constraint (IR) and the objective function 
by these two optimal values. 

3. Use the Karush-Kuhn-Tucker Theorem to define a Lagrangian function 
L and solve for variables a and W(.).  

From the constraint equations (ICpl) and (ICp2), we obtain 

1 
ro = (1 - fl)(1 - ~ e - a )  (3) 

~ = ( L _ ~ _ ) ~ - o  (4) 

respectively. 
Let 's  define IVh,~ + B),h = W2 and Wh,h + I4'~,~ = W1 and replace r0 and 

7"1 in the constraint  (IR) and the objective function by (3) and (4). Then, 
our programming problem can be writ ten as follows: 

Max 1 o,-'~-/ 5 (1 - 9)2{ 

Subject  to 

1 1 a 1 a 
1 c -°  + ~e -2°} 5 5 c -  ) - - { ~ e -  I ' V 2 -  (1 - W I }  

+ (1  - e - ~ ) 1 4 ' 5  } - a a  _> U 

Then, we could have the Lagrangian function: 

1 1 2a- 1 a T 1 ~ . 
L =  ~ { ( 1 - , q ) 2 { 1 - e - ~ +  ~e - } - ~ e -  H 2 - ( 1 - ~ e - ) [ ; ~ l t  

A{ ~(~e- ~ 2  + (1  - } - a a  - V} 

+ 
(~) 
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where A > 0. 
When we take the partial derivative with respect to W1 and W2, we find 

that the value of A is 1. It implies that the constraint in our program is 
binding. In order words, the net income obtained by the agent will be equal 
to his reservation wage, i.e. 

1 . 1 " W  - -  ~ e -  W ~ + ( t - ~ e -  ) , = 2 { a a + U } .  (6) 

Now, we use (6) to simplify the Lagrangian function and take the partial 
derivative with respect to a to find the optimal value of a: 

OL 
- - ~ 0  
Oa 

~e-~{2(1 - /J)2(1 - e-a)} = a 

e_2~ _ e-  a + a _ 0. (x - ~)~ 

Then, we solve for e -a and get the following possible solutions: 

1 ± V/1 4~ 
e - a  = ( l - g ) 2  

2 (7 )  

We here would like to check the 2nd order condition to find out the right 
solution for a. 

O~ L 
Oa 2 

- (1 - Z ) ~ ( - e  -a  + 2~ -~a) 

= (1 - / 3 ) 2 e - a { 2 e  - a  - 1} .  

We find that 

Oa 2 2 > 0 

02 L 1 -  V / 1 -  ~ 
Oa ~ 2 < O. 
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Thus, the optimal value of a solves: 

/ 

1 - ~/1 4~ 
e -~ = - -  (~-~1~ (8) 

2 

Then, we use equation (6) and (8) to find out the principal's optimal 
expected payoff is: 

3 1 4~ ) V/ (1-~) 2 c~ -- 
( 1 - 9 )  2 ~ +  8 4(1- - /3)  2 - ~ a - U  (9) 

R e m a r k  1. In our example 1, we could not find the closed form solutions 
for W(.).  But, the optimal value of a (see (8)) and the principal's optimal 
expected payoff (9) will be used to compare with those results generated by the 
situation where the agent's action is unobservable by the principal. 

R e m a r k  2. From (8), we find that the value of a is greater than O. It means 
that since the principal can observe the agent's action, the agent has to make 
certain amount of effort in order to obtain enough payoff W to cover his cost 
of action C(a) and earn his minimum wage U. There is no "Free Lunch" 
existing in this example. 

2 .2  T h e  A c t u a r y ' s  A c t i o n  is n o t  O b s e r v a b l e  b y  t h e  A d -  

m i n i s t r a t o r  

The agent's incentive compatibility constraint is eliminated for the princi- 
pal's optimization problem in last section. Since the aetuary's action is not 
observable here, we need to consider the agent's incentive compatibility con- 
st.raint while solving this optimization problem to obtain the second best 
solution. 

Now, we define our new principal-agent model by tile following: 
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Max E0,  [U(,', 0, - W(y, 0)1 
r,a,W(.) 

Subject  to : 

Eo,y [W(y, 0)] - C(a) >_ U 
a e ArgMax {E0(W(y, 0) - C(a)}  

rl E ArgMax Eo[Uly = 1] 

r0 E ArgMax E0 JUly = 0] 

(IR) 

(ICa) 

(ICp2) 

Equation (ICa) represents the agent's incentive compatibil i ty constraint  
in this model. It means that  the agent will take his best action for his own 
interests. 

Taking advantage of mathematical  symbols and assumptions in the pre- 
vious sections, we re-write the optimization problem as follows: 

1 1 a 
Max ~ { ~ e - [ U e , h - W ~ , h + U h e - W h e ] +  

r ,a ,W(.)  ' ' 

1 
(1 - ~ e -  )[Ut,e - We,t + Uh,h -- Wh,h } 

Subject  to : 
1 1 ~ 1 
~ { ~ e -  [W.,~ + W~,h] + (1 - ~ e -  )[Wh,h + l ~ , e ] }  -- C ( a )  _> U 

( m )  

1 ~ w  , , "~e-  [ h,h "r ~ / ' f t  --  ~/Vt h --  ~/Yh,~.] -- C '  ( a )  : 0 ( I C a )  

1 _~ , 1 _, , 
(1 - ~e )Uh, h-4- -~e Uh2 = 0 (ICpl) 

1 ~ , 1 ~. , 
~e -  ~ ,h  + (1 - ~e -  )V~,~ = 0 (ICo~) 

Since tile agent 's actions are unobservable by the principal, we could not 
obtain the first best  optimal solution from this problem. But, we are expect- 
ing to obtain the second best solution by some optimization mathemat ica l  
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methods. 6 

Example 2. 
We use the same quadratic function U(r,O) in Example 1. But, we here 
change one of our assumptions that the agent's action is unobservable by the 
principal. In order to capture this change, we add one constraint (ICa) into 
our programming. We then want to solve for a, r0, rl, and W(-). 

. 
In this example, we are going to use some symbols defined in the Example 

From the constraint equations (ICa), the optimal value of a sloves: 

4c~ 
e-'~ W1 - W2" (10) 

Now, we have the optimal value of To (see equation (3)), r~ (see equation 
(4)), and a (see equation (10)) and replace r0, rl, and a in the constraint 
equation (IR) and the objective function by those optimal values. Then, our 
programming problem can be written as follows: 

Max 1 4a 
w(.) ~(1 - 13)2{1 ~ t l  __ W2 

( )Wl} + 1 I,Vt - W2 

Subject to 

8a2a ~ _  1 2a T 

+ (W, - W~) 2" 2{W1 -- I~'h~2 

1 2a V (1 2a a ln(W,  - W2 

Since we have 

2o ( ) 2a 
W~-I~I~W2+ 1 1¥~---W,2 W I = W ~ - 2 a ,  

6We could use the mechanism design method (Fudenberg and Tirol, 1991) to reduce 
the number of constraints. 
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we could simplify our programming problem as follows: 

l(1-fl)2{l 40 + 8c~2o . . _ 1 
MaXw(.~ Uq - 14% (14q - w 2 7  ~ -:~2 - w '  2o} 

Subject  to 

A1 r °l ln ( 40= "5 ) -- ~'{~/~ 1 - -  2 0 }  - -  :> U 

Then, we could define our Lagrangian function: 

1 4c~ 8a2a  1 
L = 5(1 - fl)2{1 W1 - W2 + (W~--~V~)2 } _  _ _  - ~{W~ - 2a} 

(11) 
- w 2  

+ A { ~ ( W 1 -  2 ~ ) -  ~ l n ( H q ~  ) - U }  

where A > O. 
When we take the partial derivative with respect to I45 and W2, we find 

that  

OL 1 4a  16a 2 1 1 
ow,  = ~ ( i  - #)~{ (w ,  - n~)2 (w ,  - w2) 3 } -  ~ + ~{2 

OL 1 -4c~ 
0 w 2  - ~ t l '  - Z)2{ ( w ,  - w2)  ~ 

+ 

o~ 
} = 0  

14q - ~% 
(12) 

16o 2 1 a 
(w?-~w2)3 } - ~ + a{w, _ w }  = 0 

(13) 

From equat ion (12) and (la), we have 

1 1 o (~ 

- ~ + ~ { ~  w ~ - ~ } = M w l - w 2 }  
2(~ 1 

~ {  w ,  - w2  } - 2 
1 

= > A -  
1 4a 

W1 - 1472 

Since we have W1 - W2 > 4a from equation (10), we conclude that  A > 0. 
It implies that  the constraint in our program is binding, i.e. 
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IV1 - 2et = 2(aa  - U) (14) 

Use equation (14) t.o simplify the Largraian equation 

1 
L = ~(1 - L~)2{1 

4c~ 8a2a (I/I/1 -- I'V2) _ ~ 

and ,in fact, our programming problem now becomes an unconstrained 
programming.  We simply take derivative with respect to W1 and IG2 to 
search for their optilnal values. 

OL OL 

OW~ OW2 
1 4(~ 16ct 2 c~ 

- 0  

We solve for I,V~ - I'I,') and obtain 

2(1 -,'!t) 2 + V/4(1 - fl)4 _ 32{t(1 - / 3 )  2 

2 

2(1 - 8) 2 - V/4(1 - fl)4 _ 32{~(1 - fl)2 
I'l"l - W,2 • 

2 
= (1 - / 3 )  2 - V/(1 - fl)4 _ 8a(1 - ,q)2  

Now, we use equation (16) to obtain the following results: 

= } 

2 { c ~ + ~ + l n ( ( 1 - , ~ J ) 2 - V / O - ~ / ) 4 - 8 a ( 1 - f l )  2 )  = } 

- -  ( 1  - - , ~ ) 2  _ V / ( 1  _ /3 )4  _ 8 { ~ ( 1  - - f l ) 2  

4a 
e - a  = 

(1  - / J ) u  - V / ( I  - f l ) 4  _ 8 a ( 1  - f l ) 2  

( i s )  

(16) 

(17) 

(18) 
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Then ,  the  p r inc ipa l ' s  o p t i m a l  e x p e c t e d  payoff  is: 

1 _ ( 1  - 4 a  
( 1  9) ~ (1 - 9)  ~ - v / (1  7,~7~ _ s~ (1  - ~)~ 

+ 

8a2 ) 

((1 - / 3 )  2 - v/(1 7 ~ ) 4  _ 8a(1  - i3)z) 2 
(19) 

R e m a r k  3. In this example, we find that the sum of wage for right informa- 
tion W1 is bigger than that for wrong information W2, i.e. W 1 - W 2  >_ 4a > O. 
If  W1 - W2 = 4a, then the optimal agent's action is doing nothing (a = O) 
and the agent's expected payoff is the average of all possible payment schemes, 
i.e. (wl+w2) = (Wt,t+Wh,,,+Wt,h+Wh.t) Since the principal can not observe the 

4 4 

agent's action, the agent still might get paid for doing nothing. 

L e m m a  2 .1 .  The action al which the agent will take when the principal can 
observe the agent's action is larger than the action a2 which the agent will 
take when the principal can not observe the agent's action. 

P r o o f .  
From Example 1 and Example 2, we have 

C - a l  

1 - , / 1  4a 4 a  (1_~)2 e-a2 = Y 
(1 - / 3 )  2 - V/(1 - ~)4 _ _  8 0 ~ ( 1  - -  0)  2 

In order to prove that al > a2, we need to show that e - a '  < e -a2. 

Let 4__m__~ = X ,  where X < 1. Then, we have 0-Z)  2 

V/ 4c~ 1 - 1 (1-~)2 

2 
I -  ~ / I -X 

_ I ( i _  ~v~:-~_ x ~ < 
1 

2 2 " " 

(20) 
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and 

e - a 2  
4a 

( 1  - f l ) 2  __ V / ( 1  _ f l ) 4  _ 8 c ~ ( 1  - f l ) 2  

1 x _ 

v q - 2 x  2 

(21) 

From (20) and (21), we conclude that 

1 
e -as > 2 > e -at. 

L e m m a  2.2. The principal's expected payoff ['1 when the principal can ob- 
serve the agent'a action is larger than the principal expected payoff F,2 when 
the principal can not observe the agent's action. 

Proof .  
Let the feasible set for the action al in the Example 1 be A and the feasible 
set for the action a2 in the Example 2 be B. 

Since we show that the individual rationality constraint is binding in both 
Example 1 and Example 2 and there is one more constraint (IC~) in Example 
2, we can conclude that the feasible set B is included in the feasible set A,  
i.e. B c A.  In other words, whatever (a, ~) in B will be also in A.  

In Lemma (2.1), we show that al > a2. It also implies that al ~ a2. 
Since al and a~ both are the unique solution in Example 1 and Example 2, 
respectively, and F1 (az ) is the optimal value in the feasible set A ,  we conclude 
that F1(al) > F2(a2). • 

3 C o n c l u s i o n s  and Future  R e s e a r c h  

This study examines the relationship between the administrator of a pension 
plan ( the principal ) and the actuary (the agent ). The objective is to design 
a contract for both the plan administrator and the actuary so that the actuary 
provides the appropriate level of information to the plan administrator. We 
consider a situation in which the pension plan managed by the administrator 
is a defined contribution plan. 

We begin with a simple model -one principal (the pension fund admin- 
istrator) and one agent (the actuary) in one-period model. In standard 
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principal-agent models, working harder means higher productive output; in 
our model, it means more accurate information. Using moral hazard model, 
we would like to capture the interaction between the principal and the agent. 
Extending our simple to the multiperiod model then will be our next step. 
We are interested in investigating the impact of multiperiod on the incentive 
contract. 
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