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ABSTRACT. In this paper, we consider the problem of parametric estima- 

tion of loss distributions in a very general context. We use tlle minimum dis- 

tance method with the Cram6r-von Mises statistic as our particular choice 

of distance. We show how to compute the influence function for tile estima- 

tor. We also use the influence function to obtain more information about 

the variance and the robustness of the estimator.  We demonstrate,  with 

an example, how much more resistant t,o contamination this est imator is 

compared with the inore classical maximuln likelihood est, imator. 

1. I N T R O D U C T I O N  

If we have a random sample { - ¥ 1 ,  X 2 , .  • • , Xn} coming from a parametric 

family of distributions {Fo]O(®} and we let F~ be the usual empirical distri- 

bution function, then the Cram6r-von Mises statistic is commonly known as 

the following expression 

W 2 ( F , ~ , F o )  = _1 ~-~[F,~(Xi) - Fo(X~)] 2 . (1.1) 
1~, i=l 

1The second author wishes to thank the "Chaire ell Assurance L'Industrielle-Alliance" 

for the financial support provided for the presentation of this paper. 
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I ,  ibis sil uai io , ,  wo dofi,o tIlo m i , imum (Iram&'-vo, Mist's cst imalor  (5,:1( I\:M E) 

I'or t.hc samplo al hand as that vahu' 0,, of 0 thai. minimizcs IV 2. 

]logg i~Jl(l ]';lugman (I!L.";~I) suggesled this mol.llod for oslimaiing the 

([isliilmtiou of tim allIO~lldS of lOSS in tim COllt.cxl. of a prOl)crly or casualty 

illS/lI'illl('(' conlracl.  \\:olfowilz (1.9:')7) howcvor, prcsontod iho mow general 

idoa of minilmml disl.allcc (MI)) cslimation. The uso of such MI) osl.ima.lors is 

,'vor in('roasing mostly bocausc of lhcir good robust noss f)rolmrt.ics, s(,(' I)onoho 

and Liu (l!)SSa, I~')881)), llcran (1!)77, 1!178, 1981). Mowovcr, lho M(:\:MF~Js 

consislenl, and asyml)lOl ically T~ormal under nol overly rcstricl.iv(, assumptions 

on the paramclr ic  modol, soc l)uchcsnc, llioux and lmong (1!)97). 

The sl ruct m'c of this l)apcr is as follows. In seclion 2, wo sei i.ho problom 

up complot.oly and introduce some notation. Wo then use the influenco function 

(IF) to derivo the asyml)lol.ic results for i.he M(WME in section 3. and we 

apply l.hosc results 1o a t'ow siluat.ions where wo ca, n g(d, cxplicil formulas. 

\\ 'e conclude by giving a delailed mm~crical example of csl.imaiion using tim 

M(:\:Mt'; in s('cl, iol~ ,1. 

2. T H E  P R O B L E M  

The prot)lcnl we consider is the standard ono saml)]O t>arametric estima- 

lion model. A ran(lOln sa.mplo {X~,X2 . . . .  ,X,,} coining from Fo(') is con> 

pletely known. We supposc that  0((9, a compact, subspace of ~7,, and we think 

o [ 0  ° E O as the true but unknown value o f t h o  paramei.er 0. One can then 

write 0 ° (#o O0 o , = ~ 1 , " 2  . . . . .  0~,) and we use the M C V M  method to est imate O. 

In order to study the asynll)tot.ic ])roperties of the M(:VME, we use an 

approach based on the influence function (IF). This device was introduced by 

[tampe] (1973) l.o sludy the infiniteshnal lmhavior of real-valuod functionals 

and is detined as folows. 
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D e f i n i t i o n  2.1. The influence function I FT,F o f T  at t: is defined as 

IF'T,I,,(,r) = lira T(F,x,~) - T(  t s') (IT(t'~,~) ,x=0 
,~1o ,X - d~ ' (2 .1 )  

where bk,~(.u) = F(u)+)~ lAb.(u) - F(u)] a~d A~.(u) is the distribution function 

of a degenerate random variable taking value x with probability 1. 

One of the most interesting properties of the IF is that  by plotting it, 

or an al)proximation of it., you can actually see what are the influential t)oints 

in the est imation procedure. This may be why il is also referred to a.s the in- 

fluence curve. You can also compute  the asymptot ic  variance of the es t imator  

(up to a factor of 1/7~) by computing lhe variance of the IF (waluat.ed at each 

of the sample points. 

For a detailed t reatnmnt of the IF, one should refer to t tainpel et al 

(1986) or St.a.udte and Sheather, (1990). Duehesne, Rioux and Luong (1997) 

expose the principal results used to obtain the results we present here. 

For any differentiable function g : J-gP > T¢ q, we write its derivative 

with respect to the vector 0' as 

@ j ( 0 )  _ ( 2 . 2 )  
oo' L ooj j<,×p' 

and we write the product of a vector Z with its transpose, Z', as 

Z °2 = ZZ' .  (2 .3)  

3. A S Y M P T O T I C  P R O P E R T I E S  O F  T H E  M C V M E  

The M(}VME exhibit~ most of tile asymptot ic  propertie,~ de.4red h~ an 

est.ilnator. It is consistent, asymptotical ly normal and in many cases, it is 

robust in tile sense of having a bounded IF. Although proofs of the consistency 

of general classes of estimators including the MD estimators and the MCVME 

do exist, see Amelniya (1985), a much simpler proof for the consistency of 

the MCVMF is presented in Duchesne, Rioux and I, uong (1997). To derive 

its other asymptot ic  properties, we need to compute  its IF, hence express the 
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est imator  as a functional evahmted al /';~, the empirical cumula.tive distribution 

ful~ct.ion of the sample. 

3.1.  ~hanct ional  f o r m u l a t i o n  o f  t h e  M C V M E .  As pointed out in the in- 

t roduct ion,  the est imator b,~ we are looking ['or is that  value of O tha.t minimizes 

H:'2( r;~,/:0) a.s defined in (1.1). I1' W2( t';,, F0) attains its mininmm a.t an inte- 

rior point of O, and l:o is diffcrentiable with respect to 0a, Vj = 1 , . . .  ,p, then 

/~,~ is also a solution of lhc following p dimensional syslem of equations: 

OOj ~ t:;,(Xi) - Fo(X~) = 0 j = 1,2 . . . . .  p (3.1) 

which we can rewrite as 

f Ot;'o ,,, ( F , -  Fo)?~Tar,~ = 0 j = 1,2 . . . .  ,p. (3.2) 

Therefore,  if we define a p-dimensional funcl.iona.1 T implicitly so tha.t, for any 

distribution G. T ( ( ; )  satisfies the system 

~; t'T(~,))! O0, ( - d ( ; = O  j = 1 '2,... ,p; (3.3) 

then 0,~, the root of equations (3.2), ('a,~ be represented implicitly as T(F, , ) .  

Since the funct.iona.1 T that  concerns us in this paper is defined implicitly, 

lhe derivat ire on the right hand side of (2.1) must also be (olnputed implicitly. 

In order to do this, we consider H(O,, \ )  = (H~(O,A), It2(O, ~),. . .  , *tv(O, A))' 

where 113(8, A) is defined as 

, oq~b , .  

Hi(O, A) = f (  *':x,, - Foo)~7, ar,~,,.. (3.4) 
,1 

From this and (3.3), we get the system H(T(Kx,~-), A) = 0. By implicit 

differentiation, we find that the influence function of T at. 1~' is 

{[0H]-'[0O, j 0 H }  ~:~ (3.5) 
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Substi tut ing from (3.4), it is fairly straightforward to apply the results above 

to obtain 

OH ~q~ ( OFo ) o2 
00' : = - / \ -ha  r o=o0 d,%0 (3.6) 

and 

OH OFo ( A x  - F e o )  dF~o. ( 3 . 7 )  

15-~00 = / 0-~-glo=oo 

We cannot tell immediately if the IF of the MCVME is bounded for any 

distribution function /~}. However, we see that (3.6) does not depend oi1 x 

OH and that for IFT,F(x) to be bounded, it is sufficient that gX- ~=0 should also 

be bounded. We can then state the following proposition that the reader can 

easily verify'. 

P r o p o s i t i o n  3.1. A ,suOicient condition under which IFT,r(x) is bounded is 

that each component of E[ \ {~ lo o ,  Io=o o ) ]is finite 

The integrals involved in (3.6) and (3.7) will not lead to explicit results 

in most cases. Fortunately, it is easy to get a consistent est imate of the IF by 

computing 

- -  - ( 3 . 8 )  
OO' ~ i=1 OO' o=& 

instead of (3.6) and 

A 

OH 1 x~ > OFo(Xi)e=&. ( 1 -  F&n(X,)) 
0 ~  - r~ a 8 '  

-" X 

(3.9) 

A 

instead of (3.7). We then let IF'= bW -gT • 
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3.2. A s y m p t o t i c  var i ance .  'lb find the asymptotic variance matrix of the 

M ( W M E ,  all one has to do is compute the variance of the It". S i n c e  the ex- 

pected vahle o[ the IF of the M(I\;MIg is zero (see l)uchesne, Hioux and I~uong 

(1997), theorem 2.3), we have that 

, ,Var[0q ~ V~r [I l '~y0(X)] 

- -  L~J V~rEoAj La0'J 5-2 

Once again, in m~uLy situations, the integrals involved in equation (3.10) 

wil l  not lead to expl ici t  results. However, we can derive an estimate of the 

asymptot ic variance matr ix  of the M C V M E  using the estimate of the ]b ~ de- 

scribed I) 2 " equations (3.8) and (3.9), and the formula of the usual sample 

variance. The result thereby obtained is 

where 
rt 

I~ = (1t.)  ~ I F(.,.,). (:~ l~) 

We now apply the resuli.s obtained in this section to a series of pari.icular 

models in order to get more detailed results. 

E x a m p l e  3.1 (One  d i m e n s i o n a l  p a r a m e t e r ) .  When 0 G 7-¢, the influence 

function of t, he MCVME is given by 

( 
l f% , z ( x )  = (313) 

f ( ~ ,~2 df~o 
00 0=00 ) 

E x a m p l e  3.2 (A case with 2 parameters (0 E T¢2)). Rewrith~g eqllatriOll 

(3.5) fox' the case where 0 ° = (0 °, 0°) ', we get the following form for /(~TTd:(x): 

f ~ ,~)01 ) i)01 ~-)02 ~)01 k r • 

(~,~.~21p, af"OOtA Foo)dFoo ,9Fe0a~'~0dFoo f \ 7% ) " '  o ° f ao~ ~ x f oo~ ,o~ (3. t4) 
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E x a m p l e  3.3 ( L o c a t i o n  a n d  scale m o d e l ) .  Location and scale models are 

characlerizc<l I)y the:it ctmmlative distribution fulaction that  looks like 

\ 00 ) ,  (3.15) 

where 0~ ) is l, he lr)lc location paraineter and 0 0 the true scale paraniel,er. \¥hen 

we af>ply (3.1,t) above, we get 

[ ~"' ' : ' ( ~ '  ~' ('<-°°)":'(+~ d,, ] ...... ~ . [  t 07 ] <l i t  ..... ~ . !  t o~ ) 
H : T + , ( . , ' )  = S .... ~ r 3  ( ~  S .... <,,-oi>~.r ~ (,,~2~ 

. . . . .  (07 : . ,  t 07 ] du . . . . .  (07) ~ \ 07 ) du 

× "<:+ ( '*-°7) '2f '<-°ik I t"{"-°V'~ A ' '" . (3.16) 
, ] - o < > ~ S  t o~2 ) t t o-g~2 ) -  ~tuJ) d'u, 

E x a m p l e  3.4 ( E x p o n e n t i a l  d i s t r i b u t i o n ) .  We (:onsi(tcr the ['ollowing t)a 

rame te r i za t i on  for lhe exponen t ia l  d is t r ibu t ion :  

/:0('u)= 1 - e  -°'', 0 > 0 ,  u > 0 .  (3.17) 

From (3.13), we obtain the influence function as 

2702xc -2°x 270e -~°~' 150 
l I ' ) , F ( . r )  - + - -  (3.18) 

,4 8 8 

and we see hnrnediately that  it is hounded for a. given value of 0. We also get 

an explicit expression for the asymptotic variance of lhe MCVME by applying 

(3.10) : 

,~v~,-(&) ~ \:ar[:~+-(.~:)] = 6,~7 o~ ' (a.19) 
500 

hi this case, the l{ao-(',ramdr bound is 02/n, so we have a respectable relative 

efIiciency of 500/657 ~ 76.1% for/7,~. 

E x a m p l e  3.5 ( P a r e t o  d i s t r i b u t i o n ) .  The Pareto distribution here is of the 

following form: 

F o ( u ) =  1 -  A , 0=(c~,X) ,  a > 0 ,  ~ > 0 ,  u > 0 .  (3.20) 
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We only consider the case where (~ = ~0 is a known value. We can again get 

an exact expression for the influence function from (3.13): 

-3(300 + 1)(3C~o + 2)A2"°+lx 
I FT,~'( :r ) = 

2(2~o + I)(A + .r) 2~°+~ 

3(:~Ct 0 ~- ] ) ( 3 0 0  -~ 0,)A 2ao-[-I 

(15eft + 13(~o + 2)A 
+ (3.2 L) 

4c~o(2Oo + 1) 

Again, this is bounded for fixed values of (~0 and A and the asymptotic variance 

of )\,~ we get from (3.10) is 

,~Var[),,~] ~ ., 2 [ (3C~o + 2)2(73c~2 + 27C~:o + 2) ] 
20ao2(5C~o + 1)(5C~o + 2) " (3.22) 

E x a m p l e  3.6 ( G a m m a  d i s t r i b u t i o n ) .  We consider the case where the 

sample comes from a ( lamina distribution with c~ = c~0 a known integer. The 

cumulative distribution function for this model is 

,~o-1 (Au)' 
t , ' ~ ( ~ ) = ] - c  - ~ ; ' ~  i~F-' ~ >0'  •>0 ,  % ¢ Y .  (3.23) 

i=0 

Using equation (3.13), we get 

'~ ~v(~o)r(~o)  ('2,\:~) ~ 
[ FT'F(2!)~--- " F(3(~o) c-2'~ ~ i! 1 

i=0 

3 ~o M'(~o) o ~  I~(~¢),o + i) 
+ l'('lC~o) 2_.,i=o i! 3' 

(3.%1) 

As we can see, when ~0 and A are positive, the influence function given 

by (3.24) is bounded for all values of x; the MCVME is then robust for this 

model. 

We could not find an explicit general formula to express the asymptot ic  

variance of ,~. However, were able to obtain the variance exactly from the 

influence function by fixing a'0 to the successive values ~ 0  = 1, 2,  3, 4 , . . .  , 10. 

We used the symbolic software package Maple V to complete the computations,  

they are presented in the form of relative efliciencies in ~Ihble 1 below. 
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T a b l e  1 

Relative efficiency for the MCVME of A in the Gamma model. 

ao 1 2 3 4 5 6 7 8 9 10 

Efficiency(%) 76.1 83.1 85.8 87.1 87.9 88.5 88.9 89.2 89.4 89.6 

4. A N U M E R I C A L  E X A M P L E  

\Ve now want to apply ollr results to a widely used distribution for 

which we have yet to find an explicit formula for the IF of tile MCVME, 

namely, the log-normal distribution. We will show, using the condition given 

by proposition (3.1), that the IF of the MCVME is bounded in that case, and 

we will estimate the IF using formulas (3.8) and (3.9). We will also compare 

the behavior of the MCVME to that. of the method of moments estimator and 

the maximum likelihood estimator. 

4.1 .  T h e  l og -no rma l  d i s t r i bu t i on .  We parameterize the log-normal distri- 

bution in the following way: 

Fo(,r) ~ ( l o g x - / L )  = - , x >  0, - o o  < # <  oo, (7 > 0, (4.1) 

where 4)(. } and ¢(.) represent respectively the standard normal c.d.f, and p.d.f. 

The derivatives of Fo with respect to # and a are 

OFo(x) Op (71_¢ ( l o g , r -  # )  (4.2) 

and 

°qYo(x--) -(0(7 (logan-/t)~(]ogx-#)(7 (7 (4.3) 

Proposition (3.1) says that in order for the MCVME to be robust, the expected 

value of the absolute value of those last two derivatives nmst be finite: 

E [  OFe(X) ] O p  = 1 - - E [ ~ ( 7  e-~,~(~"-~ ] ~  )~ 

1 
_< ~ E [ 1 ] < + o o  

g2uer" 
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~t11(] 

1 

- 

+ ,: [llo x - , ] } .  

where IA is the indicator variable ot' event A. One can solve the integrals 

for the last two expccla/ i tms easily, and see that  these qua~llilies are {init.c. 

rFlwrefore, the I1: o1' lhe M ( : V M [ :  in the log nornlal case is hounded and, 

}wm'c. the M(TV.MI:: is a rol)usl est imator in that  case, 

4 . 2 .  T h e  e x a m p l e .  VG, now apply different melhods ot 'es l imal ion to a sam- 

ple coming from a log-normal distribution with I ) a r a m c l , , ~ ' r s  IZ = '7 and ,7 = 0.2. 

\Vii h that. choice of parameters ,  the theoretk:a[ mean,  s tandard deviat.ion and 

SOt.h percentih '  are apInOximately I1 If}. 226 and 1298. The da ta  were goner 

ated wi th  S Plus. and here is a summary ot' the sample ot)tained: 

T AI~I.I,: 1. Summary ot' the randonl Saml)h'. 

Siz(' (,,) 

200 

Min lsl Quaff.. Median Mean :hd Quarl .  Max 

375.2 9.56 1(178 1105 1253 1826 

I!sing different methods o1' es t imat ion,  we gel different es lhnates  t'or // 

alld rr. rl'h(, results fit'(' sumnlariz( 'd in table 2. 

TABLE 2. Esthnates  of t, and a (t.()3 significant digits). 

Est iulatiion l/let}lod 

~Iomcnls  6.99 0.205 1100 229 1298 

Max. likelihood 6.99 0.2,08 1110 232 1293 

M(!VM (7.99 0.201 llO0 228 1289 
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As w e  can see fi'om table 2, all three methods  seem to give similar r e -  

suits. The es t imates  are very close to the true values, and tha t  was expect.able 

considering the fact that  all three est.imators are consistent and the saml~le 

size is large. 

ltowever, our principal interest, is 1.o investigate tim robustness of the 

est imators .  In order t.o do so, we a.l)l)end an unusually large out.lier t.o the 

sample,  a:2m=100,000. If a method is more robust than the o(.hers, l.hen the 

vah,es of t.ho new est imates  (including l.he outlier in the sa.mple) should not 

differ much from the values of table 2. In l.he case of the M(IVME,  we have 

begun this secl.ion by showing that  its IF was bounded. Iqlrther,  we can 

es t imate  thai. IF using l.he sample and formulas (3.8) and (a.9). The es t imate  

of the IF is plot.lod in figure I. 

Fl(;t71/l:: 1. Plot of the es t imated IF for the log-normal dist.ribution. 

i1 
o- 

o 

u? 
o. 

q ~  

Sample 1 ; n=200, from Iognormal(7, 0.2), no contamination 

0 1000 2000 3000 4000 5000 

X 

It. is fairly obvious from figure 1 that  the IF is bounded for the M(IX:ME's 

of both t~ and (7. This leads i.lS {.o OXpC'('~, (.hat the outlier shouhl not have a 

significant influence on the MC.VME's. 
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TABI,E 3. t~'st.imat.es of t~ and cr (to 3 significant digits), con- 

taminated  sample.  

/) h E0(X) ~ ~0.s ]']stin,ation lllOt, hod 

Moments 5.88 t.731 1600 6970 153(i 

Max. Likelihood 7.01 0.380 1190 469 1525 

MCVM 6.99 0.206 1110 230 1291 

Comparing the <'ntries of tables 2 and 3, we see I.hat the outlier had a 

huge effect on the eslimates tk)r both the method of moments  and the maxi- 

mum likelihood (particularly on the estimates of the scale parameter ,  cp). On 

the other  hand, th(' iufluonce of the new value on l.he M(I\:MF" was nearly 

negligible. This is t.ho great value of a robust est imator  like the M(IVME. 

Since a picture is still worth a thousand words, we'll cut this paper short by 

presenting figure 2 that  compares the est imated cumulative distribution func- 

tion for three estimation methods. \¥e believe that it illustrates ore" point in 

an ext remely  convincing manner.  

FIC;t;I/E 2. ('.DF's for estinlated distributions under contaminat ion 

C o n t a m i n a t e d  S a m p l e  

o 

c~ 

/ 
/ / /  

. ~" ~ . f '  Max. Likelihood . ~ MCVME 

i i i ~ T 1 

600 800 1000 1200 1400 1600 1800 

× 

n=200, Iognormal(7, 0.2) 

360 



BIBI,IOGRAPIIY 

1. Amemiya, T. (1985), "Advanced Ec(momel.rics", Harvard University Press Actex, 
Calnbridge, 521 pages. 

2. Beran, R. (1977), "Minimum Hellinger Distance Estimates for Parametric Models", 
The Annals of 5'tatistics, vol. 5, pp. 445-463. 

3. Beran, R. (1978), "An Efficient. and Robust Adapt.ive Est.imator of Location", The 
Annals of ,q'lalistics, vol. 6, pp. 292-313. 

4. Beran, R. (1984), "Minimum Distance Procedures", Handbootc of ,c,'talistics, vol. 4, 
pp. 7,il-754. 

5. Char, B.W., (-fealties, K.O., Gomlet., GJI . ,  Leong, B.L., Monagan, M.B., Watt,  S.M., 
Maple V Lawuagc RefercT~ce Manual, Springer-Verlag, New York. 

6. Donoho, (:.L., Liu, R.C. (1988a), "The "Automatic" Robustness of Minimum Dis- 
tance l"uncl.ionals ' ' ,Thc  Annals of Statistics, vol. 16, pp. 552-586. 

7. Donoho, C.I,., l,iu, R.C. (1988b), "Pathologies of Some Minimum I)istance Estima 
t.ors', The Al~nals of Slatistics, vol. 16, pp. 587-608. 

8. Duchesne, T., Rioux, J., Luong, A. (1997), "Minimum Cram~r-von Mises Dislance 
Methods for Complete and Grouped Data", (7ommu76cat*ons in Statistics, 7'hcor?l 
and Methods, vol. 26, Issue 2. 

9. ttampet, F.R. (1974), "The influence curve and its role in Robust estimat.ion", Jour- 
nal of the Amcrica~ Statistical AssociatioT~, (39, pp. 383-393 

10. t lampel,  F.R., Ronehett.i, E.M., Rousseeuw, P.J., Stahel, W.A. (1986), Robust 5'tatts- 
t~cs (The Approach Based o1~ h~flucT~ce Functions), Wiley Series in Probabili ty and 
St, alistics, New-York. 

I I. ttogg, I{.V., Klugman, S.A. (1984), Loss D~stributiol~s, Wiley Series in Probabili ty 
and Statistics, New-York. 

12. Luong, A., TholnpSOlL M.E.(1987), "Minimum-distance methods based on quadratic 
distances for t.ransforlns", The CaT~adian Journal of ,q'tatistics, Vol. 15, No. 3, 
pp. 239-251. 

13. Parr, W.C., Schucany, W.R. (1980), "Minimum Distance and iRobust Estimation",  
The JourlTal of the' AmcricaT~ Statistical Association, vol. 75, pp. 616-624. 

14. Serfling, R..J. (1980), Approzimation Theorems of Mathematical 5;tatislics, Wiley 
Series in Probability and Mathemat.ica[ Statistics, New-York. 

15. Staudt.e, 11. G . ,  Sheather, S. J. (1990), Rob*tst Estimatio~ a~d Testing, IVile 9 Series 
i7~ Probability! and Mathematical Statistics, John Wiley & Sons. 

16. Wolfowitz, J. (1957), "The Minimunl Distance Method", Annals of Mathematical 
,b'latislics, vol. 28, pp. 75-88. 

361 




