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Abstract. The initial risk reserves in collective risk models vary ac- 

cording to the underlying claim distribution, and a suitable level of "ruin" 

probability. A thorough analysis of the needed initial surplus for various 

ruin probability levels is provided in eight meaningful examples. The claim 

distributions are drawn from various fields of insurance, including property 

damage and liability insurance. 
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1. I n t r o d u c t i o n  

In general, the claim distribution for a portfolio of risks is not known 

as the insurance line develops. However, the actuary may have a set of claim 

distributions which he/she feels may be appropriate.  If one considers the 

future arrival of claims, what  amount of initial surplus is needed to hold 

the probabili ty of "ruin" for this new insurance portfolio to a suitably small 

number? 

In recent years, a number of papers have presented methods  for ap- 

proximating ¢(u) ,  the infinite time ruin function. Goovaerts and DeVylder 

(1984) develop a recursive algorithm to obtain upper and lower bounds  on 

¢(u) ,  and hence on the error in the approximation. They consider a Pareto 

claim distribution, and present a table of values for upper and lower bounds 

for ¢(u)  for three values of u. Panjer (1986) presents a simple recursive 

method  for calculating ~b(u) values. He also derives expressions for bounds 

(upper and lower) on ¢(u) ,  and hence on the error in the approximated 

values. Panjer 's  method is especially appropriate when the claim distribu- 

tion is discrete. Gerber and Dufresne (1989) investigate three methods to 

compute  ¢(u)  values. Their first method is essentially due to Goovaerts 
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and DeVylder (1984). The second method assumes that  the claim distribu- 

tion is a combination of exponential or translated exponential distributions. 

The third method relies on the fact that  ¢(u)  is related to the stat ionary 

distribution of an appropriate process, and that  that  process can be simu- 

lated in an efficient manner.  Ramsay (1992a) develops an improved version 

of Goovaerts and DeVylder's (1984) stable recursive algorithm for approx- 

imating ¢(u) .  Ramsay (1992b) presents an algorithm for approximating 

¢(u) .  This approximation uses the first four sample moments of the claim 

distribution. It is illustrated in fourteen tables, and compares favorably 

with previously developed approximations to ¢(u) .  

We will use the Gerber-Dufresne description of the Goovaerts-DeVylder 

method to obtain our initial surplus values in eight examples. Some of 

the claim distributions will be drawn from the monograph Hogg-Klugman 

(1084). A summary table will provide lower and upper bounds on ¢(u)  

obtained by their method. As a further check on our interpretation of their 

algorithm, we applied it to the claim distribution used by Gerber-Dufresne 

(1989) on pages 76-77, and obtained the lower and upper bounds on ~b(u) 

given in Table 1, loc. cit. 
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A key idea in applying the first Gerber-Dufresne (Goovaerts-DeVylder) 

method is the ability to obtain an H(x) function from a claim distribution. 

This can be difficult. The second method explained by Gerber-Dufresne 

is not applicable in Examples 3, 4, 6, and 7, since it assumes tha t  the 

claim distribution is a combination of exponential or translated exponential 

distributions. It is reasonable to say that  to apply Panjer's method,  or the 

third method of Gerber-Dufresne, would be an onerous task in any one of 

Examples 3, 4, 6, and 7. We could not apply Ramsay's  (1992b) algorithm 

in our Example 8 where V a t ( X )  --- +c~. This was one reason why we 

used the Gerber-Dufresne version of the Goovaerts-DeVylder method.  Just  

as Ramsay (1992a) uses Richardson's extrapolation method, the present 

authors also used that  algorithm, but in a different manner. This will be 

discussed in Section 3. 

We will assume that  {X~} is a sequence of independent, identically 

distr ibuted random variables with a common distribution function P(x) .  

The random variable Xi represents the amount of the i th claim. We assume 

tha t  P(0) = 0, i.e. all the claims are positive, and that  E(X~) -= pl < oo. 

The claim numbers process ( Y ( t ) ,  t >_ 0} is assumed to be independent 
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of  the  {X,} ,  and to  be a Poisson s tochast ic  process,  wi th  E { N ( t ) }  -~ t, 

t _> 0. Thus ,  we are using opera t iona l  t ime (see, e.g. page 36 of Beekman  

(1974)),  and  a classical c o m p o u n d  Poisson risk model  is the  model  for 

aggrega te  claims. It  is assumed t ha t  p remiums  are received con t inuous ly  

at  a cons t an t  ra te  e > Pl. T h e  initial surplus is deno ted  by u. T h e n ,  the 

ru in  func t ion  is deno ted  and defined by 

(1.1) ¢ (u )  = P 

Let  

f 
(1.2) Q(u) ---- ~ o, u < o 

L 1 - P ( u ) ,  u > o  

Now, e = (1 + O)pl for some 0 > 0. Let  us use the  no ta t i on  

j(u °° (1.3) K(u) = Q(v)dv. 

Since Pl < oo, and Pl -- f0°°[1 - P(v)]dv, we know th a t  

(1.4) ~ oo 
K ( ~ )  - -  [1 - P ( ~ ) ] a ~  < o o ,  ~ > 0 .  
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Thus,  the integral equation for ¢(u)  can be expressed as 

(1.5) pl(1 + 8)¢(U) : KCu) + ~b(v)QCu - v)dv. 

We will now use the Gerber-Dufresne (1989) description of the Goovaerts- 

DeVylder  (1984) method to explain how one can obtain lower and upper 

bounds  for ¢ (u) .  

A key ingredient in the method is the function 

/: (1.6) H(x )  = 1 [1 - P(y)]  dy, x > 0 
Pl 

where P(y )  is the claim distribution, and pl is its expected value. 

One now uses equations (13) and (14), page 74 of Gerber-Dufresne 

(1989): 

(1.7) h~ = H ( k + l ) - H ( k ) ,  k = O , 1 , 2 , . . .  

(1 .8 )  h~ : H(k)-H(k-1), k =  1 , 2 , 3 , . . .  

A parameter  q : (1 + 8)-1 enters into the re.cursive formulas: 

1 - - q  
( 1 . 9 )  .to' - -  

1 - qh~o 
i q 

- -  -- h~f~_k ,  i = 1 , 2 , . . .  (1.1o/ "'~ 1 - qh'o E:  ' ' 
k=l 
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(1.11) f~ = 1 - q  

(1.12) 
i 

f~ = q)-~h~f;t~, i= 1 ,2 , . . .  
k = l  

These are formulas (18), (19), (20), and (21) on page 74 of Gerber- 

Dufresne (1989). With these functions, ¢(u)  is bounded: 

(1.13) 
u - - 1  u 

1 - ~ f l  <¢(u) < l - ~ , f f ,  u----O, 1,... 
i = 0  i = 0  

This is formula (17), loc. cit. 

2 .  E x a m p l e s  

In this section, we will consider eight claim distributions. For sim- 

plicity, we will use 0 = 0.3 in each example. We have chosen versions of the 

distributions so that  Pl = 1 in each case. Thus, money is being measured 

in average claim size units. We will determine values ul, u2, and us such 

tha t  ¢ (u l )  : 0.1, ¢(u~) : 0.05, and ¢(us) : 0.01. 

Example 1. 

(2.1) P(x) = 

O, x < O  

1--  e- ' ,  x > O .  
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This produces 

(2.2) 

and  

Q ( , , )  : 
0, u < 0  

e -~' ,  u > O  

(2.3) fu °° K(,~)  = Q ( v ) d v  : ~-~. 

Equa t ion  (1.5) now becomes 

f0 ~ (2.4) 1 . 3 ¢ ( . )  = e -" + ¢ ( ~ ) e - c " - ° ) d v .  

This c la im d is t r ibu t ion  has been used in many  references, and  it is known 

(see page 45 of Beekman  (1974)) tha t  ~(u)  = ~.se-~-~.s",u >_ O. The  reader  

can check easily t h a t  this funct ion does satisfy equat ion (1.5). 

From tha t  funct ional  form, we obta in  u l  - 8.8410, u2 - 11.8446, us - 

18.8188. Our  approx imate  solution of the integral equat ion gave values of 

ul  - 8.8410, u2 - 11.8446, us - 18.8189. The funct ion H(x) f rom (1.6) is 

H(x)  = 1 - e  - z , x > O .  

Example  2. Swedish non- indus t ry  fire insurance, 1948-51 (Cram4r  (1955), 
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pp. 43-45). 

f 

(2.5) P'(y) = ~ Ae-"V + B(y  + b) -0, 0 < y < 5 0 0  

L 0, y > 500 

where A = 4.897954, B = 4.503, b = 6, a = 5.514588,/3 -- 2.75. 

For this d is t r ibut ion,  Pl = 1, and 

(2.6) P(y) : A(I(~ - e -~v) + B-~_l(b-a+z - (y + b) -a+l ) ,0  < y < 500. 

Table VII, p. 45, loc. cit., provides the following values of ¢ (u ) :  

u 20 40 60 80 100 

¢ (u )  0.5039 0.3985 0.3280 0.2757 0.2346 

Our approximate  solution o f t h e  integral equat ion gave these values: 

u 20 40 60 80 100 

¢ (u )  0.5039 0.3985 0.3280 0.2756 0.2346 

The  ten,  five, and one percent  u values for ¢ (u)  are ux = 219.5718, 

u2 = 320.4490, and  u3 = 536.4131. 

The  funct ion H(x) is 

(2.7) 

HCx) A A e_~z ) B b_a+lx + 
x - - - z  + (1  - 

Ot ~-~ ~ - - 1  

B 
{ b - ' + ' - ( ~  + ~)-~+~}, • > o, 

(8 - 1)(8 - 2) 
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where  A ---- 4.897954, B = 4.503, b = 6, a = 5.514588, and f~ = 2.75. 

E x a m p l e  3. Modif ied lognormal  d is t r ibut ion .  

Assume tha t  X has the d i s t r ibu t ion  func t ion  

(2.8) P(x)  - V'~I r]_"¢~')-" ° °  ~ e 2 dy, x > O , k > O .  

Thus ,  X = W / k  where  W has a lognormal  d is t r ibu t ion  

(2.9) P(w)- 1 r]_'":-, =.~ 
oo e 2 dy, w > O .  

See H o g g - K l u g m a n  (1984), pages 45, 109, 229. This  d is t r ibu t ion  was used 

to  mode l  au tomob i l e  bod i ly  in jury  claims on page 162 (loc. cit .) .  We will 

choose /~  = 0.5, and a s -- 1. T h e n  E ( W )  -- e, and wi th  k ---- e, E ( X )  = 1. 

T h e  func t ion  H(x)  was eva lua ted  by numer ica l ly  approx ima t ing  the  integral  

of (1.6). Detai ls  are in Sect ion 3. T h e  ten,  five, and one percen t  u values 

for ¢ ( u )  are ul  -- 12.4516, u2 = 17.4628, and u3 = 29.9741. 

E x a m p l e  4. Modif ied lognormal  d is t r ibu t ion .  

Here ,  we choose /z = 1, and a s = 2 in the  preceding example .  Thus ,  

22 



E(W) = e 2, and  wi th  k = e 2, E(X) = 1. 

and u3 = 106.5362. 

E x a m p l e  5. Weibull d is t r ibut ion.  

Now u ,  = 33.6686, us = 51.5323, 

(2.1o) P(x) = 1 - e x p ( - c x ' ) ,  x > 0 

for c > 0 ,  T > 0. 

Hogg and  Klugman  s ta te  (p. 24, loc. cit.) t ha t  "this d i s t r ibu t ion  

provides  a good  model  for size of  claims in casual ty  insurance (malprac t ice ,  

winds to rms ,  e tc . ) ,  pa r t i cu la r ly  when  0 < r < 1." Also no te  pages 109, 218, 

231, and  232, loc. cit. ,  in pa r t i cu la r  

r(l+ 9 (2.11) E ( X )  = c,I ,  

We will let c = V~, and r = 0.5. T h e  H(x) funct ion  is 

(2.12) H(~) = [1 - (1 + V~)~ -~] ,~ > O. 

T h e  ten ,  five, and  one  pe rcen t  u values for ¢ ( u )  are u l  = 27.8867, u2 = 

38.6634, and u3 = 64.0883. 
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E x a m p l e  6. G a m m a  Dis t r ibut ion .  

j(0 ~z 
(2.13) P(x) = ya-'e-" r(a-----Tdy, z > o 

for a > 0, ), > 0. 

Hogg and  K l u g m a n  s ta te  (p. 25, loc. cit.) t ha t  " the  g a m m a  d i s t r ibu t ion  

is a good  model  for many  s i tuat ions  involving the  size of loss in casual ty  

insurance."  Page  227 of  the i r  monograph  provides th ree  sample  g a m m a  

dis t r ibut ions .  For ou r  s ix th  example ,  we will use ct = 7.5, A = 7.5. Here,  

Vat(X) = 1/(7.5). 

T h e  H(x) func t ion  was eva lua ted  by numer ica l ly  app rox ima t ing  the 

integral  of (1.6). Detai ls  are in Sect ion 3. 

T h e  app rop r i a t e  u values are ttx = 4.8547, u2 = 6.4468, and  us = 

10.1438. 

E xa m ple  7. G a m m a  dis t r ibut ion.  

Here  we choose the  more  dangerous  loss d is t r ibut ion  wi th  a =- 0.3, 

= 0.3, and  Var(Z) = 10/3. 

Our  a p p r o x i m a t e  solut ion of the  integral  equa t ion  produces  ul  = 19.5368, 

u2 = 26.3572, us = 42.1948. Note  tha t  much  larger  values of  u were re- 
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quired than in Example 6. 

Example 8. Pareto distribution. 

~- - -  , x > O  

for a > 0, A > 0. 

This is a good model for dangerous claim situations, and as pointed out 

on p. 222, Hogg-Klugman (1984), the nth moment only exists for a > n. 

We will choose a = 1.5 and ~ = 0.5. Hence E ( X  ~) = +oo. 

The H ( x )  function is 

(2.15) HCx) = [1 - ( 1  + 2x) -°'5] ,x > 0. 

This produces ul = 531.7017, u2 = 2,198.3100, and u3 = 55,607.0454. 

Thus, large initial risk reserves are needed to hold the ruin probabilities 

down to values of 0.i0,  0.05, and 0.01. 

The following table is a summary of the ul ,  u2, and us values for the 

eight examples which were determined for ¢(u)  equalling 0.10, 0.05, and 

0.01, respectively. It also provides the lower and upper bounds for the 
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T A B L E  

E X A M P L E S '  VALUES OF u, I N I T I A L  S U R P L U S ,  

R A N K E D  BY D E M A N D  ON S U R P L U S  

E x a m p l e  
No. I P(x)  

G a m m a  

6 a = 7.5 
A = 7 . 5  

1 1 - e-*  

Modi f ied  
3 lognorma l  

dis t r .  1 
G a m m a  

7 a = 0 . 3  

A = 0 . 3  
Weibul l  

5 e = 0.024 
r = 0 . 5  

Modi f ied  
l ogno rma l  
dis t r .  2 

Swedish  

2 fire i n s u r a n c e  
See 2.5 

P a r e t o  
8 a =  1.5 

A=0.5 

Desired 
¢(,d 
0. I0  

0.05 
0.01 
0.10 

0.05 
0.01 

0.10 
0.05 
0.01 

0 . I0  

0.05 

0.01 
0.10 

0.05 
0.01 

0.10 
0.05 
0.01 

0.10 

0.05 
0.01 

0.10 
0.05 

0.01 

u Lower Bound Upper Bot 

Value on ¢(.) on ¢(u) 

4.8547 0.09927 0.10072 

6.4468 0.04935 0.05065 

10.1438 0.00967 0.01033 

8.8410 0.09932 0.10070 

11.8446 0.04939 0.05061 

18.8188 0.00970 0.01031 

12.4516 0.09942 0.10058 

17.4628 0.04950 0.05050 

29.9741 0.00978 0.01022 

19.5368 0.09935 0.10065 

26.3572 0.04942 0.05058 

42.1948 0.00971 0.01029 
27.8867 0.09942 0.10059 

38.6634 0.04949 0.05051 
64.0883 0.00915 0.01025 

33.6686 0.09954 0.10047 
51.5323 0.04963 0.05037 

106.5362 0.00987 0.01013 

219.5718 0.09956 0.10047 

320.4490 0.04961 0.05042 

536.4131 0.00979 0.01023 

531.7017 0.09987 0.10016 
2,198.3100 0.04993 0.05009 

55,607.0454 0.00999 0.01002 

Bound cpu time 

minutes 

9.40 

0.45 

1.62 

13.75 

0.58 

1.92 

0.92 

i . i i  
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¢(u)  funct ion,  and the computer  t imes expended on a Digital Equipment  

Corpora t ion  VAX 6620. 

3 .  I m p l e m e n t a t i o n  o f  t h e  A l g o r i t h m  

The  problems of this paper  are not  jus t  concerned wi th  the evalua- 

t ion of ¢ (u ) ,  bu t  wi th  a solution of ¢ (u )  = r, where r is 0.10, 0.05, or 0.01. 

Therefore an i terative me thod  is required to approximate  u. 

For our i terat ion me thod  we used 10pl as our  first es t imate  for the 

solution of ¢ (u )  = 0,10. For the first es t imate  of ¢ (u)  = 0.05 we used the 

solut ion of ¢ (u )  = 0.10; and  for our first es t imate  for ¢ (u)  = 0.01, we used 

the solution of ¢(u)  = 0.05. Let t ing the first es t imate  be u (1), our  second 

es t imate  was u (2) = 1.2u (1}. The  secant  me tho d  (see, e.g., page 78 Conte 

and  de Boor (1980)) was used to obtain our  th i rd  es t imate  

( 3 . 1 )  u(~) _-- u(2) _ ( ¢ ( u ( 2 ) )  - -  r ) ( u ( 2 )  - -  u O ) )  

For subsequent  approximat ions ,  u (~), Mfiller's me t h o d  (see, e.g., page 

120, loc.cit.) was used which uses the previous three values of u {~-1), u (;-~), 

and  u (i-s). These methods  seemed to give good results wi th  approximate ly  
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seven iterations required to reach a stopping condition of 

(3.2) ~(u('~) - r <_ 10- 7 

For efficient and accurate evaluation of ¢(u) and for u being noninte- 

gral valued, we followed the subdivision method as given on page 55 of 

Goovaerts-DeVylder (1984). The interval [0, u] is divided into 2" subinter- 

, , , . ' ' ,  

and (1.8) becomes H(~-~).k~ 

l 
• ", [ 2- ,uJ so that  g(k) in (1.7) 

While various values of n were used in initial 

experiments, n = 12 was used in all final computations as reported in this 

paper. 

Since the computational times were large for several of the examples, 

Richardson's extrapolation method (see e.g. page 157 of Burden and Faires 

(1989)) was applied to the computation of ~b(u) for a given u as was done 

by Ramsay (1992a) in his computation of lower and upper bounds for ¢(u).  

However, in our computations we applied the extrapolation method to the 

average of the lower and upper bound values which we used for the approx- 

imation of lp(u). 

The computer programming language of Fortran was used along with 

subroutines of DNORDF, DGAMI, DQDAGI, and DQDAG from the In- 
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ternational Mathematics and Statistics Library (IMSL, (1991)). All com- 

puting was done in double precision arithmetic on a Digital Equipment 

Corporation VAX 6000 model 620. 
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