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ABSTRACT. In this paper, we consider the problem of parametric estima-
tion of loss distributions in a very general context. We use the minimum dis-
tance method with the Cramér-von Mises statistic as our particular choice
of distance. We show how to compute the influence function for the estima-
tor. We also use the influence function to obtain more information about
the variance and the robustness of the estimator. We demonstrate, with
an example, how much more resistant to contamination this estimator is

compared with the more classical maximum likelihood estimator.

1. INTRODUCTION

If we have a random sample { X, X;,... , X} coming from a parametric
family of distributions {Fp|0e¢®} and we let F,, be the usual empirical distri-
bution function, then the Cramér-von Mises statistic is commonly known as

the following expression
r2 1 " e 2
W2(F,, Fg) = ;Z[Fn()xi) — Fo(X)))°. (1.1)
T i=1
IThe second author wishes to thank the ”Chaire en Assurance L’Industrielle-Alliance”

for the financial support provided for the presentation of this paper.
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In this situation. we define the minimun Cramér-von Mises estimator (MOVME)
[or the sample at hand as that value é,l of 8 that minimizes W2,

Hoge and Khigiman (1989) suggested this method for estimating the
distribution of the amounts of loss in the context of a property or casnalty
imsurance contract.  Wolfowitz (1957) however, presented the more general
idea of miniimumn distance (MD) estimation. The use of such MD estimalors is
ever increasing mostly because of their good robustness properties, see Donoho
and Lin (19334, 19881), Beran (1977, 1978, 1934). Morcover, the MOVMIE is
consistent and asymptotically normal under not overly restrictive assumptions
on the parametric model, see Duchesne, Rioux and Luong (1997).

The structure of this paper is as follows. [n section 2, we set the problem
up completely and introduee some notation. We then use the influence function
(I} to derive the asymplotic results for the MCVME in section 3, and we
apply those results to a tew situations where we can get explicit formulas.
We conclude by giving a detailed numerical example of estimation using the

MCVME 1 section 4,

2. THE PROBLEM

The problem we consider is the standard one sample parametric estima-
tion model. A random sample {Xy, X3, ..., X, } coming from Fg(-) is com-
pletely known. We suppose that 8¢, a compact subspace of R?, and we think
of 8° € © as the true but unknown value of the parameter 8. One can then
write 8% = (09,65, 09) and we nse the MCVM method to estimate 8.

In order to study the asymplotic properties of the MCVME, we use an
approach based on the influence function (IF). This device was introduced by
Hampel (1973) to study the infinitesimal behavior of real-valued functionals

and is defined as folows.
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Definition 2.1. The influence function [Frp of T al F is defined as

) o D(Fye) = T(F) _ dT(F\e) .
el =g === = =] @D

where Fiy p(u) = Fu)+ A [Ar(u) — Flu)] and A (u) is the distribution function

of a degenerate random variable taking value x with probability 1.

One of the most interesting properties of the 1F is that by plotiing it.
or an approximation of it, you can actually see what are the influential points
in the estimation procedure. This may be why it is also referred to as the in-
fluence curve. You can also compute the asymptotic variance of the estimator
(up to a factor of 1/n) by computing the variance of the IF evaluated at each
of the sample points.

For a detailed treatment of the IF, one should refer to Hampel et al
(1986) or Staudte and Sheather, (1990). Duchesne, Rioux and Luong (1997)
expose the principal results used to obtain the results we present here.

For any differentiable function ¢ : RF — R?, we write its derivative

with respect to the vector 8’ as

dg(8 dg.(8 ,
A - [(?( )] . (22)
06 9; | %y
and we write the product of a vector Z with its transpose, Z', as
7% =277 (2.3)

3. ASYMPTOTIC PROPERTIES OF THE MCVME

The MCVME exhibits most of the asymptotic properties desired in an
estimator. It is consistent, asymptotically normal and in many cases, it is
robust in the sense of having a bounded 1F. Although proofs of the consistency
of general classes of estimators including the MD estimators and the MCVME
do exist, see Amemiya (1985), a much simpler proof for the consistency of
the MCVME is presented in Duchesne, Rioux and Luong (1997). To derive

its other asymptotic properties, we need to compute its [, hence express the
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estimator as a functional evaluated at £, the empirical cumulative distribution

{unction of the sample.

3.1. Functional formulation of the MCVME. As pointed out in the in-
troduction, the estimator én we are looking for is that value of @ that minimizes
W2(FE,, Fg) as defined in (1.1). 16 W2(F,, Fg) attains its minimum at an inte-
rior point of ©, and [y is differentiable with respect to 0;, V) = 1,... ,p, then

IS

4., is also a solution of the following p-dimensional system of equations:

0 T 2
_ n A ) — N ) .
(,}()J{;([n(l\,) 19(‘\,)> } 0 j)=12... N (3.1)

which we can rewrite as

b, .
/(Fn' )(()98(/[‘,1—0  =1.2,...,p (3.2)

Therefore, if we define a p-dimensional functional T implicitly so that for any
distribution G, T(() satisfies the system

. ()IT(]
(= Py (i = =12,....p 3.
Ji6 = Fra) TG =0 =12y (3.3)

then 8,,, the root of equations (3.2), can be represented implicitly as T(F),).

Since the functional T that concerns us in this paper is defined implicitly,
the derivative on the right hand side of (2.1) must also be computed implicitly.
I order to do this, we consider H(8,A) = (H;(8, A}, H,(8,)),... . H,(8,\))
where I1;(8,]) is defined as

| F,
H‘,(O,/\):/(F,\!I—} )ag"(u:\r (3.4)

From this and (3.3), we get the system H(T(F\.),A) = 0. By implicit

differentiation, we find that the influence function of T at F is

, oH] ™' 6H
[Py p(x) = - {{;—0} X } (3.5)

=80
A=0
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Substituting from (3.4), it is fairly straightforward to apply the results above

to obtain
OH OFg o
30 |o-0o -/ (W) @Fe (3.6)
and
OH 0Fg
— = | — Ay — Fgo) dFgo. 3.7
0/\ 9=_90 601 6:90( 8 ) a [} (‘3 ‘)

We cannot tell immediately if the IF of the MCVME is bounded for any
distribution function Fg. However, we see that (3.6) does not depend on z
and that for {Fr p(2) to be bounded, it is sufficient that %—? o should also

be bounded. We can then state the following proposition that the reader can

easily verify.

Proposition 3.1. A sufficient condition under which I Fr p(x) is bounded is

that each component of KX H (%&'9:90 )” is finite

The integrals involved in (3.6) and (3.7) will not lead to explicit results
in most cases. Fortunately, it is easy to get a consistent estimate of the IF by

computing

OH 1. [0Fe(X))
58 = ( o6’

=1

o2
‘ ) (3.8)
8=6

=Un

instead of (3.6) and

B OFe( X)) .
= xz; i (1 - Fen(lxl)) (3.9)
1 OFg( X))
- = — Fy (Xi)
n _ng 00 6=6 ( d )
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3.2. Asymptotic variance. o find the asymptotic variance matrix of the
MCVME, all one has to do is compute the variance of the 1F. Since the ex-
pected value of the TF of the MCVME is zero (see Duchesne. Rioux and Luong

(1997), theorem 2.3). we have that

nVarlf,] — Var [/ Fr g, (X))

Al v (1)

Once again, in many situations, the integrals involved in equation (3.10)

{3.10)

6=60
A=0

will not lead to explicit results. However, we can derive an estimate of the
asymptotic variance matrix of the MCVME using the estimate of the IF de-
scribed by equations (3.8) and (3.9), and the formula of the usual sample

variance. The result thereby obtained is

Var(f,] = - [ lz (TF(x)) W)“] , (3.11)

nin-—1

where
= (l/vz)iﬁ’(rz)- (3.12)

We now apply the results obtained in this section to a series of particular
models in order to get more detailed results.
Example 3.1 (One dimensional parameter). When 6 € R, the influence

function of the MCVME is given hy
J ( 08 !9:00

3F,
S (%

[Ay — Fgo] dlgo
[Frp(e) = ) . ‘ (3.13)
\0:00> (lﬁbo

Example 3.2 (A case with 2 parameters (8 € R?)). Rewriting equation
(3.5) for the case where 8° = (67,63), we get the following form for 1Cr p(2):

. -1

li (—Lﬁff)zdpbo S %ﬂ"—"j;; dFyo S a0 (A, — Fgo)dEge
g0 g0 df 0

[t gy, [ (S) dFy [ (A, Fae)dF

9%, (3.14)
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Example 3.3 (Location and scale model). Location and scale models are

characterized by their cumulative distribution function that looks like

; x—0
Foo() = I ( . ) (3.15)
2

where 69 is the true location parameter and 0 the true scale parameter. When

we apply (3.14) above, we get

‘ [ )1_ /3 (%ﬂ) du [ Wﬁi-f ( 7 ) du
[]‘TJ:(.I') = . ?0 4 e 0 u—00
L,‘ @0 .' ( g ) du [~ (TQL> du

oo sz ( ) (1" (%é?i) — A_,(u)) du
.jx, %ﬂ;’ﬁ‘fg (“02 ) (F (U_;é{i) - Ar(u)> du

X

(3.16)

Example 3.4 (Exponential distribution). We consider the following pa-

rameterization for the exponential distribution:
Folu)=1—¢"" 0>0 u>0. (3.17)

From (3.13), we obtain the influence function as

270220 N 270e% 150
4 8 8

[]J"["F‘(‘I‘) =

and we see immediately that it is bounded for a given value of . We also get
an explicil expression for the asymptotic variance of the MCVME by applying
(3.10}) :

657

nVar(f,) — Var[l Fp p(z)] = 500

(3.19)
In this case, the Rao-Cramér bound is 02 /n, so we have a respectable relative
efficiency of 500/657 = 76.1% for 0,.

Example 3.5 (Pareto distribution). The Pareto distribution here is of the

following form:

Fg(u):l—( ) 0=(x,A), a>0,A>0 u>0. (3.20)

A+u
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We ouly consider the case where o = g is a known value. We can again get
an exact expression for the influence function from (3.13):

—3(3ag + 1)(3ag + 2)A%2 0ty
2(2c + 1)(A + 2)2eoH]
3(3aqg + 1)(3aqg + 2) A%+l
Yag(2a0 + 1)(A 4 @)
(15(13 + 13 + 2)/\
dag(2a9 + 1)

]F’I',F(-l') =

(3.21)

Again, this is hounded for fixed values of ag and A and the asymptotic variance
of }\n we get from (3.10) is

(3ag + 2)2(73a2 + 27ag + 2)

Var[A,] — A?
nVar{da] — 2003 (5cr0 + 1) (50 + 2)

(3.22)

Example 3.6 (Gamma distribution). We consider the case where the
sample comes from a Gamma distribution with @ = ag a known integer. The

cumulative distribution function for this model is

ap—1 A i
Fu)=1-c"Y (Au) ‘

1=0

H u>0, >0, ape N. (3.23)

Using equation (3.13), we get

27T\ Al ag)T(2 2ol (9N )
_1) (o) (2aq) p-2hr Z (2Ax)
4 I'(3ao)

=0

I1Fp pla) = (

7!
30‘0 )\F(C\’O) a1 11(2(1’0 + ?)
'(3cvo) * 3

1=0

(3.24)

As we can see, when ag and A are positive, the influence function given
by (3.24) is bounded for all values of #; the MCVME is then robust for this
maodel.

We could not find an explicit general formula to express the asymptotic
variance of \,. However, were able to obtain the variance exactly from the
influence function by fixing ap to the successive values ap = 1, 2, 3, 4,..., 10.
We used the symbolic soltware package Maple V to complete the computations,

they are presented in the form of relative efficiencies in Table 1 below.
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Table 1
Relative efficiency for the MCVME of A in the Gamma model.

ap| 1 2 3 4 5 6 7 8 9 10
Efficiency (%) | 76.1 83.1 85.8 87.1 87.9 885 88.9 89.2 89.4 89.6

4. A NUMERICAL EXAMPLE

We now want to apply our resulls to a widely used distribution for
which we have yet to find an explicit formula for the IF of the MCVME,
namely, the log-normal distribution. We will show, using the condition given
by proposition (3.1), that the IF of the MCVME is bounded in that case, and
we will estimate the IF using formulas (3.8) and {3.9). We will also compare
the behavior of the MCVME to that of the method of moments estimator and

the maximum likelihood estimator.

4.1. The log-normal distribution. We parameterize the log-normal distri-
bution in the following way:

logz — p

. ), x>0, —co< p< o0, 0>0, (4.1)

Fo(z)y=190 (

where (-} and ¢(-) represent respectively the standard normal c.d.f. and p.d.f.

The derivatives of Fyg with respect to g and o are

OFg(z) 1 floga —yp .
dp ,;(15( g ) (4.2)
and
OFg(2)  (loga —p)  [loga —p
do a ¢( o ) (4.3)

Proposition (3.1) says that in order for the MCVME to be robust, the expected
value of the absolute value of those last two derivatives must be finite:

E[ DFe(X) }:lE[ Lyt )2]
ap o 2ra

1
Voro?

<

B[1] < 400
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and

" dle(N) || " [I()g X —yl sy tog X it )
’ ()(T - 0—2 Whides o

I
—= {I‘] {(/t —log X) [ x<on }}

]
Qrer

+ | [(logh\’ - .“)[{-\'>’“>}}'

AN

li

where I4 is the indicator variable of event A, One can solve the integrals
for the last two expectations eastlv, and see that these quantities arve finite.
Therefore, the IV of the MOVME in the log-normal case is bounded and,

hence. the MCVME 1s a robust estiimator in that case.

4.2. The example. We now apply different methods of estimation to a sam-
ple coming from a log-normal distribution with paramecters g = 7 and o = 0.2.
With that choice of parameters, the theoretical mean, standard deviation and
0th percentile are approximately 1119, 226 and 1298, The data were gener-
ated with S-Plus, and here is a summary of the sample obtained:

TapLe 1. Summary ol the random sample.

Size (n) | Min | Ist Quart. | Median | Mean | 3rd Quart. | Max
200 HTh.2 956 1078 F105 1253 1826

Using different methods ol estimation, we get different estimates for g
and a. The results are summarized in table 2.

TABLE 2. Estimates of yo and o (to 3 significant digits).

Estimation method | fi g | Ep(X) [ 4/ Varg(X) | pos

B Momeuts (6.99 0.205 | 1100 229 1298

Max. likelihood [6.9910.208 | 1110 232 1293
MCVM 7 6.99 1 0.201 | 1 10"() 228,,,7L¥})81
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As we can sce from table 2, all three methods seem to give similar re-
sults. The estimates are very close to the true values, and that was expectable
considering the fact that all three estimators are consistent and the sample
size is large.

However, our principal interest is o investigate the robustness of the
estimators. In order to do so, we append an unusually large outlier to the
sample, 140,=100,000. If a method is more robust than the others, then the
values of the new estimates (including the outlier in the sample) should not
differ much from the values of table 2. In the case of the MCVME, we have
begun this section by showing that its [F was bounded. Turther, we can
estimate that TF using the sample and formulas (3.8) and (3.9). The estimate

of the IF is plotted in figure 1.

FIGURE 1. Plot of the estimated TF for the log-normal distribution.

Sample 1; n=200, from lognormal{7, 0.2), no contamination
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1t is fairly obvious from figure 1 that the IF is bounded for the MCVME's
of both g and o. This leads us to expect that the outlier should not have a

significant influence on the MCVME’s.
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TABLE 3. Estimates of p and o (to 3 significant digits), con-

taminated sample.

I“stimation method | fi a | Eg(X) | /Varg(X) | pos
Mouients 538 | 1.731 | 1600 6970 1736
Max. Likelihood | 7.01]0.380 | 1190 469 1525
MCVM 6.99 1 0.206 | 1110 230 1291

Comparing the entries of tables 2 and 3, we see that the outlier had a
huge effect on the estimates for both the method of moments and the maxi-
mum likelihood (particnlarly on the estimates of the scale parameter, o). On
the other hand, the influence of the new value on the MCVME was nearly
negligible. This is the greal value of a robust estimator like the MUVME,
Since a picture is still worth a thousand words, we’ll cut this paper short by
presenting figure 2 that compares the estimated cumulative distribution func-
tion for three estimation methods. We believe that it illustrates our point in

an extremely convincing manner.

Ficure 2. CDE's for estimated distributions under contamination

Contaminated Sample
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