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Abstract 
  In recent years, mortality has improved considerably faster than had been 

predicted, resulting in unforeseen mortality losses for annuity and pension liabilities. As a 

result, projection of mortality improvements has become an increasingly important issue 

among actuaries. Among all projection methods, the Lee-Carter approach has been 

widely accepted by the actuarial community. In this paper, we investigate the dynamics of 

the Lee-Carter mortality index (parameter kt). Specifically, we perform statistical 

hypothesis tests to examine whether the mortality indexes for Canada, England and Wales 

and the United States are best described by stochastic trends (difference stationary models) 

or deterministic trends (trend stationary models). Such a distinction is important because 

mortality forecasts generated from these two classes of time-series models could be 

highly different. The empirical results favor broken-trend stationary models over 

difference stationary models, which are used in most previous applications of the 

Lee-Carter method. The results also give strong statistical evidence that the rates of 

mortality decline for the three populations have significantly accelerated in mid-1970s. 

We furthe r analyze the impact of the acceleration of mortality decline on the probability 

of survival to an advanced age, and provide several recommendations to users of the 

Lee-Carter approach.
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1. Introduction 

Mortality assumptions are crucial to many areas of actuarial practice such as life 

insurance financial reporting and maintenance of private and public pension programs. In 

recent years, the actuaries' problem regarding mortality assumptions is that people are 

living longer than they were expected to; for instance, in the United Kingdom, mortality 

rates for both male assured lives and male pensioners have reduced far more rapidly than 

the speed of reduction implied by the mortality reduction factors derived in about 15 

years ago (see Continuous Mortality Investigation Bureau, 2002). Projection of mortality 

improvements has therefore become an increasingly important issue among actuaries.  

 

Among all theoretical models of future mortality, the Lee-Carter model (Lee and 

Carter, 1992) has been widely discussed in the actuarial literature; for example, Li and 

Chan (2007) analyzed the impact of non-repetitive exogenous interventions (outliers) on 

Lee-Carter mortality forecasts; Ozeki (2005) fitted the Lee-Carter model to historical 

Japanese period life tables; Buettner (2002) applied the Lee-Carter methodology to 

project mortality patterns of the oldest-old; Friedland (1998) summarized how the 

projected deficit of U.S. Social Security would change if the Lee-Carter approach were 

used; Tuljapurkar (1998) and Tuljapurkar and Boe (1998) provided a review of the 

Lee-Carter model and some recommendations for forecasters.  

 

For various reasons, the Lee-Carter model is particularly suitable for actuarial 

applications. First, the model has a relatively small number of parameters, and the 

parameters are fairly easy to interpret. Second, it attaches probabilistic confidence 

intervals to central mortality forecasts so that actuaries can access how light (and how 
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heavy) future mortality improvements may turn out to be. Third, sample paths of future 

mortality can be generated via the stochastic components of the model, allowing actuaries 

to quantify the risk of unanticipated mortality improvement by using prevalent risk 

measures such as value at risk (VaR) and conditional tail expectation (CTE). Although 

there are many other ways to produce stochastic mortality forecasts, other models, for 

example, the P-splines regression (Currie et al., 2004), tend to smooth the progression of 

death rates over time. This prohibits us to investigate the possibility of structural changes 

in the dynamics of mortality.   

 

However, unlike process-oriented methods, which take account of expert opinions 

and changes in the pattern of deaths by different causes, the Lee-Carter approach is based 

entirely on extrapolation, presuming that the forces of change that were effective in the 

experience period are going to be in effect in the future. Because of such an extrapolative 

nature, forecasters must be careful when specifying a time-series process for the 

time-varying component (parameter kt, often known as mortality index) in the Lee-Carter 

model. In Li and Chan (2005), forecasters are reminded to be wary of outliers in the 

mortality index, since they may possibly lead to an erroneous mortality forecast, 

particularly if they are located near the forecast origin. 

 

In this paper, we further investigate the dynamics of the Lee-Carter mortality 

index. Our first objective is to perform statistical hypothesis tests to examine whether the 

mortality indexes for various developed countries are best described by difference 

stationary models (stochastic trends), which are used in most previous applications of the 

Lee-Carter method (see, e.g., Lee and Carter, 1992; Tuljapurkar et al., 2000) or trend 
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stationary (deterministic trends) models, which are rather uncommon in the context of 

mortality modeling. Such a distinction is crucially important because mortality forecasts 

generated from these two classes of time-series models could be highly different.  

 

In recent years, several demographers (e.g., Kannisto et al., 1994; Vaupel, 1997) 

observed that, for many developed countries, the reduction of mortality rates has 

significantly accelerated in the 1970s. While their observation has important implications 

for social, health and research policy, the demographers made no attempt to verify the 

statistical significance of the sudden change in the pace of mortality decline. The second 

objective of this study is to statistically detect and model any structure changes in the 

dynamics of the Lee-Carter mortality index during the past 50 years, and to evaluate the 

impact of such structural changes on the resulting mortality projections.  

 

The rest of this paper is organized as follows: in Section 2, we define the notation 

used throughout this paper and state all sources of data; in Section 3, we briefly review 

the Lee-Carter model and describe in detail the time-series models under consideration: 

difference stationary models, simple trend stationary models and broken-trend stationary 

models; then we discuss the appropriateness of these models for the Lee-Carter mortality 

indexes derived from the historical mortality data of different developed countries; in 

Section 4, we present the empirical results with emphasis on the probability of survival to 

advanced ages; finally, in Section 5, we conclude the paper with some recommendations 

for practitioners. 
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2. Notation and Data 

Let us define the following notation:  

 Dx,t : the number of deaths between ages x and x+1 in year t; 

 Ex,t : the number of exposures-to-risk ages x and x+1 in year t; 

 mx,t=Dx,t / Ex,t : the central rate of death at age x in year t. 

For detailed interpretations of the above notation, we refer readers to Chapter 3 of 

Bowers et al. (1997). 

 

We apply the theoretical mortality models to the populations of Canada, England 

and Wales and the United States. The required historical data—death counts (Dx,t) and 

mid-year population estimates (proxy for Ex,t) for x = 0,1, ..., 99 and t = 1950, 1951, ..., 

2002—are obtained from the Human Mortality Database (2007). 

3. Methodology 

3.1 The Lee-Carter Model 

The Lee-Carter model assumes that central death rates for all ages are driven by a 

single time-varying component, denoted by kt, which is also referred to as mortality index. 

Mathematically,  

 

ln(mx,t) = ax + bxkt + εx,t,  (1) 

 

where ax is an age-specific parameter that indicates the average of level of ln(mx,t) over 

time, bx is another age-specific parameter that characterizes the sensitivity of ln(mx,t) to 

changes in the mortality index kt; and εx,t is the error term that captures all remaining 
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variations and shows no long-term trend. 

 

Note that all parameters on the right-hand side of equation (1) are unobservable. 

Hence, we are not able to fit the model by simple methods like the ordinary least squares. 

To solve this problem, researchers have proposed a few alternative approaches including 

the method of singular value decomposition (SVD) considered by Lee and Carter (1992), 

the method of maximum likelihood estimation (MLE) implemented by Wilmoth (1993) 

and Brouhns et al. (2002) and the method of generalized linear models (GLM) employed 

by Renshaw and Haberman (2006).  

 

In this paper, we adopt the method of SVD, which is easier to implement then the 

other methods. The SVD procedure can be implemented by using various standard 

mathematical/statistical packages such as GENSTAT, MATLAB and IMSL MATH/ 

LIBRARY. Using this method of SVD, we first take ax as the arithmetic average of ln(mx,t) 

over time; then we apply SVD the matrix of {ln(mx,t)−ax}. The first left and right singular 

vectors give initial estimates of bx and kt, respectively. To satisfy the constraints for 

parameter uniqueness, the estimates of bx and kt are normalized so that they sum to one 

and zero, respectively. Note that the fitted number of deaths derived from the initial 

estimates of bx and kt may not be the same as the observed number of deaths. To reconcile 

the fitted and observed number of deaths, we re-estimate parameter kt so that for all t, the 

following condition is satisfied: 

 

, ,
ˆ ˆˆexp( )x t x t x x t

x x
D E a b k= +∑ ∑ . (2) 
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where ˆxa , x̂b  and t̂k  are the estimates of ax and bx, and kt, respectively. 

 

As a matter of empirical fact, the mortality indexes demonstrate a long-term 

stability (see Figure 1) and explain a large proportion of variability in the historical 

central death rates. As a matter of empirical fact, the mortality indexes demonstrate a 

long-term stability (see Figure 1) and explain a large proportion of variability in the 

historical central death4 (see Table 1). As a result, we may view the time-varying 

component kt as a dominant temporal “signal” in the historical data and model kt by an 

appropriate univariate time-series process.  

 

The time-series process is of crucial importance because the entire mortality 

forecast is based on an extrapolation of kt via this process. Let T be the forecast origin and 

^
sTk +  be the s-period ahead forecast of kt; then, the s-period ahead forecast of mx,t is given 

by 

 

,
ˆ ˆˆ ˆexp( )

x T s x T s x
m a k b

+ +
= + . (3) 

 

Using the Lee-Carter approach, probabilistic confidence intervals for many 

demographic quantities can be computed easily without the need of generating sample 

paths: for future death rates and life expectancies, we may use the semi-analytic 

                                                 
4 The ratio ∑i iss 22

1 / , where si is the ith singular value in the SVD, measures the proportion of total 

temporal variance in the logarithmically transformed central death rates explained by the mortality index. 
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expressions provided in Appendix B of Lee and Carter (1992); for future annuity rates, 

we may use the semi-analytic expression given in the Appendix of Li and Chan (2007). 

Alternatively, forecasters may compute confidence intervals by using a parametric or 

residual bootstrap. The method of bootstrapping is detailed in Brouhns et al. (2005), 

Koissi et al. (2005) and Li et al. (2006). 

 

While it is possible to consider more principal components when we apply SVD, 

the mortality indexes in the extra principal components are highly non-linear. Since the 

entire Lee-Carter mortality forecast is based on an extrapolation of the time-varying 

component(s), the non-linearity makes forecasting more complicated. 
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FIGURE 1 
Estimates of kt for the General Populations of Canada, England and Wales and the United 

States 
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TABLE 1 
Proportion of Variance of ln(mx,t) Explained by the Mortality Index kt. 

 

Population Proportion of variance explained by kt 

Canada 0.9687 

England and Wales 0.9439 

The United States 0.9705 

 

3.2 Difference Stationary versus Trend Stationary 

In most previous applications of the Lee-Carter method, the dynamics of kt are 

modeled by autoregressive integrated moving average (ARIMA) models. An ARIMA 

(p,d,q) model in its general form can be written as 

 

tt
d eBkBB )(Θ)1)((Φ =− , (4) 

 

where B is the backshift operator such that Bskt = kt–s, p
p BφBφB −−−= ...1)(Φ 1 , 

q
q BθBθB −−−= ...1)(Θ 1 , and {et} is a sequence of white noise random variables, iid 

with zero mean and constant variance. The class of ARIMA models is called difference 

stationary models since the time-series {kt} is stationary5 after differencing d times.  

                                                 
5 A time-series {yt} is said to be strictly stationary if the joint distribution of ),...,(

1 ktt yy  is invariant 
under time drift. In practice, a weaker version of stationarity is often assumed. A time-series {yt} is weakly 
stationary if both E(yt) and cov(yt,yt–1), where l is an arbitrary integer, are time invariant. In this paper, we 
consider the weaker version of stationarity. We refer readers to Tsay (2002) and Wei (2006) for further 
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The ARIMA order (p,d,q) can be determined by the Box and Jenkins (1976) approach. In 

most cases, the dynamics of kt can be effectively captured by an ARIMA(0,1,0) model. 

Although a similar model with an additional AR or MA term may be marginally superior, 

the order of (0,1,0) is usually preferred on the ground of parsimony. For instance, in the 

original work of Lee and Carter for the U.S. population, ARIMA(0,1,0) was found to be 

the optimal ARIMA model for {kt}; Tuljapurkar et al. (2000) noted also that 

ARIMA(0,1,0) seems to be a “universal model” for the mortality indexes of the G7 

countries. ARIMA(0,1,0), which is sometimes known as random walk with drift, can be 

expressed as follows: 

kt = c + kt–1 + et, (5) 

where c is drift of the random walk process. 

Although not often applied to mortality modeling, trend stationary models, which 

achieve stationarity by de-trending (removal of deterministic trends), may be equally 

suitable for modeling the dynamics of kt. In particular, the apparent linearity in the 

mortality indexes (see Figure 1) may be well described by a simple trend stationary 

model, which can be expressed as follows: 

 

kt = α + βt + et, (6) 

 

where α and β are the intercept and slope parameters, respectively. The distinction 

                                                                                                                                                  
information regarding the concept of stationarity. 
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between trend and difference stationarity is potentially important in mortality forecasting, 

since medium- and long-run mortality projections implied by trend and difference 

stationary models could be highly different (Diebold and Senhadji, 1996; Rudebusch, 

1993). This can be seen by comparing the forecasts of kt from both models (see Figure 2). 

The forecast from the trend stationary model (equation (6)) revert to the trend quickly, in 

sharp contrast to that from the difference stationary model (equation (5)), which remains 

permanently lower.  
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FIGURE 2 
The Mortality Index kt for the English and Welsh Population, Followed by the Optimal 
Forecasts of kt from the Best-Fitting Difference and Trend Stationary Models for the 

Period 2003-2053 

 

 

3.3 The Broken-Trend Stationary Model 

In Figure 1, we observe that the slopes (and y-intercepts) of the mortality indexes 

have somewhat changed in the middle of the experience period: it seems that the pattern 

of kt can be better described by a piecewise straight line than a straight line with a 

constant slope. This observation motivates us to consider the broken-trend stationary 

model, which is defined as follows: 
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tttt eTββTααtβαk +−+−++= )(Ψ)()(Δ)( *
12

*
1211 ,  (7) 

 

where ⎩
⎨
⎧ >

=
otherwise

 if
0
1

)(Δ
*

* Tt
Tt

and ⎩
⎨
⎧ >−

=
otherwise

 if
0

)(Ψ
**

* TtTt
Tt

. The model allows a 

structural break point at time T* and permits exogenous changes in both the level 

(intercept) and the growth rate (slope) of the time-series after the break.  

 

The broken-trend stationary model was proposed originally by Perron (1989) to 

examine the effects of the Great Crash in 1929 and the oil-price shock in 1972 on 

macroeconomic data series. Since its introduction, the broken-trend stationary model has 

been widely applied in the field of econometrics; for example, Lee et al. (2005) used the 

model to study the convergence of income disparity between Japan and ASEAN-5 

economies; Narayan and Smyth (2004) employed the model to investigate the efficiency 

of the stock market in South Korea; Yan and Felmingham (2006) applied the model to an 

analysis of the Shanghai and Shenzhen share price indexes.  

 

We may be able to distinguish between trend and difference stationarity by a 

Dickey-Fuller test (Dickey and Fuller, 1979) or an Augmented Dickey-Fuller test (Said 

and Dickey, 1984). Unfortunately, most tests using the Dickey-Fuller and Augmented 

Dickey-Fuller techniques are considered to have low power; that is, there is a high 

probability that the null hypothesis of difference stationarity is not rejected even if the 

time-series is in fact trend stationary. Furthermore, Dickey-Fuller tests are not appropriate 

for testing broken-trend stationary models. 
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Zivot and Andrews (1992) derived a method for testing difference stationarity 

(equation (5)) against broken-trend stationarity (equation (7)). We apply Zivot and 

Andrews’ statistical test to the mortality indexes of the three populations. The results, 

which we summarize in Table 2, point to the following two important conclusions: 

1. for each of the three countries, the t-statistic favors a broken-trend stationary 

model over an ARIMA(0,1,0) model for modeling the Lee-Carter mortality index; 

2. for each of the three countries, the break-year T*, which is detected statistically 

from the historical mortality index data, is located in mid-1970s; the timing of the 

structural breaks and the t-values indicate that the mortality patterns of the three 

developed countries underwent major structural changes at approximately the 

same time. The structural changes can be visualized in the plots of trended 

mortality indexes in Figure 3.  

 

Our results are consistent with Renshaw and Haberman’s (2003) work on 

estimating mortality reduction factors for the English and Welsh population. Renshaw 

and Haberman found that the reduction factors (in log scale) for males in England and 

Wales are better modeled by a time-covariate model with a hinge sited in year 1975 that 

one without a hinge. 

 

A problem of the original Lee-Carter model is that the model does not fit the 

age-specific mortality data exactly at the forecast origin; that is, ,
ˆ ˆˆexp( )x T x x Tm a b k≠ + . 

This situation would inevitably lead to error, which would be especially important in 
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early years of forecast. Bell (1997) and Lee (2000) noted that the error at the forecast 

origin caused significant bias in the forecasts for the first decade. This problem can be 

resolved by setting ,x x Ta m=  and 0Tk = , thereby fitting the age-specific mortality data 

at the forecast origin exactly. We apply the extended model (with the forecast origin 

correction) to the mortality data, and perform Zivot and Andrews’ test using the 

re-estimated mortality indexes. The conclusions remain the same. In Figure 4, we observe 

that the patterns of the re-estimated mortality indices are similar to that of the original 

ones. The results suggest that our methodology is robust with respect to the choice of 

parameter constraints.  

 

TABLE 2 
Results of Zivot and Andrews' Test 

 

Population t-statistic Conclusion Detected break-year

Canada −4.447 Broken-trend stationary 1975 

England and Wales −7.008 Broken-trend stationary 1974 

The United States −5.341 Broken-trend stationary 1974 
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FIGURE 3 
Trended kt Based on the Best-Fitting Broken-Trend Stationary Model (B-TS) and a 

Hypothetical Trend of kt under the Assumption that No Structural Change in the 1970s 
(pure TS, no SC) 

 

Canada 
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FIGURE 3—Continued 

 

England and Wales 
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FIGURE 3—Continued 

 

The United States 
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FIGURE 4 
Trended kt (Taken Account of the Forecast Origin Correction) Based on the Best-Fitting 

Broken-Trend Stationary Model (B-TS) and a Hypothetical Trend of kt under the 
Assumption that No Structural Change in the 1970s (pure TS, no 

SC)

 

Canada 
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FIGURE 4—Continued 

 

England and Wales 
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FIGURE 4—Continued 

 

The United States 

 

 

4. Empirical Results 

4.1 Point Forecasts of kt 

Model parameters in both difference and broken-trend stationary models can be 

estimated by either the method of maximum likelihood or the principle of least squares. 

Given the parameter estimates, we can compute the s-step ahead forecasts of the 
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mortality indexes by using the following equations: 

1. for an ARIMA(0,1,0) model: 

ˆ ˆT sk cs+ = ; (8) 

2. for a broken-trend stationary model: 

2 2
ˆ ˆˆT sk sα β+ = + ; (9) 

where ĉ , 2α̂  and 2β̂ are the estimates of c, α2, and, β2, respectively; T is the forecast 

origin; and T̂ sk +  is the s-step ahead forecast of kt. 

 

In Figure 5, we show the point forecasts of kt from the best fitting ARIMA(0,1,0) 

and broken-trend stationary models. We observe that, for Canada and England and Wales, 

the forecasts of kt diverge, leading to materially different mortality forecasts in medium 

and long run; for instance, the broken-trend stationary forecast of kt for the English and 

Welsh population in 2075 is −178.71; and this level of mortality will not be attained by 

the corresponding ARIMA(0,1,0) forecast until 2093. The observed patterns suggest that 

the distinction between difference and broken-trend stationarity is particularly important 

to analyses which require long horizon mortality forecasts; for example, should the 

structural change in mid-1970s be permanent, the infinite horizon social security 

imbalance could be significantly more severe than the estimate made by Lee and 

Anderson (2005).  

 

One may question why the two types of models yield similar forecasts of kt for the 

U.S. population in Figure 5. This may be explained by the properties of ARIMA(0,1,0) 
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forecasts. The slope of an ARIMA(0,1,0) forecast is ĉ ; and in most parameter estimation 

methods, for example, the conditional least squares method, the value of ĉ  for a 

time-series {Xt; t = 1, ..., n} is computed using the following expression: 

 

1ˆ
1

nX Xc
n

−
=

−
,  (10) 

 

which depends on X1 and Xn only. As a result, an ARIMA(0,1,0) forecast is highly subject 

to the idiosyncratic features of the first and last observation in the experience period. For 

the U.S. population, at 1950k̂ and 2002k̂  gives a value of ĉ  that is coincidentally close to 

the slope ( 2β̂ ) of the trend stationary forecast, resulting in the two forecasts being similar. 

However, if we begin the experience period in a later year, say 1955, instead of 1950, the 

divergence between the two forecasts would become highly significant (see Figure 6).  
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FIGURE 5 
Optimal Forecasts of kt from the Best-Fitting ARIMA(0,1,0) and Broken-Trend 
Stationary Models for the Period 2003-2103; Experience Period is 1950-2002 

 

Canada 
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FIGURE 5—Continued 

 

England and Wales 
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FIGURE 5—Continued 

 

The United States 
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FIGURE 6 
Optimal Forecasts of kt for the U.S. Population from the Best-Fitting ARIMA(0,1,0) and 

Broken-Trend Stationary Models for the Period 2003-2103; Experience Period is 
1955-2002 

 

 

 

4.2 Impact on Age-specific Death Rates 

Given an extrapolation of kt, we can easily compute the implied projection of 

future age-specific death rates. Furthermore, if the decline in kt is linear, then each 

age-specific central death rate declines at its own constant exponential rate.  
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Let , 1

,

( , ) 1 x t

x t

m
R x t

m
+= −  be the annual reduction of central death rate at age x and 

in year t. Retrospectively, the annual rates of reduction implied by a broken-trend 

stationary model can be summarized as follows: 

 

1

*
2

ˆ ˆ1 exp( ),ˆ( , )
ˆ ˆ1 exp( ),

x

x

b t T
R x t

b t T

β

β

⎧ − ≤⎪= ⎨
− >⎪⎩

.  (11) 

 

In Table 3 we compare the annual rates of reduction implied by the best fitting 

broken-trend stationary model before and after the structural break point T*. In using 

Zivot and Andrews’ method, the structural break point T* is determined statistically from 

the mortality index data series; and for all three populations under consideration, the 

detected structural break points are located in either 1974 or 1975. The comparison in 

Table 3 thus indicates a common (and abrupt) acceleration of mortality decline has 

occurred in mid-1970s.  

 

We are not the first to identify the mutual acceleration of mortality decline in the 

1970s. Kannisto et al. (1994) observed in the historical mortality data of 27 countries that, 

except for a few Eastern European countries, rates of mortality improvement for both 

sexes have significantly accelerated in the 1970s. Vaupel (1997) further observed in the 

Kannisto-Thatcher oldest-old mortality database that remarkable progress has been made 

since the 1970s in improving survival at older ages, even at the most advanced ages. 

However, both Kannisto et al. and Vaupel did not support their empirical observations 

with any mathematical/statistical models. This study fills in this gap by offering a 
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rigorous statistical justification for the observed universal acceleration of mortality 

decline in previous studies. 

 

Prospectively, the future rate of reduction per annum can be summarized by the 

following equations: 

1. for an ARIMA(0,1,0) model: 

ˆˆ ˆ( , 1) 1 exp( )xR x T s b c+ + = − ;  (12) 

2. for a broken-trend stationary model: 

2
ˆ ˆˆ( , 1) 1 exp( )xR x T s b β+ + = − ; (13) 

where T is the forecast origin and s = 1,2, ... . In Table 4 we show the annual percentage 

reduction implied by both models at various ages. We observe that, for Canada and 

England and Wales, the reduction factors derived from a broken-trend stationary model 

and an ARIMA(0,1,0) model are highly different: the average difference is approximately 

10 percent for Canada and 20 percent for England and Wales. For the United States, the 

two models yield almost identical reduction factors because of the coincidental similarly 

between ĉ  and 2β̂  we mentioned in Section 4.1. 
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TABLE 3 
Annual Reduction in Age-Specific Death Rates Implied by the Best-Fitting Broken-Trend 

Stationary Models Before and After the Structural Break in Year T*. 

 

 Canada England and Wales The United States 

Age Before T* After T* Before T* After T* Before T* After T* 

45 1.31% 1.97% 0.98% 1.86% 0.79% 1.22% 

55 1.19% 1.78% 0.97% 1.85% 0.84% 1.30% 

65 1.14% 1.71% 0.89% 1.70% 0.75% 1.15% 

75 0.99% 1.49% 0.80% 1.53% 0.72% 1.10% 

85 0.76% 1.15% 0.74% 1.41% 0.74% 1.13% 

95 0.40% 0.61% 0.44% 0.84% 0.61% 0.94% 
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TABLE 4. Annual Reduction in Future Age-Specific Death Rates Implied by the 
Best-Fitting ARIMA(0,1,0) and Broken-Trend Stationary Models 

 Canada England and Wales The United States 

Age Before T* After T* Before T* After T* Before T* After T* 

45 1.79% 1.97% 1.46% 1.86% 1.22% 1.22% 

55 1.62% 1.78% 1.45% 1.85% 1.30% 1.30% 

65 1.55% 1.71% 1.33% 1.70% 1.15% 1.15% 

75 1.35% 1.49% 1.20% 1.53% 1.10% 1.10% 

85 1.04% 1.15% 1.10% 1.41% 1.13% 1.13% 

95 0.55% 0.61% 0.66% 0.84% 0.94% 0.94% 

 

4.3 Impact on Survival Probabilities 

From an actuarial viewpoint, an increased probability of survival to extreme ages 

can lead to more low-frequency-high-severity losses in businesses that provide some 

kinds of “living benefits.” Prime examples include life annuities, reverse mortgages (i.e., 

Equity Release Mechanisms in the United Kingdom) and defined-benefit pension plans. 

More specifically, changes in the probability of survival to an extreme age usually have 

little effect on the expected loss of an insurer; however, this is obviously not the case if 

we consider risk measures such as VaR and CTE, since the odds of an extreme loss are 

largely determined by the tail of the survival distribution. 
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In Section 4.2, we show that, for Canada and England and Wales, the annual rates 

of reduction in future age-specific death rates implied by the broken-trend stationary 

models are systematically higher than that implied by the ARIMA(0,1,0) models by 

10-20 percent. However, the difference between the survival functions implied by the two 

types of models can be even more significant, since each survival probability is 

dependent on multiple age-specific death rates. 

 

Here we consider the probability of survival to age 100 for the cohort who was 

born in 2007. Under the assumption of constant force of mortality for fractional ages, this 

survival probability, which is actuarially denoted by s(100), can be computed by using the 

following expression: 
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where ˆ ĉγ =  if an ARIMA(0,1,0) model is used and 2
ˆγ̂ β=  if a broken-trend stationary 

model is used. The value of m0,2002 is obtained from the available data. The results, which 

we show in Table 5, imply that the use of an ARIMA(0,1,0) model in projecting the 

Lee-Carter mortality index may potentially lead to a serious underestimation of the 

probability of survival to an extreme age, say 100. For Canada, the value of s(100) 

implied by the broken-trend stationary model is 12.5 percent higher than that implied by 

the ARIMA(0,1,0) model; for England and Wales, the difference is more than 40 percent.  
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The plausibility of the projected mortality schedules is an important issue in 

mortality forecasting. In Figure 7, we illustrate of the shape of the projected mortality 

schedules from age 80 to 99 for the cohort who was born in 2007. We observe no 

anti-intuitive behaviors in all the projected mortality schedules. 

 
TABLE 4. Estimates of s(100) Based on the Best-Fitting ARIMA(0,1,0) and 

Broken-Trend Stationary Models 

 

Population Difference stationary Broken-trend stationary 

Canada 0.1664 0.1872 

England and Wales 0.1373 0.1960 

The United States 0.2402 0.2423 
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FIGURE 7. Projected Mortality Schedules at Old Ages for the Cohort Who Was Born in 
2007, Using the Best-Fitting ARIMA(0,1,0) and Broken-Trend Stationary Models; 

Experience Period is 1955-2002 

 

 

Canada 
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FIGURE 7—Continued 

 

England and Wales 
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FIGURE 7—Continued 

 

The United States 

 

 

4.4 Impact on Life Expectancies and Annuity Premiums 

Here we investigate the impact on two actuarial measures: (1) the expectation of 

life at age 85 ( 85e° ); and (2) the actuarial present value of a whole life annuity of $1 sold 

to a life-aged-65 ( 65a&& ). Measure (1) can be considered as a convenient summary of 

old-age mortality, while measure (2) has a wide range of actuarial applications, such as 
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pension plan valuation. Figures 8 and 9 show, for each population, the projected values of 

85e°  and 65a&& , respectively.  

FIGURE 8 

Optimal Forecasts of 85e°  from the Best-Fitting ARIMA(0,1,0) and Broken-Trend 

Stationary Models for the Period 2003-2103; Experience Period is 1950-2002 

 

Canada 
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FIGURE 8—Continued 

 

England and Wales 
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FIGURE 8—Continued 

 

The United States 
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FIGURE 9 
Optimal Forecasts of 65a&&  from the Best-Fitting ARIMA(0,1,0) and Broken-Trend 

Stationary Models for the Period 2003-2103; Experience Period is 1950-2002 

 

Canada 
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FIGURE 9—Continued 

 

England and Wales 
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FIGURE 9—Continued 

 

The United States 

 

 

 

5. Discussion and Conclusion 

In using the Lee-Carter approach, the time-series process for the mortality index 

(parameter kt) is of critical importance because the entire mortality forecast is determined 

by an extrapolation of kt via this process. In this study, we examined whether the 
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time-series of kt for the populations of Canada, England and Wales and the United States 

are stochastic trends (difference stationary) or deterministic trends (trend stationary). 

Specifically, we used Zivot and Andrews' method to identify the type of stationarity to 

which the mortality indexes belong. The t-values favor broken-trend stationary models 

over difference stationary (ARIMA) models, which are used in most previous 

applications of the Lee-Carter methodology.  

 

Zivot and Andrews’ method also tests for any possible structural changes in the 

mortality indexes. The results indicate that, for each of the populations we considered, the 

gradient of the mortality index has significantly increased after the structural break point 

T*. It is interesting that the structural break points, which are detected statistically from 

the historical data, are all located in mid-1970s. Our findings therefore provide strong 

statistical evidence for the acceleration of mortality decline which Kannisto et al. (1994) 

and Vaupel (1997) observed.  

 

There are three lessons we can learn from the results of this study. First, while the 

patterns of mortality reduction become increasingly complex, ARIMA models cannot 

capture any structural changes in the indexes. Should the structural changes in the 1970s 

be permanent, the use of ARIMA models in projecting the mortality indexes will lead to a 

significant overestimation of future mortality rates. Actuaries should therefore bear in 

mind this potential consequence when they employ the Lee-Carter method in setting 

central mortality assumptions. 

 

Second, the broken-trend stationary forecasts are more consistent with the 
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increased pace of mortality decline, which has lasted for more than 30 years. However, no 

different from other time-series models, broken-trend stationary models yield linear 

forecasts, presuming that there will be no structural changes in the future. Given that 

future structure changes are entirely possible, forecasters should closely monitor the rates 

of mortality decline and perform model recalibration from time to time, no matter which 

time-series model is used.  

 

Third, forecasters should be cautious when interpreting the probabilistic 

confidence intervals attached to a Lee-Carter mortality forecast. These confidence 

intervals, which are based on a linear time-series model, exclude deep structural changes 

and kinds of shocks and trend breaks that were not observed in the past. The true amount 

of uncertainty can be substantially higher than that included in the intervals.  

 

For the difference stationary and simple trend stationary versions, we can apply 

bootstrapping techniques (see, e.g., Brouhns et al., 2005; Koissi et al., 2005) to perform 

stochastic simulation on the actuarial measures considered. However, for the 

broken-trend stationary version, the bootstrapping techniques will underestimate the 

underlying uncertainty since they assume that the model structure is known and fixed (i.e., 

structure changes will not occur in the future). Further research on how to incorporate the 

possibility of future structural changes into the prediction intervals is warranted.  
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