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Annuity Valuation with Dependent Mortality 

ABSTRACT 

Annuities are contractual guarantees, issued by insurance companies, pension plans, and 

government retirement systems, that offer promises to provide periodic income over the lifetime of 

individuals. It is well-known how to use univariate models of survivorship for valuing annuities. 

However, standard industry practice assumes independence of lives when valuing annuities where the 

promise is based on more than one life. 

This paper investigates the use of models of dependent mortality for determining annuity values. 

We discuss a broad class of parametric models using a bivariate survivorship function called a copula. 

Using data from a large insurance company to illustrate our methods, we calculate maximum likelihood 

estimates to calibrate the rnodel. 

The estimation results show strong positive dependence between joint lives. This statistically 

significant result translates into real economic significance. That is, there is an approximate five percent 

reduction in annuity values when dependent mortality models are used compared to the standard models 

that assume independence. We show that the results are robust in terms of the choice of parametric family 

of distribution functions. 

32 



A n n u i t y  V a l u a t i o n  w i t h  D e p e n d e n t  M o r t a l i t y  

1. Introduction 

Financial service organizations offer contractual promises to provide periodic level incomes over 

the lifetime of individuals. These contracts, called annuities, typically provide a level monthly amount 

payable until the death of a named individual, called an annuitant. Annuity obligations are offered by 

insurance companies, pension and other employee benefit funds, and state and federal retirement systems. 

To illustrate the importance of these obligations, U.S. insurance companies alone made $40.3 billions in 

annuity payments in 1993 (1994 Life Insurance Fact Book). 

An important variation of the standard life annuity is the joint and last-survivor annuity. Under 

this contract, periodic level payments are made until the last of a group of individuals dies. To illustrate, 

a prime example of a group is a married couple, where the last-survivor annuity pays as long as either 

spouse survives. Many variations are offered in the marketplace, including a joint and 50% annuity that 

pays a level amount while both annuitants survive with a fifty percent reduction of that amount upon the 

death of one annuitant. 

Valuation of life annuities depends upon (i) the time value of money and (ii) probability of 

survivorship of the annuitants. The time value of money is important because annuity payments are made 

in the future with respect to the valuation of the annuity obligation. However, conditional on survivorship 

of the annuitants, these payments can be valued using standard theory from financial economics such as 

the term structure of interest rates. We do not pursue this aspect of annuity valuation here. Instead, we 

apply the traditional approach of assuming a constant discount rate. 

In this article, we focus on estimating the probability of joint survivorship of two annuitants. 

Estimation of survival probabilities for more than two annuitants can be done by direct extensions of the 

methods of this paper. We focus on two annuitants because the number and amounts of annuity contracts 

issued with more than two annuitants is small compared to the case of two annuitants. 

Traditionally, estimation of joint survival probabilities of a pair has been done by assuming 

independence of lives. With this assumption, the probability of joint survival is the product of the 

probability of  survival of each life. This assumption reduces the joint estimation to a single life estimation 

problem. Estimation of the probability of survivorship of a single annuitant is a well developed area (see, 

for example, Elandt-Johnson and Johnson, 1980, or Cox and Oakes, 1990). 

However, several empirical studies of joint lives in non-commercial contexts have established that 
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survival of pairs are not independent events. To illustrate, Hougaard, Harvald and Holm (1992) analyzed 

the joint survival of Danish twins born between 1881 and 1930. In epidemiological studies of diseases, 

analysis of twins data is useful because of the ability to control for heredity factors within each pair of 

twins. Another type of empirical study involves measuring the impact on mortality induced by the 

mortality of one's spouse. Parkes et al (1969) and Ward (1976) provide early examples of this impact, 

often called the "broken heart" syndrome. A more recent study, with references to many other works, 

is by Jagger and Sutton (1991). 

There are several ways to model the impact of survivorship of one life upon another. For 

example, as in Jagger and Sutton (1991), the question of increased mortality after an event such as the 

death of a spouse is well-suited to a survival model called proportional hazards that allows for time- 

varying explanatory variables. This type of model was also used by Hougaard et al (1992) to assess the 

generations effect of  studying twins over a long period of time. 

Classical models of dependent lives are called "common shock" models, see, for example, 

Marshall and Olkin (1967). These models assume that the dependence of lives arises from an exogenous 

event that is common to each life. For example, in lifetime analysis this shock may be an accident or the 

onslaught of a contagious disease. Although there are many other types of  dependencies in human 

lifetimes that are not captured by shock models, their particularly simple form turns out to be convenient 

for annuity valuation purposes. These models are further discussed in Section 6 below. 

Other parametric bivariate survival models include the "frailty" models described by Oakes 

(1989), the mixture models of Marshall and Olkin (1988) and the "copula" models, as described in Genest 

and McKay (1986). Nonparametric estimation of bivariate survival estimation has been summarized by 

Pruitt (1993). Because of the several complications that appear in annuity data, we focus on the copula 

models. These models provide tractable parametric models of the bivariate distribution and are described 

in more detail in Section 3. 

To calibrate our models, we consider data from a large Canadian insurance company. We study 

the mortality experience from observing approximately fifteen thousand policies over a five year period 

including 1989 through 1993. Further description of the sources and characteristics of the data is in 

Section 2. 

Because of the nature of our data and our interest in annuity valuation, this paper differs from 

other empirical studies of bivariate distributions in several aspects. First, our data sampling period, five 

years, is much shorter than other lifetime studies (for example, the Danish twins data were observed over 

a one hundred ten year period from 1881 to 1990). Thus, we need not discuss cohort effects of mortality 
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as in that study. However, because of the short time frame of our observation period, our data are (right) 

censored in that most policyholders survived through the end of the observation period. Further, our data 

are (left) truncated in that policyholders who had died prior to the beginning of the study were not 

available for analysis. This complication is called "left-truncation with right-censoring" in survival 

analysis (see, for example, Cox and Oakes, 1990, p 177). 

Second, in this paper, the scientific interest is different. Works that study the "broken heart" 

syndrome often wish to establish predictive models, that is, identifying an event such as the death of a 

spouse to improve the predictions of the probability of death. Epidemiological studies often wish to isolate 

explanatory variables that induce the onslaught of a certain disease or infection. Our interest lies in the 

valuation of annuity contracts. As such, we are interested in assessing the strength of dependence and the 

effects of the dependence on contract values. In particular, the choice of the model of bivariate 

dependence is influenced by the desire for simplicity in our annuity valuation procedures. 

Third, reporting mechanisms for industry data tend to be different when compared to population 

data that might be gathered by the U.S. Census Bureau or data from a carefully designed clinical trial. 

For industry, two important issues are the mortality patterns within a contractual guarantee period and 

the reporting of  the first death for some contracts. Some joint-life contracts offer a guarantee of annuity 

payments, typically over a period of five or ten years from contract initiation. Thus, there is no economic 

incentive for reporting a death within the guarantee period. Alternatively, those that elect the guarantee 

option may exhibit higher mortality than those who do not. Further, for joint and last-survivor policies, 

payments are made until the second, or last, of the pair dies. Thus, although policyholders should notify 

the insurance company of a change in the mortality status of annuitants, there is no economic purpose 

for reporting the death of the first annuitant. These two issues are addressed in greater detail in Section 

5. 

Here is a summary for the rest of the paper. In Section 2 we introduce the data and in Section 

3 we discuss models of dependence. Section 4 summarizes the effects of dependence on annuity values 

and Section 5 addresses the problem of underreporting. Section 6 examines the robustness of choice of 

parametric families. This is done by considering alternative marginal distribution and an alternative 

bivariate distribution function, the common shock model. We close in Section 7 with some concluding 

remarks. 
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2. Data Characteristics 

In this paper, we analyze mortality patterns based on information from 14,947 contracts in force 

with a large Canadian insurer over the period December 29, 1988 through December 31, 1993. These 

contracts are joint and last-survivor annuities that were in the payout status over the observation period. 

For each contract, we have the date of birth, date of death (if applicable), date of contract 

initiation and sex of each annuitant. Table 1 presents the frequency distribution of annuitants by sex, entry 

age and mortality status group. Entry age is defined to be the age at which the annuitant entered the study 

and was computed from the date of birth and contract initiation date. For mortality status, we classified 

annuitants according to whether or not they survived until the end of the observation period. In addition 

to the dates discussed above, we also have the date that the annuity guarantee expired (if applicable). This 

will be discussed further in Section 5. 

Table 1 shows that there were roughly an equal number of males and females in our study, 

14,933 males and 14,961 females. We also see that there is roughly three times as many male deaths as 

female deaths. This is in part due to the higher average entry age for males than for females, which turns 

out to be approximately 68 for males and 65 for females. It also suggests higher mortality rates for males 

than for females. 

TABLE 1. Number of Policies by Sex, Entry Age and Mortality Status 

Entry Age Mortality Status 

Survive Death Total 

Males 

than 60 1,170 42 1,212 

60 - 70 7,620 534 8,154 

70 - 80 4,355 806 5,161 

Greater than80 229 177 406 

Total 13,374 1,559 14,933 

Females 

Less tb.an60 2,962 30 2,992 

60 - 70 8,222 239 8,461 

70 - 80 3,014 245 3,259 

Grea~rthan80 186 63 249 

Total 14,384 577 14,961 
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Figure l displays a graphical summary of the distribution of lifetimes for our 14,933 male 

annuitants. Because our data primarily concerns policyholders who are at least middle-aged, we present 

distribution functions that are conditional on survival to age forty. The jagged function in Figure l is the 

Kaplan-Meier product limit estimator of the distribution function. We use this as our baseline estimator 

of  the distribution function because it is the nonparametric maximum likelihood estimator. See, for 

example, Elandt-Johnson and Johnson (1980) or Cox and Oakes (1990) for an introduction and further 

discussion of the properties of this estimator. We see from the Kaplan-Meier estimator in Figure 1, for 

example, that the median age at death is approximately 82 years. The 25 th and 75 th percentiles are 

approximately 68 and 90 years, respectively. 

Superimposed in Figure 1 is a smooth curve that was fit using the Gompertz distribution. The 

Gompertz distribution function can be expressed as: 

F(x) = 1 - e x p ( e  n v ° ( l - e  x / ° ) ) ,  (2.1) 

where the mode, m, and the scale measure, a, are parameters of the distribution. To actuaries, the 

familiar Gompertz force of mortality, or hazard rate, is/z~ = F'(x)/(1-F(x)) = B c ~, that yields 

F(x)  = 1 - e x p ( ( B / i n c ) ( l - c  ~ ) ) .  

However, with the transformations B/In c = e -''/# and c = e TM, we see that equation (2.1) is simply a 

reparameterized version of the usual expression for the Gompertz distribution. As pointed out by Carriere 

(1994), equation (2.1) is convenient for estimation purposes. 

Figure 1 shows that the Gompertz fit closely replicates the nonparametric Kaplan-Meier fit. The 

main advantage o f  the Gompertz fit is that only two parameter estimates are necessary to reproduce this 

curve. For male annuitants, the estimates turn out to be th ~ 86.4 and # -- 9.8 years. However, to 

reproduce the Kaplan-Meier estimate, all 14,933 male lifetimes would be needed because of the 

continuous nature of  our data. The parsimonious representation provided by the Gompertz curve is 

particularly important for the annuity calculations in Section 4. 

Of course, to achieve a parsimonious representation of a lifetime distribution, there are many 

other families of  distribution functions that could be used. To illustrate, Figure 2 shows a fitted Weibull 

distribution function for the male annuitants with the Kaplan-Meier curve superimposed for reference. 
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Figure 1. Gompertz and Kaplan-Mclcx I~ttod Male Distribution Function. 
The Gompertz curve is smooth, the Kaplan-Meiex is jagged. The 
distribution is conditional on survival to age forty. 
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The fit is close, although the Gompertz may be a better approximation of the Kaplan-Meier. For purposes 

of annuity valuation, it turns out that any parametric representation of the lifetime distribution suffices. 

For our data set of older policyholders, the Gompertz distribution seems to provide an adequate fit. There 

is certainly a long history of fitting Gompertz distributions to the mortality of human populations, as 

described by Carriere (1994) and Pollard and Volkovics (1993). 

To understand some aspects of the relationship between male and female mortality, Figure 3 

provides a quantile-quantile (q-q) plot that compares the male and female lifetime distributions. The q-q 

plot is a scatter plot of selected quantiles, or percentiles, from the male distribution versus the 

corresponding quantiles from the female distribution. Here, we used quantiles calculated from the Kaplan- 

Meier fitted distributions. The q-q plot allows us to compare medians, and much more. For example, 

Figure 3 shows that the median male age of 82 corresponds to a median female age of 88. Similarly, the 

25 th and 75 ih percentiles for males, 68 and 90, correspond to female ages 80 and 98, respectively. Figure 

3 shows that the entire distribution of female ages at death is higher than the male distribution. 

F e m a l e  A g e  

. , . , . , • , - , . , . , 

1 O 0  

6 0  0 o 

51) 

4o ',o so 70 so go ~ oo 

Mole Age  

Figure 3. Quantile-Quuntile Plot of Female versus Male Ages. There are one 

hundred percentiles plotted, where each percentile comes from the 

univariate Kaplan-Meief estimate of the distribution function. The solid line 

corresponds to male equal to female age. Because virtually all points are 

above the line, each female quantile exceeds the corresponding male 

quantile. 
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To provide background on the estimation procedures that Figures 1 through 3 are based on, we 

now give details on the limitations of our data, including truncation and censoring. Consider the bivariate 

ages-at-death random vector (X, Y) where X and Y represent the ages at death of the primary and 

secondary annuitant, respectively. In joint annuity contracts, one annuitant is usually designated as 

"primary" and the other "secondary" because some contracts provide for a reduced payout upon the death 

of the primary annuitant. An example of this is an annuity provided by a firm to an employee. This 

distinction turns out to be unimportant in our analysis of  the data. 

Industry data are truncated in the sense that data are only observed after a contract has been 

entered into by policyholders. Thus, we use standard notation and let x and y be the contract initiation 

ages of  the primary and secondary annuitants, respectively. Further, for our data set, we observed the 

joint annuity contract if both annuitants were alive at the beginning of the observation period or if the 

annuitants entered the study during the observation period. With t o as the time of contract initiation, we 

define 

a = max (12/29/88 - t 0, 0) 

to be the time from contraction initiation to the beginning of the observation period. Thus, x+a and y+a 

are the entry ages of  the primary and secondary annuitants, respectively. Under our left-truncation, we 

observe the contract only i fX  > x+a and Y > y+a. 

Our data was also censored from the right. Let b = I/1/94 - max (12/29/88, to) denote the length 

of time that the policy was under observation. Denote T 1 = X-x-a and T 2 = Y-y-a to be the future 

annuitant lifetimes. Then, for j =  1,2, we observed ~ = min(/j,  b), the censored future lifetime, and 6j, 

a variable to indicate whether censoring has occurred. That is, 6j is defined to be one i f / )  > b and zero 

otherwise. 

this notation, our full data set consists of {T~/), 8q}, j =  1,2, and i=  1 . . . . .  14947. That is, Using 

there are a total of  29,894 (=  2 x 14947) univariate observations. Univariate distributions were fit for 

each sex using maximum likelihood techniques to produce the fitted parametric curves. We do not present 

the details here because the more complex bivariate situation is discussed in the next section. As 

mentioned above, the nonparametric curves were fit using the standard Kaplan-Meier product limit 

estimator. 

Beginning in the next section, we focus our estimation procedures using bivariate observations, 

that is, observations of the joint mortality of  both annuitants. For our data, we have 22 contracts where 

both annuitants are male, 36 contracts where both annuitants are female, and 14,889 contracts where one 

annuitant is male and the other female. Because of the preponderance of data in the third category, we 

focus our attention on male-female joint annuity mortality. Henceforth, we refer to x as the male life and 
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y as the female life. Of course, the estimation techniques that we introduce could also be applied to the 

other two categories. 

A classical nonparametric measure of dependence is Spearman's rank correlation. Appendix E 

shows how we can use this measure when the data are left-truncated, right-censored and not identically 

distributed. The test of  independence that we present assumes that the law of mortality is known for 

individual lives. Obviously, our knowledge of this law for annuity products is substantial but not perfect 

and so caution must be used when using this method. Using this technique we found that the correlation 

was 0.41 and that a 95% confidence interval is (0.28, 0.55). If the lives were independent, then the 

correlation is zero. Therefore, this crude preliminary analysis suggests that the lifetimes are dependent. 

In subsequent sections, we will corroborate this analysis using classical maximum likelihood techniques. 

3. Models of  Dependence 

3.1 Bivariate Distributions 

In this paper, we express our bivariate distributions using a function called a copula. Consider 

a bivariate age-at-death random vector (X, 19 with distribution function H, that is, H(x, y) = Prob(X<x, 

Y<y). Let F 1 and F 2 denote the respective marginal distribution functions so that Fl(X ) = H(x, cQ) and 

F2(Y ) = H(oo, y). We consider bivariate distribution functions of the form 

H(x, y) = C(Fl(x) ,  F2(,y) ) .  (3.1) 

Here, C is a real-valued function called a copula. Copulas are bivariate distributions with uniform 

marginal distributions. 

Copulas are useful because they provide a link between the marginal distributions and the 

bivariate distribution. From equation (3.1), it is clear that if FI,  F 2 and C are known, then H can he 

determined. Sldar (1959) proved a converse: if H is known and if F 1 and F 2 are known and continuous, 

then C is uniquely determined. In this sense, C "couples" the marginal distributions to the bivariate 

distribution. 

There are many possible choices of  the copula function. In this paper, we focus on a one 

parameter family due to Frank (1979) that can be expressed as 

C(u,v)  = In(1 + ( e " - l ) ( e ' v - 1 ) )  [ a . (3 .2)  
e ' - I  
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Advantages of this family have been presented by Nelsen (1986) and Genest (1987). The Frank, Genest 

and Nelsen papers present the copula in terms of the parameter 3' = e a. Similarly to the case of the 

univariate Gompertz distribution, we work with the reparameterized version in equation (3.2). This 

transformation turns out to be more convenient for estimation purposes. 

The parameter ct captures the dependence between X and Y. The case of independence 

corresponds to c~ = 0. This is because it can easily be shown, from equation (3.2), that lima,, 0 C(u, v) 

= u v. Thus, the bivariate distribution function is the product of marginal uniform distributions. In 

addition to the dependence parameter ~t, we also present Spearman's correlation coefficient p(c~). 

Spearman's correlation coefficient is a nonparametric measure, defined to be the ordinary Pearson 

correlation coefficient after taking a (marginal) uniform transformation of each random variable. Here, 

p(~t) is a straightforward function of ct that Nelsen (1986) showed to be 

p(~) = I- 120D2(-o 0-DI(--~ ))I~ (3.3) 

z 

where Dk(X ) = kx -i ftk(e f-1)-Idt, k= 1,2, is called the De, bye function. 
0 

To complete our specification of the bivariate distribution, we assume that each marginal 

distribution is Gompertz. Thus, using equation (2. I), we assume 

Fj(x) = 1 - exp (exp(-m..etaj) (1 - exp(x/aj) ) ) ,  j = 1,2 . (3.4) 

Our model is then specified by equations (3.1), (3.2) and (3.4). This model has five parameters which 

can be represented by the vector 

O = ( m  1 ,o  1,nv 2 , a  z , ~ ) ' .  0 .5)  

3.2 Estimation Results 

Using the left-truncated, right-censored data described in Section 2, we estimated the model 

described in Subsection 3.1. The method of estimation is maximum likelihood; the details are presented 

in Subsection 3.3 below. The results of the estimation are summarized in Table 2. 
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TABLE 2. Bivariate Data Parameter Estimates 

Bivariate Distribution Univariate Distributions 

Parameter Estimate Standard Error Estimate Standard Error 

m I 85.82 0.26 86.38 0.26 

al 9.98 0.40 9.83 0.37 

m 2 89.40 0.48 92.17 0.59 

o 2 8.12 0.34 8.11 0.38 

a -3.367 0.346 Not Applkable Not Applicable 

Table 2 shows that the "average," or modal, age at death was approximately fours years later for 

females than males. The estimates of variability were roughly the same. Using equation (3.3), the 

estimate of the dependence parameter can be converted to a correlation estimate. This turns out to be p(~) 

= p(-3.367) = 0.49. Recall that Spearman's correlation, like Pearson's correlation, is bounded by-1 and 

1 with a correlation of zero implying no relationship. A value of p(~,) = 0.49 indicates a strong statistical 

dependence. This is because a rough 95% confidence interval for ~ is & + 1.96 se(&) = -3.367 + 1.96 

(0.346) = (-4.045, -2.689). Translated into the correlation scale, a 95% confidence interval of 

Spearman's correlation is (0.41, 0.56). 

The Table 2 parameter estimates can be directly used to value annuities. Some readers may wish 

to skip directly to Section 4 where we analyze the effects of mortality dependence on annuity valuation. 

Others may be interested in estimating the parameters for their own block of business and hence, in the 

estimation details which we now present. 

3.3 Maximum Likelihood Estimation 

We now develop the likelihood function to be maximized. Having developed the likelihood 

function, standard function maximization routines will yield the maximum likelihood estimates. Because 

our sampling satisfies standard regularity conditions (see, for example, Serfling, 19g0), we can easily get 

asymptotic normality and subsequent standard errors for the estimates. 

In our development, we will need the following partial derivatives: (i) HI(x, y) = all(x, y)/ax, 

(ii) H2(x, y) = all(x, y)/ay, and (iii) h(x, y) = o~H(x, y)/ax#y. Our assumption of Gompertz marginals 

and Frank's copula assures that these derivatives exist. Their explicit representation in terms of the vector 

of parameters is given in Appendix A. 

To develop the likelihood function, we first consider truncated observations. Recall that the future 
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lifetime random variables T I = X-x-a and T 2 = Y-y-a are observed only if T I > 0  and T2>0. Therefore, 

define the conditional distribution function of T l and T 2 as 

Prob(O<T:t~, O< T2 s t2 ) 
I-Lr(tvt 2) = Ptob(T, ~tl,r2~t~T I, T~ are observed) ffi 

Prob~T~>0, 72>0) 

H(x +a + t l,y +a + t 2) -H(x + a,y +a + t.z) -H(x +a + t t ,y +a) +H(x +a,y +a) (3.6) 
I 

I -H(x +a,-) -H(~,y +a) +H(x +a,y +a) 

Turning now to the case of right-censoring, recall that ~ = min(?~, b). There are four types of 

censoring Hat may occur. The lifetimes may be: (i) both uncensored, (ii) the first uncensored and the 

second censored, (iii) the first censored and the second uncensored and (iv) both censored. We handle 

each type in turn. 

1. If both lifetimes are uncensored, then we may assume t I < b and t 2 < b. In this case, we have 

61 =0  and 82=0 and 

Prob(~ < t I,~ < t. z [ ~,~areobserved) 

= Prob( min(Tl, b) < tl, rain(T2, b) < t 2 [ TI>0,T2>0 ) = Hz(tl, tz) . 

Thus, using equation (3.6), the contribution to the likelihood function is: 

~r( tp t') = h (x ÷a + tpy + a + cz) 

~t s at 2 l-I-I(x+a,~)-H(oo,y+a)+H(x+a,y+a) 
(3.7) 

2. If the first lifetime is uncensored and the second is censored, then we may assume t I < b and 

t 2 > b. In this case, we have 81=0 and 82= 1 and 

Prob(~ < tl, ~2 = b I /~I, ~ are observed) 

= Prob( T I < tl, T 2 > b I TI>0,T2>0) = HT(tl, °°)- H~tl, b) • 

Thus, the contribution to the likelihood function is: 

/~-Lr(tl,~)-H.r(tl,b)) Hl(X+a+tt, ~) - Hl(x+a+tpy+a+b ) 
= 

Ots 1 -H(x  +a,~)-H(®,y÷a)+H(x +a,y+a) 
(3.8) 
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3. If the first lifetime is censored and the second is uncensored, then we may assume t 1 > b and 

t 2 < b. This case is similar to case (2), thus ~tl= 1 and 62=0 and the contribution to the 

likelihood function is: 

I'[z(%Y+a+t2) - I'Iz(x÷a+b'y+a+ta) (3.9) 

I -H(x+a,®)-It(%y+a)+H(x+a,y+a) 

4. If both lifetimes are censored, then we may assume t I > b and t 2 > b. In this case, we have 

51 = 1, 62= 1 and contribution to the likelihood function is: 

Prob(T(=b,T~=b l T~,T~ate observed) = 1-H(x÷a÷b,o*)-H(%y+a+b)+H(x+a+b,y+a*b) (3.10) 
1 -H(x +a,~*)-H(%y ÷a) +H(x +a,y ÷a) 

Combining equations 0 .7)  through 0.10),  we can express the logarithm of the likelihood function for 

a single observation as 

In L(x~y,tpt2,St,~,a,b ) = (1-81)(1-82) In h(x +a+tl,y+a+tT) 

+ (l-/~t)~ 2 ln(H~(x+a+tt,o*)-Hl(x+a+tt,y+a+b)) + 8a(1-g2) In(H2(*%v+a+t2)-H2(x+a+b,y+a~.))ll 

+ /i18 2 ln(l-H(x+a+b,**)-H(%y+a+b)+H(x+a+b~v+a+b)) 

- In(1-H(x+a,**)-H(**,y*a)+H(x+a,y+a)) . 

Using equation (3.11), the log-likelihood for the data set can be calculated as 

In ~ ~ In L(xo y• tip t2p 81p 82d ~ at, b~ . (3.12) 
t-1 

The maximum likelihood estimator of # is the value J that maximize~ In .~. Standard maximum 

likelihood estimation theory provides that nl/2(~ - @) is asymptotically normally distributed with mean 

zero and variance-c.ovariance Vn(@) = -( n -! o ~ (In -~)/(~0 a0') )-1. The variance-covariance matrix Vn(e ) 

can be consistently estimated using Vn(~), which is an output from standard function maximization 

routines. The standard error of each parameter estimate in ~ may be determined by the square root of the 

corresponding diagonal element of Vn(~ ) divided by n. 
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4. Effects of Dependence on Annuity Values 

As described in Section 1, the main purpose of this paper is to assess the effects of our models 

of dependent mortality on annuity values. We use the basic model of annuity valuation described in 

Chapter 8 of Bowers et al (1986). To this end, in our illustrations below we assume a constant effective 

interest rate i with associated discount rate v = I/(1 +i). The net single premium for a joint and last- 

survivor annuity issued to lives aged x and y is 

= ~ vk /~xy (4.1) 

where gt~y = 1 - Hr(k, k) is the conditional probability that at least one life survives an additional k 

years. Here, the conditional distribution H r is as defined in equation (3.6) with a = 0. Because H/. is 

a function of the vector of parameters 0, so are ~ and x~-yy. We will occasionally use the notation ~yy(0) 

to emphasize this dependence. 

4.1 Effects of Age and Interest 

In this subsection, we identify contract initiation ages x and y and interest environment i where 

models of dependent mortality really matter. The approach is straightforward: we estimate the annuity 

value ~ii-y in equation (4.1) with and without assuming independence. The parameter estimates with and 

without independence are in Table 2 and were discussed in Subsection 3.2. We compare the annuity 

values by calculating the ratio of annuity values estimated without an independence assumption to those 

estimated with the independence assumption. 

To assess the effects of contract initiation ages, Figure 4 presents a three-dimensional plot of the 

ratio of annuity values, by male (x) and female (y) ages. The curve is roughly symmetric in x and y, 

indicating that although the two marginal distributions are different they have approximately the same 

effect on the ratio. Further, there appears to be an interaction effect o fx  and y on the ratios. That is, the 

ratio is much smaller for large values of both x and y when compared to large values for either x or for 

y. 

To gain further understanding of this interaction effect, Figure 5 presents a multiple scatter plot 

of the ratio versus male ages, over several female ages. Here, for young female ages, we see that the 

ratio increases as male age increases. However, for older female ages, the ratio decreases as male age 

increases. 
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Ratios that are less than one indicate that annuity values calculated assuming independence of lives 

are larger than those calculated without assuming independence. For this data set, it turns out that the 

average contract initiation age was approximately 65 and 63 for males and females, respectively. The 

average age as at December 31, 1993 was 72.5 and 69.6 for male and female lives, respectively. We 

interpret the higher ratios for younger ages to mean that the effect of assuming independence is smaller 

for premium determination compared to annuity reserve setting. This suggests that reserves for annuities 

already paid-up are larger than necessary. 
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Figure 4. Three-dimensional plot of the ratio 
of dependent to independent annuity values, 
over several male and females ages. Here, five 
percent interest is assumed. 
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Figure 5. Multiple scatter plot of the ratio of 
dependent to independent annuity values to 
male age, over several females ages. Here, five 
percent interest is assmned. 

Our data set displays a strong relationship between x and y. An examination of  the data showed 

that the median age difference is 2.4 years, the middle fifty percent of the data is between 0.1 and 5.2 

years, and the middle ninety percent is between -3.7 and 11.0 years. Because of this concentration, for 

brevity in our subsequent analyses, we present only the special case of x = y. 

To assess the effects of interest, Figure 6 presents a three-dimensional plot of the ratio of annuity 

values, over several interest rates and ages. Here, the male age is assumed equal to the female age. This 

figure shows a quadratic effect of joint age that can also be observed in Figure 4. The effects of the 

interest rate i seem to be linear. 

To investigate these effects further, Figure 7 presents a multiple scatter plot of the ratio of annuity 

values to age, over several interest rates. This plot also demonstrates the quadratic effect of joint age and 

the linear effect of interest rates. From this plot, we see that the assumption of independence will matter 

more in times of low than high interest rates. 
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Figure 6. Three-dimensional plot of the 
ratio of dependent to independent annuity 
values, over several interest rates and 
ages. Here, e q ~  annuitant ages are 
assumed. 
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Figure 7. Multiple scatter plot of the ratio 
of dependent to independent annuity 
values to age, over several interest rates. 
Here, equal annuitant ages are assumed. 

4.2 Effects of Dependence on Other  Annuities 

The joint and last survivor annuity is a special case of a broad class of  jointqife annuities. In this 

subsection, we consider joint and r annuities, where typically r is two-thirds or one-half. For example, 

the joint and two-thirds annuities pay $1 while both annuitants are alive and $2•3 while one annuitant is 

alive. In the U.S.,  there may be a larger market for these annuities than the joint and last-survivor 

annuities that corresponds to r = 1. This is because the Employee Retirement Income Security Act 

(ERISA) mandates that all qualified pension plans offer to qualified beneficiaries a joint and survivor 

annuity with r at least fit~y percent. For this purpose, in addition to the usual requirements, beneficiaries 

must be married to their current spouse for at least one year. Joint-life annuities, corresponding to r = 

0, are not widely marketed. 

Similar to equation (4.1), the net single premium for a joint and r annuity can be expressed as 

ax,y(r ) = ~ v k (rhox + rhoy -(2r-1) ho,.y) (4.2) 

where kPx = 1 - Hr(k, 0o) is the conditional probability that a life age x survives an additional k years, 
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~ y  = 1 - Hr (o ,  , k) is the conditional probabil i ty that a life age y survives an additional k years and kPxy 

= kPx + ~ y  - kP'i'yxy = 1 - Hr(k  , o,)  - H:r(o, , k) + HT(k, k) is the condit ional probabil i ty  that both l ives 

ages x and y surv ive  an additional k years. 

Table  3 summarizes  the effects of  dependence on the reduced annuities. This  tables shows that 

the reduction factor r has little effect on the annuity ratios. As discussed above, we are pr imari ly  

concerned with reduction factors r = 1/2, 2/3 and I because these are the most widely  marketed types 

of  annuities. 

TABLE 3. Ratios of Dependent to Independent Joint and r Annuity Values. 
Five Percent Interest and Equal Annuitant Ages are Assumed. 

r 

0 1/4 1/3 1/2 2/3 1.0 
Age 

5O 

55 

60 

65 

7O 

75 

8O 

1.00 0.99 0.99 0.98 0.98 0.97 

1.00 0.98 0.98 0.98 0.97 0.96 

0.99 0.9g 0.98 0.97 0.96 0.95 

0.98 0.97 0.97 0.96 0.96 0.95 

0.97 0.96 0.96 0.95 0.95 0.94 

0.94 0.94 0.94 0.94 0.94 0.94 

0.89 0.91 0.92 0.93 0.94 0.95 
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4.3 Annuity Standard Errors  

The annuity values calculated in Subsections 4.1 and 4.2 are based on the point estimate } and 

thus depend on the sample. To measure the reliability of ~, in Subsection 3.3 we discussed how the 

estimated variance-covariance matrix Vn(~ ) could be used to derive parameter estimate standard errors. 

This subsection develops standard errors for ~ra-/-fy0). These standard errors, together with the asymptotic 

normality, will allow us to provide confidence intervals for our joint and last-survivor annuity values. 

The asymptotic normality of ~t~(~) is based on the asymptotic normality of ~ and the so-called 

"delta-method" (see, for example, Serfling, 1980, Section 3.3). From Subsection 3.3, we have that 

n 1/'2 (~ -  0) is AN(O, Vn($ ) ) ,  

where "AN(0, A)" means asymptotically normal with mean vector 0 and variance matrix A. Def'me the 

gradient vector G(O) = O ~T(O)/c30. From the delta-method, we have 

n If2 (~---(y ~) - fi~(0)) is AN(0, G(0)' Vn(0 ) G(0)) .  (4.3) 

Thus, we may define the standard error of li~--y(y ~) to be 

se(~-O)) = (GO)'  v~0) GO) / n) tt2. (4.4) 

From equation (4.3), we have that l~---(y ~) + 1.96 se(~O)) provides an approximate 95% confidence 

interval for our annuity value ~-/~-(O). 

When computing the standard error, the most difficult component is the gradient vector. This is 

because, as noted in Subsection 3.3, the matrix Vn(~ ) is an automatic output from standard function 

maximization routines. To compute the gradient vector, from equation (4.1), we have 

From equation (3.6) and the chain rule, we have 
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__a_a H/(k, k) = ( I - H(x, oo) - H(oo,y) + H(x,y) ) -2 (4.5) 
ao 

[ ( H ( x + k , y + k )  - H(x ,y+k)  - H(x+k,y)  + H(x,y)) - ~ ( 1  - H(x, oo) - H(o*,y) + H(x,y) ) 

- (I - H(x,c~) - H(~,y) + H(x,y)) a(H(x+k,y+k) - H(x,y+k) - H(x+k,y) + H(x,y)) ] . 
ao 

Using equation (4.5), joint and last-survivor annuity standard errors were computed over several 

ages and interest rates. Table 4 presents the results for a five percent interest rate. The most important 

aspect of Table 4 is the magnitude of se(~i-iy(~)). To illustrate, consider our largest and smallest estimated 

annuity values which turn out to be ~50: 50(~) = 17.45 and ~tlo : s0(~) = 9.65. For the largest annuity 

values, the standard error represents a typical error that is 0.002117.45 = 0.011 percent of  the annuity. 

For the smallest annuity value, the standard error represents a typical error that is 0.025/9.65 = 0.26 

percent. Thus, the standard errors indicate that the estimated annuity values are very accurate. 

TABLE 4. Annuity Standard Errors by Male and Female Age 
Five Perc~t Interest is Assumed. 

Male Female Age 

Age 50 55 60 65 70 76 80 

50 

55 

60 

65 

70 

75 

80 

0.002 0.002 0.002 0.002 0.002 0.003 0.005 

0.002 0.002 0.003 0.002 0.002 0.003 0.004 

0.002 0.002 0.003 0.005 0.004 0.004 0.004 

0.002 0.002 0.003 0.006 0.008 0.008 0.006 

0.002 0.003 0.003 0.006 0.010 0.014 0.013 

0.002 0.003 0.004 0.006 0.009 0.016 0.023 

0.003 0.004 0.007 0.009 0.011 0.015 0.025 
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5. The Problem of Underreporting 

As discussed in Section 2, the data analyzed in this paper come from internal records of  a large 

insurance company. Thus, in most cases the accuracy of the observed lifetimes depended on the reporting 

behavior of policyholders. This section investigates two instances where there may exist substantial 

measurement errors. The first involves underreporting of deaths within the guarantee period and the 

second involves underreporting of the first death. In each case, the approach is to reformulate the 

likelihood equation so that we are essentially re-estimating the Section 3 model using only subsets of our 

data. The subsets are chosen to circumvent the potential bias due to underreporting. Unfortunately, by 

using only subsets of the data, it turns out that we are unable to estimate the parameter values accurately 

when assessing potential underreporting of the first death. However, we do present the theoretical 

development of the likelihood equation to handle this type of underreporting. 

5.1 Underreporting Within the Guarantee Period 

Many policyholders elect a standard option that guarantees annuity payments will be made within 

a contractually specified period regardless of the mortality status of the annuitants. Because of the lack 

of financial incentives, there is concern that policyholders may not accurately report deaths that occur 

during the guarantee period. Further, it may be that mortality patterns for those electing a guarantee 

option may differ from those who do not. Of the 14,889 joint life contracts that we used for estimation, 

10,011 contracts were at least partially guaranteed during the observation period. 

To handle this potential bias, we re-estimated the model by disregarding mortality events within 

the guarantee period. This was done by censoring our lifetime data from the left at the expiration of the 

guarantee period. A consequence of this left censoring is that, for policies whose contract guarantee 

exceeded the observation period, there is no variability in the observed lifetimes and hence these policies 

were completely excluded from the likelihood calculations. Of the 14,889 contracts, 9,172 had guarantees 

that exceed the observation period. 

To define the variables needed for the new likelihood function, let c be the time since contract 

initiation of the guarantee period. Define g = c - a to be the time from the beginning of the observation 

period to the end of the guarantee period (which may be negative). For contracts without a guarantee, 

we define g = 0. 

Our new likelihood is based on the right- and left-censored times at death 
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~ *  = min( max(/~, g), b ) 

and indicators of the type of censoring 

ff T 7 '  = g (left-censored) 

otheawise 

I if r 7" - b (right-on=oreS) 

/~jb = otherwise 

for j =  1,2. Because contracts with guaranteed period exceeding the observation period are excluded from 

the likelihood function, we may assume g < b without loss of generality. 

The development of the guarantee period likelihood function is similar to that described in 

Subsection 3.3. Because it is more complex, the details are included in Appendix B. Using the guarantee 

likelihood is similar to the classic "select-and-ultimate" tables in life analysis, where the experience of 

policyholders during the select period is not used for calculating ultimate mortality rates. 

Table 5 presents the estimation results for the new likelihood that accounts for the presence of 

the guarantee period. The parameter estimates from the guarantee period likelihood do not differ 

significantly from those of the full likelihood. As anticipated, the standard errors are larger for the 

guarantee period than for those of the full likelihood. This is due to the fact that we are using less 

information under the guarantee period censoring. 

Table 5 does not suggest the presence of adverse selection by policyholders who elect the 

guarantee option. On the one hand, if there was an underreporting of  deaths within the guarantee period, 

then we would expect the modal ages to decrease. On the other hand, if policyholders with poorer health 

elect guarantee options, then we would expect the modal ages to increase. Our guarantee likelihood 

estimates do not significantly differ from the full likelihood estimates, thus providing no conclusive 

evidence of the presence of  adverse selection. 

Table 5 also shows that our estimate of dependence has decreased to p(&) = p(-2.92) = 0.44. 

Although not statistically different from the full likelihood estimates, there may be some economic 

significance. Table 6 shows that this is not the case. The Table 6 ratios are approximately equal to the 

ratios discussed in Subsection 3.2. This again illustrates the highly nonlinear nature of the dependence 

parameter; large changes in a are needed to induce even small changes in our ratios of  annuity values. 
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TABLE 5. Guarantee Period Parameter Estimates 

Full Likelihood Guarantee Period Likelihood 

Parameter Estimate Standard Error Estimate Standard Error 

m I 85.82 0.26 84.78 0.40 

al 9.98 0.40 9.58 0.49 

m 2 89.40 0.48 89.53 0.78 

~2 8.12 0.34 7.82 0.40 

-3.367 0.346 -2.92 0.623 

TABLE 6. Ratios of Depeadcat to lndepeedeat Joint sad Last Annuity 
Values Baaed on Guarantee Likelihood Estimates. 

Five Perceat Interest is Assumed. 

Female Age 

50 55 60 65 70 75 80 

Male 
Age 

50 

55 

60 

65 

70 

75 

80 

0.97 0.96 0.96 0.96 0.97 0.99 1.01 

0.97 0.96 0.95 0.95 0.96 0.97 1.00 

0.97 0.96 0.95 0.94 0.94 0.96 0.99 

0.98 0.97 0.96 0.94 0.93 0.94 0.97 

0.99 0.98 0.97 0.95 0.94 0.93 0.94 

1.01 1.00 0.99 0.98 0.96 0.93 0.92 

1.01 1.01 1.01 1.01 0.99 0.96 0.93 

5.2 Underreporting of First Death 

For joint and last-survivor annuity policies, payments are made until the second, or last, annuitant 

dies. There is concern that policyholders might not report the death of only one annuitant, especially if 

there is no effect on the level of payment. For our data, of the 2,126 deaths (=  1,554 males + 572 

females), 1,668 deaths left the other annuitant surviving. The other 458 deaths resulted in the cessation 

of payments on 229 contracts by the end of the observation period. 

To handle this potential bias, we re-estimated the model by redefining "failure" to be the time 

of second death, that is, cessation of the policy. This approach treats the 1,668 single deaths as policies 

that ~survive ~ the observation period. 
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Our new likelihood is based on the time of second death 

T' = max(G, T~ = max(min(Tl, b), min(T 2, b)) = min(max(T 1, T2), b)) 

and the indicator of censoring,/5", which is one if T*=b and zero otherwise. Similar to Subsection 3.3, 

the likelihood function is based on two cases. 

1. If the second death is uncensored, then we may assume t < b. In this case, we have 8*=0 and 

Prob(T* < t [ TI>O,T2>O) = Prob(T t < t, T 2 < t [ T I > 0 , T 2 > 0 )  = Hr(t , t ) .  

Using the chain rule, we have 0H(t, O/at = Ht(t, t) + Hx(t, t). Thus, the contribution to the 

likelihood function is: 

0H'r(t'0 = Hl(x+a÷tj'+a+O+H2(x+a+t~y+a+O-Ha(x+a'y+a+O-H1(x+a+t'y+a) (5.1) 

Ot I -H(x *a, oO-H(%y +a) +H(x +a,,y ÷a) 

2. If the second death is censored, then we may assume t > b. In this case, we have/~*= 1 and 

Prob(2 ~ = 17 I T t > 0 , T 2 > 0 )  = 1 - H l ( b  , b ) .  (5.2) 

Combining equations (5.1) and (5.2), we can express the logarithm of the likelihood function for a single 

observation as 

In L(x,y,t,8 ",a,b) 

= (1-6") In (l-It(x+a+t~y+a*O÷l-lz(x+a*t,y÷a+t)-l-Iz(x+a,y÷a+t)-Ht(x÷a+t,y*a)) 
(5.3) 

+ 6 '  In(t-H(x÷a,**)-ti(**#+a)+H(x+a~+a+b)+R(x+a+b,y+a)-H(x+a+b~v+a+b)) 

- ln(l-H(x+a,**)-H(**,y+a)+H(x+a,y+a)) . 

The log-likelihood for the data can be calculated using the equation (5.3) expression in equation (3.12). 

Maximizing this log-likelihood function yields parameter estimates and standard errors, as in Subsection 

3.3. 
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Although this approach is technically sound, the maximum likelihood method yielded unreliable 

parameter estimates using our data. Despite having nearly filteen thousand contracts (and almost thirty 

thousand lives) available for estimation, with this reduced data set we had only 229 deaths. Intuitively, 

most of the parameter information comes from the deaths, and we are attempting to estimate five 

parameters (in addition to the variance-covariance matrix). Thus, larger data sets, or longer observation 

periods, may be required to implement the method of this subsection. This is interesting because generally 

data analysts do not consider fifteen thousand observations to a data set to be too small to employ 

likelihood methods. 

6. Alternative Models of Dependence 

This section investigates the robustness of the choice of Gompertz marginals and Frank's family 

of copulas by presenting some alternative choices. 

6.1 Weibull Marginal Distribution 

The Weibull distribution function can be expressed as: 

F(x) = I - exp(-(x/m) 'we ) (6.1) 

where m and a are location and scale parameters. The mode of this distribution is m(l - aim) °/'n which 

is approximately 0.98m for m = 80 and a = 10. Thus, because our estimated values o fm and a turn out 

to be close to 80 and 10, respectively, we may interpret m to be an approximate mode for this 

distribution, similar to the Gompertz. A more traditional expression for the Weibull is 

F(x) = l - e x p ( - B x  ~) 

which is equivalent with the transformations B = m -nca and c = m/a .  Similarly to the case of the 

Gompertz distribution, we find the parameterization in equation (6.1) to be more convenient for 

computational purposes. 

Appendix D presents the Weibull parameter estimates and annuity ratios. Similar to Section 3, 

we used maximum likelihood to estimate the parameter values. The annuity ratios were computed 

following the same format that was described in Section 4. 

As suggested by Figures 1 and 2, the annuity ratios from the Weibull and Gompertz marginals 

are very similar. In most cases, the ratios differ by 0.01 or less. This suggests that our ratio values are 
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not sensitive to the choice of marginal distributions. It is an interesting area of future research to measure 

the extent of  the dependence of the ratios on the underlying marginal distributions. 

6,2 Shock Models of Dependence 

In this section, we investigate the effects of the choice of the copula by considering an alternative 

family, the "common shock" models. As pointed out by Panjer (1994), the primary advantages of the 

common shock models are that they are easy to interpret and are computationally convenient. 

To define this bivariate distribution, we begin with independent age-at-death random variables 

X and Y. As in Subsection 3.1, we denote their marginal distribution functions by Fj so that Fl(x ) = 

Prob(X < x) and F2(y) = Prob(Y < y). We assume there exists an independent exponential random 

variable Z with parameter X, that is, Prob(Z < t) = l-e -xt. The bivariate time-until-death random vector 

is (T(x), T(y)), where T(x) = rain(X-x-a, Z) and T(y) = rain(Y-y-a, Z). With this, we interpret Z to be 

a "shock" that is common to both lives. Our new underlying lifetime random variables are Xc = 

T(x)+x+a = rain(X, Z+x+a) and Yc = T(y)+y+a = min(Y, Z+y+a). 

Under these assumptions, it is straightforward to compute the bivariate distribution. The survival 

distribution can be expressed as, for t t, t 2 > 0, 

Pr°b(Xc > x+a+tl, Yc > Y+a+t2) = Prob(min(X,Z+x+a) > x+a+tx, min(Y, Z+y+a) > y+a+tz) 

= Prob(Z > max(t1, t2) ) Prob(X > x+a+tl) Prob(Y > y+a+t2) 

= exp(-X max(t l, t,z) ) (1 - F|(x+a+tl) ) (1 - F2(y+a+t2)  ) . (6.2) 

Thus, the bivariate distribution function, for tl,  t 2 > 0, is 

H(x+a+q, y+a+t~) = Prob(X c < x+a+t t, Yc < Y+a+tz) 

= 1 - exp(-htL)(l - Ft(x+a+tl) ) (6.3) 

- exp(-kt:z)(l - F2(Y+a+tz) ) + exp(-k max(q, t-z))(l - Fl(x+a+tt))(l - F20,+a+t9.)) . 

From equation (6.3), we note that H(x+a+t, Q*) = 1 - e -hi (I - F l (X+a+t )  ) ~ Fl(x+a+t ). Thus, 

unlike the case of the copula bivariate function, the marginal common shock distributions are a function 

of the dependence parameter h. 

Parameters were estimated using the bivariate distribution function in equation (6.3) and the 

method of maximum likelihood similar to the discussion in Subsection 3.3; the only difference is the 
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likelihood of a common shock. This is given by the instantaneous probability: 

aProb (T(x) = T(y) < t )  = ), e "xt (1 - F l ( x + a + t ) ) ( 1  - F2(y+a+t))  . 
dr 

Table 7 presents the parameter estimates with the associated standard errors. Here we find that 

the common shock location and scale parameters are close to the corresponding univariate estimates. All 

are within one standard error except m I that is only 1.3 (= (86.66-86.38)/0.27) standard errors away. The 

measure of dependence, ~., is more than five standard errors from zero, indicating strong statistical 

dependence. Although not significant, we note that the location estimates are higher under the bivariate 

distribution than the univariate. Recall from Table 2 that the location estimates were significantly lower 

under the Gompertz/Frank model than the univariate models. 

TABLE 7. Common Shock Parameter Estimatea 

Bivariate Distribution Univariate Distributions 

Parameter Estimate Standard Error Estimate Standard Error 

m I 86.66 0.27 86.38 0.26 

a I 9.89 0.37 9.83 O. 37 

m 2 92.69 0.64 92.17 0.59 

02 8.09 0.40 8.11 0.38 

h 0.00054 0.00010 Not Applicable Not Applicable 

The common shock model is intuitively appealing because bivariate conditional probabilities can 

easily be related to the marginals. To illustrate, recall from Section 4 that ~ = 1 - Hr(k , k) is the 

conditional probability that at least one life survives an additional k years. Using equations (6.2) and 

(6.3), straight-forward calculations show that 

= ~x + ~y  - ex~ kP, ~y  - (6.4) 

Here, ~x  = (l-H(x+k, o*))/(1-H(x, o0)) = e-x~(1-Fl(X+k)) / (1-Ft(x) )  is conditional probability that a 

life aged x survives an additional k years and similarly for boy. Thus, for example, we may express our 

joint and last-survivor annuity as 
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~i~ = ~ v k ( h o x + ~ y - e  x k ~ x ~ y ) .  (6.5) 

An intuitively appealing feature of the common shock model is that the dependence parameter, 

~,, can be absorbed into the interest parameter, as follows. Define the pseudo conditional probabilities ~ 

= ( 1 - F t ( x + k ) ) / ( 1 - F l ( x ) )  = eX~ ~x and similarly for ~y. Using equations (6.4) and (6.5), we have 

= t~i~-y @ (8+X). (6.6) 

Here, c5 = ln(l+i) is the so-called "force of interest," the symbol I,~y means calculate the annuity 

assuming independence using ~ and ~ ,  and the notation "@ (5+h)" means at force of interest 6+X. 
I Because ~*~ and kPy do not depend on k, equation (6.6) shows that the joint and last-survivor annuity is 

a decreasing function of X. In other words, the greater is the dependency, the smaller is the joint and last- 

survivor annuity. 

To assess the real impact of dependency, Table 8 compares annuity values calculated under the 

common shock model to those calculated under independence. Unlike our copula models, Table 8 shows 

that annuity values are higher under the common shock model for most age combinations. This is 

interesting because, from equations (6.5) and (6.6), we would expect annuity ratios less than one. On one 

hand, the increase in ), (from 0 to 0.00054) produces only a small decrease in annuity values. On the 

other hand, the larger location parameters mean that the individual forces of mortality were lower under 

the case of dependence. Lower forces of mortality resulted in larger annuity values. 
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TABLE 8. Ratios of Dependent to Independent Joint and Last Annmty 
Values Based on the Common Shock Model. 

Five Percent Interest is Assumed. 

Female Age 

50 55 60 65 70 75 80 

Male 
Age 

5O 

55 

60 

65 

70 

75 

80 

1.00 1.130 1.00 1.00 1.00 1.00 1.00 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.00 1.00 l.O0 1.00 1.00 1.00 1.00 

1 .IX) 1.00 1.0(3 1.00 1.00 1.00 1.00 

1.00 1.0(3 1.00 1.00 1.01 1.0l 1.01 

1.00 1.00 1.00 l.oo l.Ol 1.0l  1.01 

1.00 1.00 1.00 1.01 1.01 1.01 1.01 

Thus, despite the computational simplicity, the common shock model does not seem to provide 

the same pleasing intuitive results as the copula model. Further, the common shock model does not seem 

to fit the data as well as the GompertzfFrank model. When estimating the models, the log-likelihood 

associated with the Gompertz/Frank model, -9',977, was larger than the log-likelihood associated with the 

common shock model, -10,078. The two models are not hierarchical and thus traditional likelihood ratio 

tests are not applicable. However, this does provide additional evidence that the Frank/Gompertz model 

provides a better fit to the data. 

Finally, we note that the common shock does not seem to take in account all the dependencies 

that we observe in the data. In our analysis, we found that, of the 229 pairs of deaths within our 

observation period, 29 occurred with one day and hence were "simultaneous." The data also revealed 

proximity of other deaths: 

Period of Days Number of Pairs of Deaths 
Within the Period of Days 

I Day 29 

5 Days 63 

10 Days 70 

20 Days 85 

30 Days 86 
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Thus, there appears to be some dependency of lives that the common shock model does not detect. Of 

course, one can always alter the definition of the time scale to re-define what "simultaneous" means. An 

advantage of the copula models is that this is not necessary because the dependency is assessed in a 

smooth fashion. 

7. Concluding Remarks 

In this article, we discussed methods for estimating the probability of joint survival using 

insurance data. Although our focus has been on annuity valuation, our methods can easily be applied to 

other types of insurance products. For example, Bragg (1994) discussed the growing importance of last- 

survivor, or "second-to-die," life insurance. 

Throughout the article, our illustrations focused on valuing level annuities using fixed interest 

rates. However, with additional complexity, the methods of this paper can also be applied to variable 

products. They can also be used for valuing level annuities using a model from financial economics. This 

is because economic models assume that probabilities are exogenous inputs into an economic system. 

Thus, our dependent mortality models could be used to determine probabilities that are inputs to an 

economic model. 

Because of  the heavy truncation and censoring of our data, our models of the bivariate distribution 

are completely parametric. Recently, Maguluri (1993) has provided some theoretical results on the 

efficiency of using a parametric family for the copula, such as Frank's family, with nonparametric 

distributions for the marginals, such as Kaplan-Meier. It would be interesting to fit data using a 

parametric copula and standard insurance industry tables, such as the 1983 Individual Annuity Table. We 

leave this as an area for future research. 
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APPENDIX A 
Derivation of Results Needed to Evaluate the Likelihood 

Using Frank's Copula and Gompertz Marginals 

In this appendix, we derive the results needed to evaluate the log-likelihood in (3.12), or in 
particular (3.11), in the case where we assume the Frank's copula function as given in (3.2) and 
"Gompertz" marginals as given in (3.4). 

Let us consider the bivariate age-at-death random vector (X,Y) whose distribution function is 
given in equation (3.1) and where the copula is given in equation (3.2). Deriving the first partial 
derivatives of C, we have: 

~uu e~(e ~ -1)  (A.1) 
C1(u,v)= C(u , v ) -  e ~ - l + ( e  ~" _ 1)(e~ -1)  

and 

~_ e~(e ~'~ -1)  
C2(u,v)= C ( u , V ) = e ~ , _ l + ( e C , _ l ) ( e ~ _ l  ). (A.2) 

The second partial derivative of C is given as: 

c~ 2 a(e ~' _ 1)e,,~u+~> 
C12 (u, v)= ~ C(u, v)= [ (e'~ _ 1)+ (e ~ - 1)(e ~ - 1)] 2. (A.3) 

We denote the density functions of X and Y as fl and f2, respectively. In other words, we have: 

f l (x)  =-~xF~(x) and f2(Y) =-~F2(y) .  

Using the chain rule of differentiation, we then have the first and second partial derivatives of 
the distribution function H(x,y): 

H~(x,y)= ff-~H(x,y)=fl(x)C,(F~(x),F2(y) ) (A.4) 

and 

H 2 (x, y) = ~y H(x, y) = f2 (y)C2 (F, (x), F 2 (y)) (A.5) 

and 

32 
h(x,y)=-~--x--x~H(x,y)=f,(x)f2(y)C,2(F,(x),F2(y)). (A.6) 
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If we suppose  that the marginals  follow Gomper tz  distr ibution as in equat ion (2.1), then we 
have the following density, functions: 

! x •, ~.~ r h I r~ ~/'a 1 
f , (x)=--e  'exp[e ' ' ( l - e  ")J , j = l , 2  (A.7) 

Equat ions (A.1) to (A.3) and (A.7) above are then used to evaluate (A.4) to (A.6). Equations 
(A.4), (A.5) and (A.6) are used in maximizing the log-likelihood as expressed in (3.11). 

Note  that the parameter  a is not necessarily a s tandard measure  of association. However ,  we 
can express  the more familiar Spearman's  correlation coefficient as a function of a as follows: 

p(cz)= 12id Jd C(u,v)dudv- 3. 

If C is the Frank's copula, then we have p(a) as expressed in (3.3). 
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APPENDIX B 
Development  of the Likelihood Equation for 

Underreporting of Death Within the Guarantee Period 

To d e t e r m i n e  the condi t ional  d i s t r ibu t ion  of (T ; ' ,  T~ ' ) ,  w e  cons ide r  n ine  cases of (t~, t 2).  
general  expres s ion  for the  condi t ional  d is t r ibut ion  funct ion for the guaran teed  case is: 

" , ( , 1 , ' , >  : _< >o) 
= Pr o b ( m i n ( m a x ( T  1, g) ,  b) <_ t~, m i n ( m a x ( T  2, g) ,  b) <_ t 2IT, > O, T~ > 0). 

Case  1. If bo th  l ifetimes are r ight -censored,  then  w e  have  tj > b, t 2 >_ b. Hence,  w e  have  

61g = ~2x = 0, ~lb = ~i2b = 1 a n d  

H s ( t , . t  2) = P r o b ( T ; ' = b . T ; "  =b]T, > O . T  2 > 0 )  

= P r o b ( T ,  >_O,T 2 >_b)T, >0,  T 2 >0)  

= 1 -  H r ( ~ ,  b) - H r (b, oo) + H r (b, b). 

The 

(B.1) 

(B.2) 

Case  2. If the  first  l i fet ime is u n c e n s o r e d  a n d  the second  is r i gh t - censo red ,  then  w e  have  

g < t 1 < b, t 2 _> b. Hence,  w e  have  Six = S2g = ~b = 0, ~2b = 1 and  

Hx  ( t , ,  t 2 ) = Pr  ob(T~ <- t , ,  T 2 > biT ' > O,T  2 > O) = H r ( t l ,  ~ )  - H T ( t  1 , b) .  (B.3) 

Case  3. If  the  first  l i fet ime is le f t -censored and  the  second  is r igh t -censored ,  then  w e  h a v e  

t 1 < g, t 2 _> b Hence ,  w e  have  312 = (~2b = 1, 61b = 62~ = 0 and  

H e (t l, t 2 ) = l-t T (g ,  ~ )  - H T (g ,  b) .  (B.4) 

Case  4. If  the  first  l i fet ime is r i g h t - c e n s o r e d  a n d  the  s eco n d  is u n c e n s o r e d ,  then  w e  h a v e  

t 1 >_ b, g < t 2 < b. Hence,  w e  have  61b = 1, 61~ = 62~ = (~2b = 0 and  

H g ( t p t 2 ) =  H T ( ~ , t 2 ) -  H r ( b ,  t2) .  (B.5) 

Case  5. If b o t h  l i fe t imes are u n c e n s o r e d ,  t hen  w e  have  g < t 1 < b, g < t 2 < b. Hence  w e  have  

~lg = 61b = O, 62g = ~2b = 0 and  

H g ( t l ,  t 2) = H T ( t  P t2) .  (B.6) 

Case  6. If the first l ifetime is lef t-censored and  the second lifetime is uncenso red ,  then  w e  have  

t 1 <- g, g < t 2 < b. Hence,  w e  have  61~ = 1, •2g = dilb = 62b = 0 and  

H ~ ( t l ,  t 2) = P r o b ( T  l <_ g ,  T2 <_ t 2 ) = H T ( g  , t 2 ). (B.7) 
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Case  7, If the first l i fet ime is r i gh t - censo red  and  the second  is lef t -censored,  then  w e  have  

t 1 _> b, t: <_ g.  Hence,  w e  have  61t , = ~2~, : 1, 61~, = 62~ , = 0  and  

H; (t~, t 2 ) = Pr ob(T I >_ b, T 2 <_ g) = H r (oo g) - H r (b, g). (B.8) 

Case  8. If the first l i fet ime is u n c e n s o r e d  and  the s econd  is l e f t -censored ,  then  w e  have  
g< t I < b, t 2 <_g. Hence,  we  have  3l~ = 61b = 62~, =0 ,  ~2~ = 1 and  

H~(~ 1, t 2 ) = H~(t  1 , g).  (B.9) 

Case  9. Finally, if bo th  l i fet imes are lef t-censored,  w e  have  t t < g and  t 2 _< g.  Hence ,  w e  have  

~ls, = 62~ = 1, Sib = 6:b = 0  and  

H~(t I , t 2) = HT(g,  g) .  (B.10) 

Recall f rom e q u a t i o n s  (3.7)-(3.9) that: 

3HT(t l , t2)  - H l ( x + a + t l , y + a + t 2 ) - H 1 ( x + a + t l , y + a )  

3t 1 1 - H ( x + a , ~ ) - H ( ~ , y + a ) + H ( x + a , y + a ) "  

3HT(t l , t2)  _ H2(x + a + t l , y  +a+ t 2 ) - H 2 ( x  +a ,y  +a+t2)  

Ot 2 1 - H ( x + a , ~ ) - H ( ~ , y + a ) + H ( x + a , y + a ) '  
and  

O2Hr(tl , t2) h(x + a + t l , y  + a + t  2) 

3t~Ot 2 1 - H ( x + a ,  o o ) - H ( o ~ , y + a ) + H ( x + a , y + a )  

C o m b i n i n g  e q u a t i o n s  (B.2) to (B.10), w e  then  have  the con t r ibu t ion  of a s ingle  obse rva t ion  to the 
log- l ikel ihood as follows: 

log L~, (x, y, a, b, t I, t 2, 61~,, ~2g, 61b' (~2b' g) 

= 6 1 t , 3 : ~ , l o g [ 1 - H ( ~ , y + a + b ) - H ( x + a + b ,  o o ) + H ( x + a + b , y + a + b )  ] 

+(1 - 61 ¢ - Slb ) 62b log[H 1 (x + a + t I , ~ )  - H l (x + a + t 1 , y + a + b)] 

+6L¢~2blog[H(x +a+ g , o ~ ) - H ( x  + a , ~ ) -  H ( x  +a+ g , y + a + b ) +  H ( x  + a , y + a + b )  ] 

+6~b(1-$2~ - ¢ 5 2 b ) l o g [ H 2 ( ~ , y + a + t 2 ) - H 2 ( x  + a + b , y + a + t 2 )  ] 

+(1 - 61b - ¢51~ )(1 - 62~ - 62b )log[h(x + a + t I , y + a + t 2)] 

+6L~(1- $2 ¢ - 62~)Iog[H2(x + a + g , y + a + t 2 ) -  H2(x + a , y + a + t 2 )  ] 

+ 6 1 ~ , 6 2 ; l o g [ H ( o ~ , y + a + g ) - H ( ~ , y + a ) - H ( x  + a + b , y + a + g ) +  H ( x  + a + b , y + a ) ]  

+ ( 1 - 6 1 ~ - 6 ~ . ) 6 2 ~ l o g [ H l ( x + a + t l , y + a + g ) - H l ( x + a + t l , y + a )  ] 

+6~s32;log[H(x +a+ g , y  +a+ g ) - H ( x  +a+ g , y + a ) -  H ( x  + a , y + a +  g)+ H ( x  + a , y + a )  ] 

- l o g [ l -  H ( x  +a oo)- H ( ~ , y + a )  ÷ H ( x  +a ,y  +a)]. 
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APPENDIX C 
Calculation of the Gradient of h~(O) 

Let 0 = (m I , m 2 , o-1,0-2, ~) '  = (0:, 02 , 03, 04, 0 s )'. Thus, from equation (4.5) for i=1,2,...5, we have: 

a a. - k a  

I (H(x + k, y + k) - H(x + k, y) - H(x, y + k) + H(x, y)) x 

vk J { ~ ( H ( x ' Y ) -  F / x ) -  G ( Y @ -  

=~=o[1-H(x,--)-H(~,y)+ H(x,y)]2 [ (1 -H(x , - - ) -H( - - , y )+  H(x,y))x 

|[ °a (H(x+k y + k ) - H ( x  y + k ) - H ( x + k , y ) + H ( x , y ) )  
[~a0, ' ' 

Using equat ions (2.1) and (A.7), for i=1,2, we have: 

8 - - F , ( x )  
8m, =-exp[¢-~,/¢~(1-e~/¢, )} ~-T{e-~,/~(1-e~/~, )) 

= -(1 - F,(x))(1-e ~/~' ) a---~-e "~/~ 
oam, 

= 1 ( 1  - F, (x))(1 - e ~/~ )e -'~/~' 

=f,(O)-f,(x) (C.2) 

and = - (1-  F , (x) ) -~(e  -~'/" -e  ~ .... )/o, ) 
I 

: - (1-F,(x))(m,e -~t°, +(x-m,)e('-'~)/°,)/{~ 

= - l ( , , Z c 0 ? + ( x _ , , , ) f , ( x ; )  
0-, 

= ~ ( ( m .  - x ) / , (x ) -  ,~./, (0)). (c.3) 

Equations (A.4), (A.5), (C.2) and (C.3) and the chain rule yield: 

-~ .  H(x,y; = a-~C(F,(x),F2(y))=C,(Fl(x),F2(y))--~ F,(x) 

= H,(x,y)(fl(O) - f , (x)) / f l  (x) 
0 

- - H ( x ,  y) = H2(x,y)(f2(O)- f2(Y))/f:(Y) 
3rn 2 

(C.4) 

(C.5) 

(c.i) 
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a n d  

8 
- - H ( x , y )  
Ory~ 

= CL(F~(x), F, . fY)J-~TaFJx) 

= H,  (.~. ~ ( ( , , ,  - .~-) / ,  (.~-; - , , w ,  ( 0 ) } / W d ~  (.~)) 

o~cr 2 
- -  H ( x .  ~ )  = H:( .~ .  ~ , ) ( ( , . :  - ~, ) / : (y)  - , , , d : ( o ) } / ( ¢ ~ A ( y ) } .  

( c . 6 )  

( c . 7 )  

T o  c a l c u l a t e  (O/Oa)H(x,  y ) ,  w e  u s e  e q u a t i o n  (3.2)  a n d  le t  

(e ~" - 1)(e '~' - 1) 
K ( o t ) = K = e x p ( a C ( u , v ) ) = 1 4  (e= - 1 )  . T h u s ,  

a 
- - K ( a )  = 
da (e '~ - 1) 2 

M a k i n g  t h e  s u b s t i t u t i o n s :  

(e ~ - l ) [ u e  `'~ (e ~ '  - 1) + -oe "~' (e . . . .  1 ) ] -  (e  ̀ ~" - 1)(e  ~ - l ) e  a 

e '*~ (e "v - 1) = C 1 (u, v)(e '~ - 1)K 
a n d  

e ~ '  (e "~ - 1) = C 2 (u ,  v)(e" - 1)K, 

w e  h a v e :  K ( a ) = u K C l ( u , v ) + v K C 2 ( u , v ) -  ( K - l ) .  

D e f i n e  C , j u ,  v) = ~ C ( u ,  v) .  T h u s ,  w e  h a v e :  

1 9K 
= ~ (  t o x ( K ) ]  = ~ ~ a T - t " x ( K '  

C, , (u ,v)  8a\ a ) a 2 

e a 1 1 I I I  uKCI(u,  v )+ v K &  (u, v )+ u ( 1 -  K)  - - - v o £ ( u ,  v;. ) a K k " (e"-l)/'- a" 

R e a r r a n g i n g  t e r m s ,  w e  t h e n  h a v e :  

1 f e ~ ( e - ~ C ~ ' ~ - l )  } 
c.. , .~,)=-dl ~ : ~  ~0,c, . , .~,)+~¢(. .~)-c. , ,~))  . 

T h u s ,  

H ( x , y ) =  c-~aC(u,v)l~ r~r~M,=r:,y~=C,(F,(x),F2(y)). 

T o  g e t  t h e  g r a d i e n t  o f  ; i~;(O),  p l u g  e q u a t i o n s  (C .4)  to  (C .8)  i n t o  e q u a t i o n ( C . 1 ) .  

( C . 8 )  
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APPENDIX D. Weibul l  Es t imat ion  Results  

TABLE D. 1. Weibull Parameter  Estimates 

Bivariate Distribution Univariate Distributions 

Parameter  Estimate Standard Error  Estimate Standard Error  

m I 86.22 0 .27  86.73 0 .28 

a I 10.16 0 .39 10.12 0 .37  

m 2 89.91 0 .55 93 .00  0 .69  

~2 8.75 0 .40  9 .26 0 .47 

ot -3 .354 0 .338 Not Applicable Not Applicable 

TABLE D.2. Ratios of  De/mnd~at to Independent Joint and Last Annuity 
Values Based on Weibull Marginal Distributions. 

Five Perce~t Interest is Assumed. 

Female Age 

50 55 60 65 70 75 80 

Male 
Age 

50 

55 

60 

65 

70 

75 

80 

0.97 0.96 0.96 0.97 0.98 1.00 1.02 

0.97 0.96 0.95 0.95 0.97 0.99 1.02 

0.97 0.96 0.95 0.94 0.95 0.97 1.01 

0.98 0.97 0.95 0.94 0.94 0.95 0.99 

0.99 0.98 0.96 0.95 0.93 0.93 0.96 

1.00 0.99 0.99 0.97 0.95 0.94 0.94 

1.01 1.01 1.01 1.00 0.99 0.96 0.94 
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APPENDIX E 
Spearman's Test of Independence 

In this appendix, we show how to apply Spearman's test of independence on our 
data, assuming that the marginal distributions are known. This last assumption is 
reasonable because extensive information is available on the law of  mortality for individual 
lives. The following technique is a quick nonparametric way of identifying and measuring 
the dependence. The results from this method must be used with caution because we are 
assuming that the marginals are known. 

Suppose we observe the time of deaths (Tt.k, T~.k) for k = 1,2 ..... n where T~.k 
has a known continuous distribution function Gi,k(t), t > O, i = 1, 2. In our case, these 
distributions will not be identical. Consider the uniform random variables 
U,.k =-- G, ,k( ' l ' t ,k) .  Assume that the pairs (Ul.k,U2.k) fork = 1,2, . . . ,n are independent 
and identically distributed with a common copula C(u,  v). The assumption of  a common 
copula allows us to calculate Spearman's sample correlation coefficient and use it to test 
independence, that is C ' ( u , v ) =  uv. Let R/.k denote the rank of  Ui.k,then Spearman's 
correlation is 

-fi = ~-1 n ( n ~ - l ) / 1 2  

An estimate of  the asymptotic variance of  this statistic is (n - 1) - l .  So we would reject 
the null hypothesis of  independence at a 5% level, if I~1 > 1.96 (n - 1) -1/2. 

Let's apply this technique to our data where n = 229 policies had both 
annuitants die during the observation period. Let Fi(z)  denote a Gompertz distribution as 
defined in (2.1) with parameters rm, a,. If  i = 1 then these parameters refer to a male life 
and if i = 2 then they refer to a female life. Consulting Table 2, we let 
ral  = 86.38, a l  = 9 . 8 3  and rr~ =92 .17 ,  a2 =8 .11 .  We found that the estimate of 
Spearman's correlation coefficient did not change very much when other reasonable 
parameter values were used. In our case, Gi,k is the distribution of  the time of  death, given 
that the death occurs during the observation period. Let zl,k + ak denote the age at the 
start of  the observation period and let xi.k + ak + bk denote the age at the end of  the 
observation period, then 

F i ( x l , k + t ) -  Fi (.ri.k+a~) 
G,.~ (t) = r,(~:~.k+ak+bk)-  F~(~.k+~k) " 

Using our data, we found that the sample correlation is ~ = .414 and a 95% confidence 
interval is (.282,,547). Note that our estimate of,o, given in section 3.2, is equal to .49 and 
that this lies within this confidence interval. 
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APPENDIX F 
Misce l laneous  Tables  and Graphs  

Tables F.1 to F.5 describe the joint annuity data by providing a breakdown of the total number 
of policies by status, sex, and issue age groups. For status l, both the primary and the 
secondary annuitants are alive as of the end of the observation period. For status 2, only the 
primary annuitant is alive. For status 3, only the secondary annuitant is alive. For status 4, 
both the annuitants are alive. 

Table F.6 provides some meaningful statistics on issue ages. 

Tables F.7 to F.16 provide joint and last-survivor annuity values. The assumption of 
independence and the corresponding ratios of dependent to independent assumptions 
calculated using the guarantee likelihood result for various discount interest rates are presented. 

Figures F.I and F.2 provide graphs of the Kaplan-Meier fitted female distributions versus the 
Gompertz and the Weibull distributions. Figures F.3 and F.4 provide graphs of the Kaplan- 
Meier and the logistic distribution for male and female. 
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Table F.1 N u m b e r  of Policies by Sex and Age Group  
Status 1 - Both Primary and Secondary Annui tan t s  are Alive 

<60 
6O- 701 
70 - 80; 

:.--801 
Tota l  

Primar~ Annuitants 

M a l e  Female 
Count % of Total Count % of Total 

1,524 14.6% 330 12.6% 
7,120 68.3% 1,807 69.1% 
1,729 16.6% 474 18.1% 

54 0.5% 4 0.2% 

10,427 2,615 

Seconda~ Annuitants 

Male  

Count % of Total 
241 9.3% 

1,659 63.8% 
679 26.1% 

22 0.8% 

2,601 

Female 
Count % of Total 

3,676 35.2% 
5,916 56.7% 

808 7.7% 
41 0.4% 

10,441 

Table F.2 N u m b e r  of Policies by  Sex and Age Group  
Status 2 - Only  the Primary Annui tan t  is Alive 

Age 

<60 
60-70 

70 - 80 

>=80 
Tota l  

Primar), Annuitants 
M a l e  Female 

Count % of Total Count % of Total 
14 6.0% 9 6.1% 

146 62.9% 101 68.7% 

70 30.2% 37 25.2% 
2 0.9% 0 0.0% 

232 147 

Secondary Annuitants 
Male  

Count % of Total 
8 5.4% 

79 53.4% 
60 40.5% 

1 0.7% 

148 

Female 
Count % of Total 

31 13.4% 
150 64.9% 
50 21.6% 
0 0.0% 

231 

Table F.3 N u m b e r  of Policies by  Sex and Age Group  
Status 3 - Only  the Secondary Annu i t an t  is Alive 

A~e 

<60 
60- 70 
70 - 8O 

>=80 
Total 

Primar~ Annuitants 

M a l e  Female 
Co~t  % of Total C, tmnt % of Total 

68 5.8% 7 6.1% 
722 61.2% 78 67.8% 
368 31.2% 30 26.1% 
22 1.9% 0 0.0% 

1,180 115 

Secondary Annuitants 

M a l e  

Co~mt % of Total 
8 7.0% 

60 52.6% 
46 40.4% 

0 0.0% 
114 

Female 
Count % of Total 

286 24.2% 
731 61.9% 
154 13.0% 
10 0.8% 

1,181 
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Table F.4 N u m b e r  of Policies by  Sex and Age Group  
Status 4- Both Primary and Secondary Annui t an t s  are Dead 

Age 
C, mup 

<60 
60 - 70 
70 - 80 
>=80 

Total 

Primary Annuitants 

Male 
Count % of Total 

6 3.0% 
106 53.8% 
79 40.1% 
6 3.0% 

197 

Female 
Count % of Total 

2 5.9% 
20 58.8% 
11 32.4% 

1 2.9% 

34 

Secondary Annuitants 

Male 
Count % of Total 

1 2.9% 
14 41.2% 
17 50.0% 
2 5.9% 

34 

Female 
Count %of Total 

19 9.6% 
130 66.0% 

42 21.3% 
6 3.0% 

197 

Table F.5 N u m b e r  of Policies by  Sex and Age Group  
All  Status 

Age 

<60 
6O - 70 

70 - 80 
>=80 

Total 

Primary Annuitants 
Male  Female 

Count % of Total Count % of Total 
1,612 13.4% 348 12.0% 
8,094 67.2% 2,006 68.9% 
2,246 18.7% 552 19.0% 

84 0.7% 5 0.2% 
12,036 2,911 

Secondar)t Annuitants 

Male 
Count % of Total 

258 8.9% 
1,812 62.5% 

802 27.7% 
25 0.9% 

2,897 

Female 
Count % of Total 

4,012 33.3% 
6,927 57.5% 
1,054 8.7% 

57 0.5% 
12,050 

Male 
Female 

Table F.6 Some Basic Statistics on Issue Ages 

Primary Annuitants 

Average I 
~ue A~e I ~ue ,~e 

 .21 O l 90.7 
65.2 31.4 88.9 

Male 
Female 

Secondary Annuitants 

I Average I Maximum 
Issue A~e [ Issue A~e Issue A6e 

668 9.31 91.5 
62.0 0.3 89.7 
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Table F.7 Joint  and Last Survivor  Annu i ty  Values Using I n d e p e n d e n t  A s s u m p t i o n s  
Based on Guarantee  Period Likelihood Estimates 

0% Interes t  Rate 

Male 
Age 
5O 
55 
6O 
65 
7O 
75 
8O 
85 
90 
95 

Female Aide 
50 55 60 65 70 75 80 85 90 95 

41.51 3 8 . 5 6  36.31 34.71 3 3 . 6 3  32.77 3 1 . 6 5  2 9 . 8 6  2 7 . 2 4  23.85 

40.18 36.61 3 3 . 7 0  3 1 . 5 0  2 9 . 9 6  2 8 . 9 3  2 8 . 1 1  2 7 . 0 3  2 5 . 2 5  22.60 
39.33 3 5 . 2 8  3 1 . 7 7  2 8 . 9 3  2 6 . 8 0  2 5 . 3 4  2 4 . 4 0  2 3 . 6 4  2 2 . 5 9  20.81 
38.82 3 4 . 4 5  3 0 . 4 7  2 7 . 0 4  2 4 . 3 0  2 2 . 2 9  2 0 . 9 5  20.11 19.43 18.41 
38.41 3 3 . 9 6  2 9 . 6 6  2 5 . 7 7  2 2 . 4 7  19.88 18.04 1 6 . 8 6  1 6 . 1 5  15.55 
37.59 3 3 . 5 5  2 9 . 1 8  2 4 . 9 9  2 1 . 2 6  1 8 . 1 5  1 5 . 7 8  1 4 . 1 6  13.18 12.61 

35.85 3 2 . 7 4  2 8 . 7 9  2 4 . 5 4  2 0 . 5 2  17.02 14.18 12.11 10.76 9.98 
33.05 3 0 . 9 9  2 7 . 9 8  2 4 . 1 6  20.11 16.35 1 3 . 1 6  10.68 8.95 7.90 
29.41 2 8 . 1 9  2 6 . 2 2  2 3 . 3 6  1 9 . 7 6  1 5 . 9 8  12.57 9.79 7.74 6.40 
25.18 2 4 . 5 3  23.40 2 1 . 5 9  1 8 . 9 4  1 5 . 6 5  12.25 9.30 7.01 5.41 

Table F.8 Ratios of D e p e n d e n t  to Independen t  Joint  and Last Survivor  Annu i ty  Values 
Based on Guarantee  Period Likelihood Estimates 

0% Interes t  Rate 

Male 
Age 

5O 
55 
6O 

65 
7O 
75 
8O 
85 
90 
95 

Female ABe 
50 55 60 65 70 75 80 85 90  95 

0.92 0.91 0.92 0.93 0.95 0.98 1.01 1.05 1.07 1.06 
0.92 0.91 0.90 0.91 0.93 0.96 1.00 1.05 1.09 1.09 
0.94 0.92 0.90 0.90 0.91 0.93 0.98 1.04 1.11 1.13 

0.95 0.94 0.92 0.90 0.89 0.91 0.95 1.02 1.10 1.16 
0.97 0.96 0.94 0.92 0.90 0.89 0.92 0.98 1.07 1.16 

1.00 0.98 0.97 0.95 0.93 0.90 0.89 0.93 1.02 1.12 
1.03 1.02 1.01 1.00 0.98 0.94 0.90 0.90 0.95 1.04 
1.04 1.06 1.06 1.05 1.03 1.00 0.95 0.90 0.89 0.95 
1.04 1.06 1.08 1.10 1.09 1.07 1.02 0.95 0.88 0.87 
1.02 1.04 1.07 l . l l  1.13 1.12 1.08 1.00 0.90 0.84 
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Table F.9 Joint and Last Survivor  Annui ty  Values Using I n d e p e n d e n t  A s s u m p t i o n s  
Based on Guarantee Period Likelihood Estimates 

5% Interest  Rate 

Male 

A s e  
5O 

55 
6O 
65 
7O 
75 

8O 
85 
9O 
95 

Female A6e 
50 55 60 65 70 75 80 85 90 95 

18.03 17.58 1 7 . 1 7  16.81 16.52 1 6 . 2 8  1 6 . 0 3  15.68 15.11 14.22 
17.81 17.24 16.68 1 6 . 1 7  1 5 . 7 4  1 5 . 4 0  1 5 . 1 2  1 4 . 8 4  1 4 . 4 2  13.70 
17.64 1 6 . 9 6  1 6 . 2 6  1 5 . 5 7  1 4 . 9 6  1 4 . 4 6  1 4 . 0 7  1 3 . 7 8  1 3 . 4 6  12.94 
17.51 16.75 15.92 1 5 . 0 6  14.24 13.52 1 2 . 9 6  12.56 12.25 11.90 
17.42 16.60 1 5 . 6 6  14.65 13.62 1 2 . 6 8  1 1 . 8 8  11.29 10.89 10.59 
17.30 16.49 15.48 1 4 . 3 5  1 3 . 1 5  1 1 . 9 7  1 0 . 9 2  10.09 9.51 9.15 
17.05 16.34 15.35 14.15 12.81 11.44 10.14 9.05 8.24 7.72 
16.60 1 6 . 0 3  1 5 . 1 7  1 4 . 0 0  1 2 . 5 9  11.07 9.58 8.24 7.18 6.46 
15.85 15.45 14.79 1 3 . 7 9  1 2 . 4 3  10.85 9.21 7.67 6.39 5.46 

14.77 14.51 14.05 1330 1 2 . 1 8  10.68 8.99 7.33 5.87 4.74 

Table F.10 Ratios of Dependen t  to I n d e p e n d e n t  Joint  and Last Surv ivor  Annu i ty  Values  
Based on Guarantee  Period Likel ihood Estimates 

5% Interes t  Rate 

Male 
Age  
50 
55 
6O 
65 
7O 
75 
8O 
85 
90 
95 

F e m ~ e  Age 
50 55 60 65 70 75 80 85 90 95 

0.97 0.96 0.96 0.96 0.97 0.99 1.01 1.03 1.04 1.04 
0.97 0.96 0.95 0.95 0.96 0.97 1.00 1.03 1.06 1.06 
0.97 0.96 0.95 0.94 0.94 0.96 0.99 1.03 1.07 1.09 
0.98 0.97 0.96 0.94 0.93 0.94 0.97 1.01 1.07 l . l l  
0.99 0.98 0.97 0.95 0.94 0.93 0.94 0.99 1.05 1.12 
1.00 1.00 0.99 0.98 0.96 0.93 0.92 0.95 1.02 1.09 
1.02 1.02 1.01 1.01 0.99 0.96 0.93 0.92 0.96 1.04 
1.02 1.03 1.04 1.04 1.03 1.01 0.97 0.93 0.92 0.96 
1.02 1.04 1.05 1.07 1.07 1.06 1.03 0.97 0.90 0.89 
1.02 1.03 1.05 1.07 1.10 1.10 1.07 1.01 0.92 0.86 
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T a b l e  F.11 Jo in t  and  Last Su rv ivo r  A n n u i t y  Va lues  U s i n g  I n d e p e n d e n t  A s s u m p t i o n s  

Based on Gua ran t ee  Per iod L i k e l i h o o d  Es t ima tes  

10% In te res t  Rate  

Male  

A g e  

5O 

55 

60 

65 

7O 

75 

8O 
85 

90 
95 

Female Age 
50 55 60 65 70 75 80 85 90 95 

10.72 10.63 10,54 10.44 10.35 10.26 10.18 10.08 9.94 9.68 

10.67 10.56 10.43 10.29 10.15 10.01 9.90 9.79 9.66 9.44 

10.63 10.49 10.32 10.12 9.91 9.71 9.54 9.39 9.26 9.08 

10.59 10.43 10.21 9.95 9.67 9.38 9.12 8.90 8.73 8.57 
10.56 10.37 10.12 9.80 9.43 9.03 8.66 8.33 8.09 7.91 

10.53 10.33 10.04 9.67 9.22 8.71 8.20 7.74 7.37 7.12 
10.49 10.28 9.98 9.57 9.05 8.43 7.78 7.16 6.65 6.28 
10.40 10.22 9.92 9.49 8.92 8.22 7.45 6.67 5.98 5.47 

10.23 10.08 9.82 9.42 8.83 8.08 7.20 6.29 5.44 4.77 

9.93 9.82 9.61 9.27 8.73 7.98 7.05 6.04 5.05 4.23 

Tab le  F.12 Ra t ios  of D e p e n d e n t  to I n d e p e n d e n t  Jo in t  and  Last S u r v i v o r  A n n u i t y  Va lues  

Based on Gua ran t ee  Per iod  L i k e l i h o o d  Es t ima tes  
10% In t e r e s t  Rate 

Male  

A g e  

5O 

55 

6O 

65 
7O 

75 

8O 

85 
9O 

95 

Female A6e 
50 55 60 65 70 75 80 85 90 95 

0.99 0.98 0.98 0.98 0.98 0.99 1.00 1.02 1.03 1.03 

0.99 0.98 0.98 0.97 0.98 0.98 1.00 1.02 1.04 1.04 

0.99 0.98 0.98 0.97 0.97 0.97 0.99 1.02 1.05 1.06 

0.99 0.99 0.98 0.97 0.96 0.96 0.98 1.01 1.05 1.08 

1 .DO 0.99 0.98 0.97 0.96 0.95 0.96 0.99 1.04 1.09 

1 .DO 1.00 1 .DO 0.99 0,97 0.95 0.94 0.96 1.01 1.07 

1.01 1.01 1.01 1.01 1.00 0.98 0.95 0.94 0.97 1.03 

1.01 1.02 1.02 1.03 1.03 1.01 0.98 0.94 0.93 0.97 
1.01 1.02 1.03 1.04 1.05 1.05 1.03 0.98 0.92 0.91 

1.01 1.02 1.03 1.05 1.07 1.08 1.06 1.01 0.94 0.88 
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Table F.13 Joint  and Last Survivor  Annu i ty  Values  Using Independen t  A s s u m p t i o n s  
Based on Guarantee Period Likelihood Estimates 

15% Interes t  Rate 

Male '  
Age 
50 
55 
6O 

65 
70  
75 
8O 
85 
90 
95 

Female Ase  
50 55 60 65 70 75 80 85 90 95 

7.62 7.60 7.58 7.54 7.51 7.47 7.44 7.40 7.35 7.26 
7.61 7.58 7.54 7.50 7.44 7.39 7.33 7.28 7.22 7,14 

7.60 7.56 7.51 7.44 7.36 7.27 7.18 7.10 7.03 6.95 
7.58 7.54 7.47 7.38 7.26 7.13 7.00 6.87 6.77 6.68 
7.57 7.51 7.43 7.31 7.16 6.97 6.78 6.59 6.43 6.31 
7.56 7.49 7.39 7.25 7.05 6.81 6.53 6.26 6.02 5.84 
7.55 7.48 7.36 7.20 6.96 6.66 6.30 5.92 5.58 5.31 
7.52 7.45 7.34 7.15 6.88 6.52 6.08 5.60 5,14 4.76 
7.48 7.42 7.30 7.11 6.83 6.43 5.92 5.34 4.75 4.25 
7.39 7.33 7.23 7.06 6.77 6.35 5.80 5.14 4,45 3.83 

Table F.14 Ratios of Dependen t  to I n d e p e n d e n t  Joint  and Last Survivor  Annu i ty  Values 
Based on Guarantee  Period Likelihood Estimates 

15% Interes t  Rate 

Male 

Age  
5O 
55 
6O 
65 
70 
75 
80 
85 
9O 
95 

Female Ase  
50 55 60 65 70 75 80 85 90 95 

1.00 0.99 0.99 0.99 0.99 0.99 1.00 1.01 1.02 1.02 
0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.01 1.02 1.03 
1.00 0.99 0.99 0.98 0.98 0.98 0.99 1.01 1.03 1.04 
1.00 0.99 0.99 0.98 0.97 0.97 0.98 1.00 1.03 1.06 
1.00 1.00 0.99 0.98 0.97 0.97 0.97 0.99 1.03 ] .07 
1.00 1.00 1.00 0.99 0.98 0.97 0.96 0.97 1.01 1.06 
1.00 1.01 1.01 1.00 1.00 0.98 0.96 0.95 0.98 1.03 
1.01 1.01 1.01 1.02 1.02 1.01 0.99 0.96 0.94 0.97 
1.01 1.01 1.02 1.03 1.04 1.04 1.02 0.98 0.94 0.92 
1.01 1.01 1.02 1.04 1.05 1.06 1.05 1.02 0.95 0.89 
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Table F.15 Joint and Last Survivor  Annui ty  Values Using I n d e p e n d e n t  A s s u m p t i o n s  
Based on Guarantee  Period Likelihood Estimates 

20% Interes t  Rate 

Male 
Age 
5O 
55 
6O 
65 
7O 
75 
8O 
85 
9O 
95 

Female A~e 
50 55 60 65 70 75 80 85 90 95 

5.99 5.98 5.97 5.96 5.95 5.93 5.91 5.89 5.87 5.84 
5.99 5.98 5.96 5.95 5.92 5.89 5.86 5.83 5.80 5.77 
5.98 5.97 5.95 5.92 5.89 5.84 5.80 5.75 5.70 5.66 
5.98 5.96 5.93 5.90 5.84 5.78 5.70 5.63 5.56 5.50 
5.97 5.95 5.92 5.86 5.79 5.70 5.59 5.47 5.36 5.27 
5.96 5.94 5.90 5.83 5.74 5.61 5.45 5.27 5.11 4.98 
5.96 5.93 5.88 5.80 5.68 5.51 5.30 5.06 4.82 4.62 
5.95 5.92 5.86 5.77 5.63 5.43 5.16 4.84 4.51 4.23 
5.94 5.90 5.85 5.75 5.59 5.36 5.04 4.65 4.23 3.84 
5.91 5.88 5.82 5.72 5.56 5.31 4.95 4.50 4.00 3.51 

Table F.16 Ratios of D e p e n d e n t  to Independen t  Joint  and Last Surv ivor  Annu i ty  Values  
Based on Guarantee  Period Likelihood Estimates 

20% Interes t  Rate 

Male 
Age 
50 
55 
60 
65 
70 

75 
80 
85 
90 
95 

Female A s e  
50 55 60 65 70 75 80 85 90 95 

1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.01 1.01 1.01 
1.0(3 1.00 0.99 0.99 0.99 0.99 1.0(3 1.01 1.02 1.02 
1.00 1.00 0.99 0.99 0.99 0.99 0.99 1.01 1.02 1.03 
1.00 1.00 0.99 0.99 0.98 0.98 0.99 1.00 1.02 1.04 
1.00 1.00 0.99 0.99 0.98 0.98 0.98 0.99 1.02 1.05 

1.00 1.00 1.00 0.99 0.99 0.98 0.97 0.98 1.01 1.05 
1 .(30 1.00 1.00 1.00 1.00 0.99 0.97 0.96 0.98 1.02 
1.00 1.01 1.01 1.01 1.01 1.01 0.99 0.97 0.95 0.98 
1.00 1.01 1.01 1.02 1.03 1.03 1.02 0.99 0.95 0.93 
1.00 1.01 1.02 1.03 1.04 1.05 1.05 1.02 0.96 0.90 
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Figure F.I. Gompertz and Kaplan-Meier Fitted Female Distribution 
Functions. The Gompertz curve is smooth, the Kaplan-Meier Ls jagged. The 
distribution is conditional on survival to age forty. 
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Figure F.2. Weibull and Kaplan-Meier Fitted Female Distribution 
Functions. The Weibull curve is smooth, the Kaplan-Meier is jagged. The 
distribution is conditional on survival to age forty. 
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Figure F.3. Logistic and Kaplan-Meier Fitted Male Distribution Functions. 
The Logistic curve is ~mooth, the Kaplan-Meier is jagged. The distribution 
is conditional on survival to age forty. 
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Figure F.4. Logistic and Kaplan-Meier Fitted Female Distribution 
Functions. The Logistic curve is mnooth, the Kaplan-Meier is jagged. The 
distribution is conditional on survival to age forty. 
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