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ABSTRACT 

Relative Importance of Risk Sources in Insurance Systems 

Actuaries and other managers of risk identify factors in modeling insurance risks 

because (i) they feel that these factors may cause the outcome of a risk or (ii) that the factors 

can be managed, thus al lowing analysts a degree of control over the system risk. The purpose 

of this paper is to propose a f ramework for quantifying the relative importance of a source of 

risk. The intent is that, wi th a quanti tat ive measure of relative importance, risk managers will 

be able to sharpen their intuition about the relative importance of risks and be better 

custodians of financial security systems. 

This paper proposes a measure of relative importance that has its roots in both the 

statist ics and economics literatures. The measure is intuit ively appealing when assessing the 

effect iveness of basic risk management techniques including risk exchange, pooling and 

financial risk management.  The risk measure is also shown to be useful in mult ivariate 

situations where several factors affect a risk simultaneously. The paper il lustrates this 

usefulness by considering a pool of policies that is subject to mortal i ty, the risk of a disaster 

that is common to all policies and to a common investment environment. 
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R E L A T I V E  I M P O R T A N C E  O F  R I S K  S O U R C E S  I N  I N S U R A N C E  S Y S T E M S  

Section 1 Introduction 

Insurance systems are collections of agreements among parties in which one party agrees to accept 

another's risk. Initially, we may think of "risk" as the financial consequences of uncertain events. Unlike 

gambling systems, insurance systems are designed to reduce the total system risk. Insurance systems are 

organized by private and/or public entities that have agreements to reimburse individuals, corporations 

or other groups in the event of an unforeseen event 0oss). 

Models of insurance systems can be used for a variety of purposes. Two important purposes are 

(i) establishing premiums to price agreements and (ii) establishing liabilities, or reserves, to ensure an 

orderly matching of annual revenues to cost. Another purpose, that has important public policy 

implications, is understanding the event of an insurance organization becoming unable to meet its financial 

obligations, that is, becoming insolvent. 

Typically, actuaries managing insurance systems can identify several factors that potentially affect 

the realization of the risk. To illustrate, basic life insurance modeling decomposes risk into a mortality 

and an investments component. Basic property and casualty insurance decomposes risk into a frequency 

and severity component. As a more detailed example, consider projections of obligations by the Social 

Security Administration. Here, the basic components consist of economic and demographic factors. The 

economic factors include investment returns, inflation, unemployment and wage rate increases. The 

demographic components include mortality, fertility, marriage/re-marriage rates, disability, immigration 

and retirement rates. 

Actuaries and other managers of risk identify factors in modeling insurance risks because (i) they 

feel that these factors may in fact cause the outcome of a risk or (ii) that the factors can be managed, thus 

allowing analysts a degree of control over the system risk. Actuaries manage insurance risks through (i) 

classical pooling techniques, (ii) risk transference techniques including reinsurance and (iii) financial risk 

management techniques such as hedging. These broad categories, and a plethora of special cases and 

variations, of risk management techniques exist to enable actuaries and other financial analysts to cope 

with the many sources of risk that exist in the world today. There are many rules of thumb and guidelines 

for deciding upon the appropriate risk management tool. 

In models of insurance risks, relative importance of risk sources have traditionally been assessed 

via sensitivity analysis. That is, systems of risk are evaluated with a small change in parameter values 

and the resulting system behavior is observed. To illustrate, projections of obligations by the Social 

Security Administration are provided under "low, intermediate and high" cost assumptions of the future 

behavior of the economy. This enables users of the projections to get a sense of the relative impact of 
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the economic assumptions. Expert panels reviewing Social Security projections have acknowledged that 

a method of "deciding which assumptions are the most important is somewhat subjective. ~ (Social 

Security Technical Panel Report, 1990, Chapter 3). However, for managing the Social Security system, 

"the panel concluded that three economic variables ... had the greatest potential impact on the actuarial 

balance of the OASDI program and therefore deserved the most attention." 

Assessing the relative importance of causal factors arises in many other areas of actuarial science. 

Recently, Parker (1996) has studied the relative importance between investment and insurance risks. More 

traditionally, actuaries have sought to explain deviations of actual from expected results based on the 

experience of several different factors. To illustrate, see Anderson (1971) for a description of pension 

plan analysis of gains and losses and Saunders (1986) for a description of analysis of gains and losses for 

life insurance company operations. 

Assessing the relative importance of causal factors is also an area of concern that arises in many 

other scientific disciplines. Kruskal and Majors (1989) discuss some of the many approaches used in 

different disciplines concerned with different structures of stochastic information. These approaches 

include (i) using simple statistical measures such as averages, ratios, and percentages and (ii) more 

complex statistical measures of significance such as p-values. Much of the work of this paper is motivated 

by measures used in regression analysis. This literature is described in Subsection 5.2. 

Yet, even if an analyst identifies a factor as a determinant of system risk, how influential is that 

factor? Moreover, if the factor can be managed, how does this affect the behavior of the system's risk? 

As a tool for assessing relative importance in models of insurance systems, in this paper we describe an 

approach for decomposing risks into several sources of uncertainty. Decomposing sources of uncertainty 

will help us understand the relative importance of each source that in turn will allow us to design better 

systems for managing risk. By decomposing risks into several sources, managers will be able to quantify 

the contributions of each source of risk. This will aid financial security organizations in managing their 

risk portfolios and in designing contracts that meet demands for insurance by the public in a fiscally 

responsible manner. 

The goal of this paper is to provide a framework for decomposing risk. Because the development 

will be firmly rooted in insurance applications, Section 2 introduces several risk sources of insurance 

contracts. Section 3 explores the variance decomposition method by focusing on these insurance risks. 

This section introduces a statistic, the proportion of risk attributable to a source, and illustrates its use 

in three principal risk management techniques: (i) pooling, (ii) risk exchange, and (iii) investment 

diversification. 

Section 4 discusses the risk due to a common disaster in a pool of policies because of its 

importance as a threat to an insurer's solvency. Again, the intent is not to introduce potential remedies 

for this risk such as reinsurance exchanges or contract exclusions. Rather, the intent is to quantify the 

effect that a single, common source of risk may have on a pool of policies. 
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Section 5 provides background material on (i) the choice of the variance parameter as a measure 

of risk and on (ii) assessing relative importance of different risk sources. The former topic is based on 

the financial economics literature and the latter topic is based on the statistics literature. For practicing 

financial analysts, this section may be skipped without loss of continuity. 

Section 6 extends the variance decomposition method to handle several sources of risks. Although 

the extensions are straightforward in principle, certain difficulties arise when interpreting proportions of 

risk attributable to each source. Examples from different areas of insurance practice illustrate how to 

resolve these difficulties. 

Section 2 Models of Insurance 

We describe models of insurance systems using three types of stochastic elements: (i) financial 

risk, (ii) timing of contingency type and (iii) cash flow amounts. We will argue that these elements are 

hierarchical in the sense that the timing of contingency type may depend on the financial risk element and 

the cash flow amount may depend on the timing of contingency type and/or the financial risk element. 

This hierarchical nature will be important for the risk decompositions that will be presented subsequently. 

We will see that the presence of a hierarchy will enable us to attribute risk to various sources in a 

meaningful way. We now discuss each element, beginning with the highest order in the hierarchy. 

Section 2.1 Severity and Frequency Risks 

The cash flow amount, denoted by C, represents the random amount of money that is a net outgo, 

or payment, of the financial security organization. Henceforth, we refer to the financial security 

organization as the "insurer" for brevity. In the event that all net inflows, or premiums, are made at 

contract initiation the cash flow amount may simply represent the payments made by an insurer. In this 

case, the distribution of C is called the claims or "severity" distribution. The simplest type of a contract 

is a single period property and casualty contract, for example, a flood-loss policy, where C represents 

the random amount of claims due to damage of a home from flooding. Of course, the amount of claimx 

need not be equal to the amount of loss to the policyholder. Various contractual clauses, such as the 

existence of deductibles, coinsurance and excess of loss provisions may serve to transform the 

policyholder's loss distribution to the insurer's claims distribution. 

To describe the frequency of the contingency, we consider a random element F that describes (i) 

the type of contingency and (ii) the number of contingent losses over each period. To illustrate, for a 

single period property and casualty contract, F may indicate whether a claim occurs. As another example, 

consider a whole life insurance with an accidental death provision. In this case, we may use F ={Ft t ,  

F }, where Fit is an indicator variable for death (due to all causes other than accidents) and F2: is an 

indicator variable for accidental death in the tth period. 
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Specifically, we will consider c different contingent event types, each of  which may induce 

payments over one of  T time periods. Define Fit to be a variable that gives the number of events of type 

j in the tth period. To define an insurance contract, we will use b~t over j =  l . . . . .  c and t=  1 . . . . .  T. The 

variables {Fit } have the flexibility to represent basic building blocks for describing insurance systems, 

as follows. 

In this paper, we represent the risk arising from an insurance contract by a vector of cash flows, 

R. We assume the T × 1 vector of insurance risks R is a function of  the timing of  contingency type and 

the severity. That is, 

R = G({~t }, {Cjt}, t=l ..... T,j=I ..... c) (2.1) 

where G is a known function specified by the type of  insurance policy. Here, Cjt represents the amount 

of  cash flow for the j th  type of  event at the tth time point. 

Section 2.2 Incorporating Finanda l  Risks 

Up to this point, our model of  insurance risks has been a traditional one, see, for example, 

Bowers et al (1986) or Partier and WiUmot (1992). We now extend the model by including financial risks 

as a stochastic element. We use financial risks to represent random events based on movements of  asset 

streams associated with contractual agreements. As emphasized by Boyle (1992), an important distinction 

between financial and insurable risks is that pooling as a risk reduction technique is generally ineffective 

for controlling financial risks, at least when compared to insurable risks. It is well-known in financial 

economics that diversification is a limited risk reduction technique which has led to the introduction of  

other techniques, such as hedging strategies and securitization. 

Financial risks enter our model in two ways. First, we will allow for the fact that either cash flow 

amounts and/or the timing of  contingency type may depend on the financial stochastic elements. So that 

we do not unnecessarily restrict our considerations, we use 4- to represent the information generated by 

the investment risk. Generally, both Fit and Cjt may be a function of investment performance before time 

t. For example, Cjt may represent cash flows associated with a universal life policy, a type of  life 

insurance contract where premiums and benefits depend on investment performance. Further, ~ t  may 

indicator whether or not someone has withdrawn from an insurance contract. R is well-known, for 

insurance contracts with investment guarantees, that withdrawal rates depend on investment performance. 

Second, financial performance will be used to discount the vector of cash flows, R, to a single 

present value number. We will use 

S = D(R, 4,), 

that is, the random present value of cash flows can be expressed as a known function D of the vector of 

cash flows R and interest environment, 4-. For example, 4- could represent the information contained 
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in a constant force of interest, a force that varies deterministically through time, an i.i.d, series, a time 

series such as an autoregressive moving average process or even a multivariate version. To illustrate, 

recendy Lai and Frees (1995) investigated a nonlinear version of an ARCH (autoregressive conditionally 

heteroscedastic) process as a model of interest rates. Alternatively, a time series transfer function model, 

such as discussed by an Institute of Actuaries' Working Party in Geoghegan el al (1992), could be 

explored. 

These models provide mechanisms for summarizing future cash flows that result from a policy 

using a stochastic discounting. Because some cash flows are revenues and others are disbursements, the 

sum of discounted cash flows S is called discounted surplus. Thus, discounted surplus summarizes, at one 

point in time, losses or profits that the insurance organization will eventually realize, and is an important 

measure of risk in insurance and related industries. Other choices of D are of interest in actuarial science, 

for example, the choice associated with ruin probabilities. This paper focuses on the discounted surplus 

measure. 

Section 2.3 Risk Hierarchy 

Sections 3 and 5 will introduce several methods of attributing, or decomposing, risk to more than 

one source. Each method will turn out to be hierarchical in nature in that the risk attributable to a source 

will depend on the risk attributable to sources that are higher in the hierarchy. The hierarchy will be 

established in conjunction with the purpose of analysis of the risk system. To illustrate, in financial 

security systems we would establish the risk in congruence with risk management systems that are 

generally available. The idea is that if a source of risk can be eliminated, then it is useful to understand 

it's contribution to the overall riskiness. Providers of financial security are compensated for assuming 

risks and it is important to understand how much risk is being assumed. 

To illustrate a risk hierarchy, in the context of insurance risks, we will generally assume: (i) that 

the risk of claim amounts (C) depend on claim frequency (F) and the interest risk (-~) and (ii) that the 

risk of F depends on 6 .  In principle, it is possible to calculate the risk of • as a function of F. 

However, this is difficult to interpret because it would mean that the uncertainty of the financial capital 

markets depends on insurable events such as mortality or flooding. Although there may be extreme 

"insurable" events such as a national epidemic or a major earthquake, it seems far more likely that most 

insurable risks have no impact on the financial markets and thus on financial risks. Further, in the event 

that C is deterministic, determining the risk associated with -# given F is equivalent to determining the 

risk associated with 6 for known cash flows. In this case, we will establish that the risk is known from 

work in financial economics and may be zero, in the event of perfect immunization. 

Thus, we assume that financial risks are most fundamental, followed by the timing of contingency 

type and finally the cash flow amount. Within each category, however, there may be several types of 

risks where no ordering is possible. 
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S e c t i o n  3 R i s k  D e c o m p o s i t i o n  U s i n g  V a r i a n c e s  

The variance functional may be the most widely applied summary measure for quantifying the 

risk of a random variable. It is ubiquitous in the study of financial risks, in part due to the pioneering 

work of Markowitz (1959) on mean-variance tradeoffs of financial returns. The decomposition of 

uncertainty through analysis of variance has a central role in the study of data through regression analysis. 

Further, the variance functional as a measure of risk is an important special case in other, more general, 

frameworks for analyzing risks that will be introduced in Section 5. As we will see, the examples of this 

paper primarily concern measuring the risk of large pools of insurance obligations. Because our first 

order approximation of the distribution of these pools involve central limit theorem arguments, it is 

natural to focus on the variance as a measure of uncertainty. In this section we measure the risk of a 

random variable Y through its variance, denoted by Vat Y. 

Section 3.1 Basle Measures for Risk Decomposition 

Even when restricting ourselves to variance measures, there are at least two different measures 

that can be used for risk attribution. To simplify the discussion, suppose that the risk Y is composed of 

two sources of risk, X and Z, such that Y = G(X, Z), where G(.) is a bivariate function. Using variance 

as a measure of risk, we would like to measure the variability of Y that is due to X. For some of our 

insurance applications, we will use Y = S for discounted surplus and X = at for interest rate risk. In the 

context of this application, the results of this section are related to the recent work of Parker (1996). 

One measure is E ( Var (Y I Z) ), where E is the expectations operator and Vat (Y I Z) is the 

variance of Y given Z. This measure can be interpreted as follows. Assume that Z takes on a known 

value, say %. Then, G(X, Zo) is a random quantity due only to X and, hence, its riskiness can be 

summarized by Vat (G(X, zo)). An alternative expression for this is Vat (G(X, Z) I Z=Zo) = Vat 

(Y I Z=zo). Thus, the measure E ( Var (Y I 2) ) can be interpreted to be the expected, or "average," 

riskiness of Y due to X, where the averaging is over values of Z. 

A second measure is Vat( E(Y[ X) ). The regression function, E(YI X) = E(G(X, Z) { X), 

averages over all values of Z. Thus, the many potential values of Z in G(X, Z) are replaced by the 

conditional average. Thus, the riskiness in the quantity E(G(X, Z) I X) is due solely to the riskiness of 

X. The measure Var( E(Y I X) ) summarizes the variability of this random quantity. 

Both measures are dominated by the overall variability, Var Y, a desirable criterion for a measure 

of riskiness due to a source. This is due to a basic relationship in mathematical statistics, 

Vat Y = Var(E(YI X))  + E(Var(YI X)). (3 .0  
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Thus, Var Y > Vat'( E(Y I X) ). By a similar line of argument, Var Y > E( Var(Y [ Z) ). 

Both measures reduce to Var X in the case of linear independent risks. That is, if X, Z are 

independent and Y = G(X, Z) = X + Z, then it is easy to check that E( Vat (Y [ Z) ) = Var X = 

var( E(Y] X') ).  
In this paper, we use Var( E(Y I J0 ) as our measure of the risk of Ythat is attributable to X. This 

choice is motivated by three reasons. First, in many applications it is not possible to identify a second 

variable Z in order to compute Vat (Y I Z). Computing E (Y I X) will turn out to be a more natural 

device. Second, the choice of Vat( E(Y [ J0 ) will be motivated by appealing to arguments using utility 

theory that will be discussed in Section 5. Third, this choice is also motivated by a purpose of risk 

attribution, decomposing risks into components that can be controlled through risk management 

techniques. This motivation is developed in Subsection 3.2. A rescaled version of our basic measure is 

z V=t ( E (Y IX ) )  {3.2) 
Pl,'z = Vat Y 

interpreted to be the proportion of It's risk that is attributable to X. An advantage of this rescaled measure 

is that it does not depend on the units that Y is measured in. Thus, 0 2  is said to be dimensionless. 

Section 3.2 Measuring the Effectiveness of Risk Management Techniques 

This subsection develops the basic risk attribution measure, defined in equation (3.2), by applying 

it to each of our three basic risk management techniques: risk exchange, pooling, and financial risk 

management. Through these applications, we will be able to quantify the effectiveness of the risk manage- 

ment techniques using our risk attribution measure. We consider each technique in turn. 

Example 3.1 Exchanging Risks in a Single Period Property and Casualty Risk 

Suppose that C represents the amount of a claim that is payable in one year. Let 
X represent the random present value of $1 payable in one year. We assume, because the 
obligation cannot be determined in advance, that it will be funded through a money 
market instrument and hence is random. Further, we also assume that X is independent 
of C. Thus, the random present value of the obligation is Y = X C. 

As described in the risk hierarchy section, our interest is in measuring the risk 
of the random present value of claims, Y, that is due to the interest rate risk, X. This is 
because management may elect to reduce the riskiness of claims amount C through the 
use of tools such as deductibles or stop-loss reinsurance. In fact, the entire claims 
distribution may be exchanged for a nonrandom payment. For example, using the net 
premium principle, the value of the obligation is E(YI J0 = X E C. Note that the 
agreement of the exchange can be made without regard to the effects of the interest rate 
risk. Thus, we may interpret E (YI X) to be the value of an obligation that can be 
achieved using risk reduction techniques. 

It is instructive to compare the two measures of risk attribution introduced in 
Section 3.1 in this example. Straight-forward calculations show that 
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Vat( E(Y I X) ) = Vat( X ) (E 63 2 
and 

E( Var(Y I 63 ) = Vat( X ) E C ̀2 = Vat( X ) (Var( 63 + fE 632) 

These calculations establish E( Var(Y I C) ) > Var( E(Y I X) ), with equality if and only 
if (Var X)(Var 63 = 0. Thus, in this example, the measure Var( E(Y I X) ) is not affected 
by the variability of C, although E( Var(Y [ 63 ) is affected. 

How effective is it to replace the original risk Yby the new obligation E(YIX) 
= X E C?. Straightforward calculations show that 

cv(x)_,/_l ' 2 1 ÷ 
Pr~: I + - 

1 + C'V(C) -2) 

where CV(X) = (Var X)0A)/EX is the coefficient of variation of X, and similarly for 
CV(C). Thus, for example, we have that p 2  tends to be zero as CV(X) tends to be zero, 
and that P~'x tends to be one as CV(63 tends to be zero. We may interpret this to mean 
that the proportion of risk attributable to X is small when the coefficient of variation X 
is small, and is large when the coefficient of variation of C is small. This interpretation 
is not surprising. However, we also have that p 2  tends to (CV(C)2+ 1)/(2CV(C)Z+ 1) 
as CV(X) tends to infinity. This ratio is bounded by ½ and 1, indicating that a substantial 
proportional of risk is not explained by X even when the coefficient of variation of X 
becomes infinitely large. This is not a deficiency in the definition of p 2 ;  it is due to the 
multiplicative nature of the relation Y = X C. • 

Thus, the measure Var( E(Y I X) ) can be motivated based on a conditional exchange of risks, 

that is, exchanging Y for E(Y [ X) where, of course, the value of E(Y [ X) depends upon the occurrence 

of X. This exchange is based on the net premium principle (see, for example, Bowers et al, 1986, 

Chapter 6). More generally, one could consider the exchange of Y for H(Y I X), where H(Y [ X) is a 

general "premium principle." Premium principles H(.) are methods for determining equitable, 

nonstochastic premiums H as a function of the distribution of the risk Y. Thus, the premium H(Y I X) is, 

conditional on X, a nonstochastic quantity that is readily exchangeable for Y. See, for example, Gerber, 

1979, for an introduction to premium principles. Introducing more general premium principles implicitly 

means introducing a bias. Of course, these biases exist in practice; they may be due to risk premia, 

expense Ioadings, or market inefficiencies. The approach of this paper is to quantify the variability of 

risks; it is anticipated that risk managers will analyze these tradeoffs using their own perspectives on 

variability and bias. It is possible to handle the biases automatically by using a mean square error in lieu 

of a variance operation. However, we prefer to split the bias from the variance calculation, thus forcing 

risk managers to explicitly account for the two types of deviation from an anticipated result. 

Another important risk management tool is the pooling of risks. Insurance organizations spread 

risk through a pooling of risks. The basic premise that risks can be reduced through pooling, or sharing, 
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is predicated on the fact that the uncertain events upon which risks are based are not perfectly related. 

Indeed, the smaller the relationship, the more effective is the pooling mechanism. The pooling mechanism 

is much less effective when a common disaster strikes many of an organization's clients, such as an 

earthquake in property and casualty insurance, an AIDS epidemic in health insurance or a series of junk 

bond defaults in life and pension insurance (see Section 4). 

To assess the effects of pooling, let Yi = Gi(X), i=1  . . . . .  n, be n individual risks. Here, Xi s  a 

source of risk that is common to the individual risks and Y = I;7= 1 Y,. is the pool of risks. We assume, 

conditional on X, that the risks are independent. By the conditional independence, we have Var (Y I X) 

= Z;7= 1 Vat (Y/ I X). This and equation (3.1) yield 

Var( E(Y[ X) ) = Var Y- E( Var(Y l X) ) = Var Y- X;7= I E( Var(Y i I X) ). (3.4) 

One application of equation (3.4) is to see, for pools with a large number of risks, that the pool risk can 

be largely attributable to the common effect, X. That is, suppose that E( Var(Y/I X) ) < C for some 

constant C, for each i. Then, from equation (3.2), we have 

I v o r y - f i x  ')) - Var-r I ,  c .  
/I n n 

That is, the difference between the overall riskiness of the pool average, Y/n, and the riskiness 

attributable to X, is less than C/n. This difference becomes small as the number of individual risks, n, 

becomes large. 

Equation (3.4) can also be used to calculate the exact proportion of riskiness that is attributable 

to X. Consider the following illustration, based on Example 4.1 of Frees (1990). 

Example 3.2 Block of Whole Life Policies 
Consider a block of level premium whole life business, categorized into three 

groups of size N so that the total block size is n = 3N. Assume, for each category, that 
ages at issue are x = 30, 30, 40 and durations are k = 5 ,  10,  5 ,  respectively. Funds are 
invested in a money market instrument whose returns (4:) follow an MA(I) process with 
parameters 61 = 0.04376 and ¢x I = 0.08043. The mortality decrements axe the 1979- 
1981 U.S. Male Life Tables. Use S to denote the sum of losses for this block of 
business. (See Bowers, Gerber, Hickman, Jones and Nesbitt (1986) for a description of 
a policy's loss.) 

Under the above assumptions, from Frees (1990) we have that 

Vat( E(S I "~) ) = ~ (0.00861) 
and 
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Var S = N 2 (0.00861) + N(0.13380). 

2 The ratio, gs~t = 
Var( E(SI ~t) ) / Var S, is the 
proportion of  the pool's variability that 
is attributable to the interest rate risk. 
Figure 3.1 plots the relationship 
between this ratio and the group size 
N. Here, we see that the ratio is small 
for small block sizes but increases 
quickly as the size grows. The limiting 
value of the ratio is one. 

T h u s ,  t h i s  e x a m p l e  
substantiates, and sharpens, the 
common actuarial wisdom that the 
interest rate risk dominates the 
mortality risk. The example uses 
relatively homogeneous groups of 
policies; however, it is the assumption 
of independence of mortality within the 
pool that makes the averaging 
effective. Section 6 will provide an 
alternative viewpoint when the 
i n d e p e n d e n c e  a s s u m p t i o n  is 
perturbed. 

10 
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Figure 3.1 Plot of the proportion of the 
pool's variability attributable to interest 
rate risk for Example 3.2.  

The third type of  risk management technique considered in this paper is financial risk 

management. As a first example of  our risk assessment tools, we show that financial diversification is 

limited as a risk management tool, due to a common investment environment. 

Example 3.3 Capital Asset Pricing Model 
We consider here the capital asset pricing model (CAPM) of  a security's return, 

Y~ = R + #i (M-R) + e i. (3.5) 

Here, Yi is the /th security's return, R is the risk-free rate of  return, M is the market 
return, e i is the so-called =idiosyncratic" risk associated with the/ th security and/~i is the 
slope associated with the / th  security. The risk-free rate and slope parameters are non- 
stochastic quantities. The idiosyncratic risks are mutually independent, and independent 
of  the market return. 

To see the effectiveness of diversification, assume that a portfolio is created with 
w i invested in the ith security, for i=  1 .. . . .  n. Then, using equation (3.5), the portfolio's 
return can be expressed as 
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Y "  ~ w,Y~ " R ( ~  w,) + fJ,,(M-R) + ~.~ w~¢, (3.6) 
/=1 1-1 /=l 

where flw = ~=I wi fli is the weighted average slope. The portfolio's risk is 
summarized by 

Vat Y= [~ Vat M +  ~ w 2 Vat e, (3.7) 
t=1 

It is not hard to construct weak conditions so that the portfolio's riskiness is less than the 
riskiness of an individual security, that is, Vat Y < Var Y/ = B 2 Var M + Vat e/. 

What effect does the market return have on the portfolio? Using equation (3.6), 
straightforward calculations show that E(Y[ M) = nO;7= ~ wl) + Bw(M-R). Thus, we have 

Pm~ " 
~2w Var M + ~-~w? Vat,, 

l=l 

To interpret equation (3.8), note that under minimal conditions we have that p ~  tends 
one (for example, Vat ei is bounded and ~7=t w~/tends to zero). This indicates, for 
large portfolios, that most of risk is due to market risk. Although this fact is well-known 
to investment analysts, equation (3.8) provides a measure to quantify the adjective 
"most. ~ 

(3.8) 

Section 4 The Risk of a Common Disaster 

Example 3.3 (CAPM) shows that pooling, or diversification, of different risks may be of limited 

value in the presence of a common random variable. This is well-known for investment risks where 

alternative risk management strategies, such as hedging, have been developed. This section investigates 

another application where different risks share a common random variable that we call a "disaster." 

Examples include epidemics in life insurance and annuities, flooding, earthquakes and hurricanes in 

homeowners' insurance, or even a nuclear holocaust in virtually all areas of insurance! 

In accordance with the theme of this paper, the purposes of this section is to quantify the risk due 

to a common disaster. To manage this risk, pooling is ineffective. Risk mangers  should look to risk 

exchanges (such as reinsurance), contract exclusions (such as earthquake exclusions in homeowners' 

insurance) or other techniques for handling this source of risk. 

We will suppose that Z is the time to a disaster that is common to all policyholders. This disaster 

may affect policyholders as follows. 
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Suppose that the ith policyholder is insured for amount B i and that the time until the insured event 

is X i. With the benefit amount and the time until failure, the insurer's liability is Yi = Bi fi(Xi), where 

fi(.) is a known function that depends on the terms of the contract. For example, we may use fi(x) = 

exp(-&r) = v "= for whole life insurance where ~ represents a constant force of  interest. Similarly, we may 

use fi(x) = exp(-&x)I(x<m) for an m-year term insurance policy or f/(x) = I(x<m) for an m period 

property and casualty policy (without discounting). See Bowers et al (1986, Chapters 3 and 4) for 

additional examples. 

To include the possibility of a common disaster, we first assume that each policy depends on T,., 

a time to failure without regard to the disaster. For a whole life policy this may be the future remaining 

lifetime of  an individual or for a homeowner's policy this may be the frequency of  a fire. Policies are 

assumed to be subject to T i and to disasters. Further, in the event of  a disaster, we use c/to be a variable 

that indicates whether the ith policyholder succumbs to disaster. With these elements, the time to failure 

is defined by 

T~ if c~=O (4.1) 

X~ = min(Tj, Z ) ff c~=1 

where {el}, { Ti} and Z are mutually independent sets of random variables. Thus, i f  the pol icy fails before 

disaster occurs so that T/ < Z, then failure occurs at ~ regardless of the outcome of c i. However, i f  the 

pol icy does not fail before disaster occurs so that T i > Z, then some policyholders are affected by the 

common disaster (c i = 1) although others are not (c  i = 0). For simplicity, assume that these events are 

independent and occur with probability qi = Prob(cl = 1). 

Our interest lies in assessing the riskiness of the pool of  policies whose liability is denoted by 

r = ~ r, - E a, f,(r,) + E a, f,(min(rp Z )) .  (4.2) 
|=1 ¢f'~ ¢t'I 

Because of  the model formulation, the common disaster component is described by the variables D = {ct, 

.... c, ,  Z}. Thus, we may describe the proportion of variability due to the common disaster as P~'o = 

var( z ( r l  o) )/(Vat r). 
Before assessing the riskiness due to a disaster, we first examine the expected l iabil i ty. It turns 

out that disasters, even relatively rare ones, can have a large effect on the expected l iabil i ty. This is 

important because traditionally insurance pricing has been based on net premium principles (see, for 

example, Bowers et al, 1986, Chapter 6). For an illustration of  a pool where a relatively infrequent 

disaster has large effect on the pool's expected liability, consider the following example. 
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Example 4.1 Pool of Whole Life Policies 

Assume that the insurer promises to pay $1 to a policyholder age x upon death. 
Without disaster, the future remaining lifetime, T, has probability density function tPx 
/ ~ + r  Assuming a constant force of interest 5, the expected value of future liability is 

E e x p ( - S T )  = f e  -8` d~ I ~ . t d t  = .4~@(8) . 
0 

Here, the notation A'x @(5) means to calculate the net single premium of a whole life 
insurance policy payable at the moment of death, discounted at constant force of interest 
8 (see, for example, Bowers et al, 1986, Chapter 4). For simplicity, we have assumed 
that the policy is paid-up. 

Assume that the time until disaster, Z, has an exponential distribution with 
parameter k. Thus, with survival function Prob(min(T, Z) > t) = tP, eXt, we have the 

probability density function of rain(T, Z) is -_.~_0 Prob(min(T, Z) > t) = ~Px eXt~ ,+ t  + 
Ot 

h). With the relationship A'x = 1 - 8 ax, this yields 

E exp(-8  rain(T, Z)) = f e -at aO, e -~s (l~x. + ~.) d t =  /~¢@(8+k) + ). h'x@(fi+k ) 
0 

8 ~. @(8+~) + 6 * ~. 

Thus, using equation (4.1), we have that the expected liability is 

E exp (-~X) = (1 - q) A~ @(8) + q( 8 ~x@(8+h)  + X ). 

To assess the affect of k on the expected liability, it is instructive to compare expected 
liabilities in the case of complete disaster (q -- 1, as for example, a nuclear holocaust) 
to the case of no disaster (q = 0). Thus, we examine 

8 @(8+~.) + 8 + ;t 8+). 
Ratio = 

as a function of ~. 
Figure 4.1 provides the ratio of expected liabilities over several values of X. 

Here, the net single premiums were calculated using 1979-1981 U.S. Male Life Tables 
with a uniform distribution of death approximation (see Bowers et al, 1986, Chapters 3 
and 4). Thus, for example, for expected time to disaster k l = (0.0004) t = 250 years, 
the ratio is approximately 1.10 at i = 10%. Given the competitive market for whole life 
insurance, a 10% increase in expected liabilities is important, especially considering that 
the expected time until disaster is 250 years. 
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Figure 4.1. Plot of the ratio of expected 
insurance liabilities over various values o f  ),. 
Here, )-I is the expected time to disaster.The 
upper line with square  plotthlg symbols 
corresponds to i=i0%. The  lower llne with 
circular plotting symbols corresponds to i=5%. 

~e 

~s 

14 
Ratio 

'2 

11 

'O 

T ~  FIVE _PE~ 

00~X)o O.OOC4 ooooe O0012 00el e 0 ~20 
LA~EIDA 

Although disasters are important in the calculation of a pool's expected liability, they are even 

more important with respect to variance calculations. In Example 4.1, we only needed to calculate the 

expected liability of  a single policy. This is because the expectation of  the sum of  liabilities equals the 

sum of  expected liabilities, even under dependence induced by a common disaster. However, this is not 

true when considering variances. To illustrate this, we consider the following example. 

Example 4.2 Pool of Property and Casualty Policies 
For simplicity, we consider a pool of identical policies with identical risk 

distributions. Further, suppose that each policy pays $1 for failure by time m, that is, B i 
- 1 and fi(x) = l(x < m). With these specifications, the pool's liability is given by 
equation (4.2). We assume that the risk distributions {Ti} are i.i.d. We use the notation 
Prob(T/ < m) = mqp Prob(Z < m) = mqz and Prob(Cl = 1) = q to denote probabilities 
of  failure. With these notations, straightforward calculations show that 

E Y  = n ( , , q r +  q , , P r , , q z ) ,  

where raPT = 1 - mq/" AS is Example 4.1, we examine the ratio 

1 - mqr E Y@ (q= l )  = 1 + u q z - -  
E Y @(q=O) . q r  

Recall that we interpret this to be the ratio of  expected liabilities under complete disaster 
(q-- I) to common disaster (q--0). For this example, we see that we expect this ratio to 
be close to one if ,.c12 is small compared to , .qp  that is, if the probability of  a disaster 
is small compared to the probability of a "natural" disaster. 

Straightforward yet tedious calculations show that 

Var( E(Y I D) ) = n 2 q2 ~,p~. mPz mqz + n q(l - q) ~t) 2 mqz 
and 

var( r ) = ,,2 d ~ ,~,z ,.qz + n ( mqr + q ~ r , . q z -  q2 ~ mqz ~ z  ) .  

Thus, as in Example 3.2, we see that the coefficient associated with n 2 dominates 
the pool 's variability for large values of n. Thus, as n --- o, ,  the ratio p2rt ) = 
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Var( E(Y I D) )/Var(Y) --, 1. We interpret this to mean that, for large pools, most of the 
risk is due to the common disaster. 

Sec t ion  5. O r d e r i n g  o f  R i sks  a n d  Assess ing Re l a t i ve  U n c e r t a i n t y  

Measures of relative importance of different causal factors can be developed from many different 

vantage points. Methods of sensitivity analysis, called comparative statics in economics, were introduced 

in Section 1. The purpose of this section is to provide background material for the approach used in the 

paper for assessing relative importance of sources of insurance risks. 

This section is organized as follows. To justify variance as a measure of risk, we begin by 

introducing "risk premia" from the economics of uncertainty literature. Within this framework, the 

variance measure can be obtained by examining several special cases. Further, economic risk premia 

provide a type of partial ordering of risks that is appealing in our discussions of risk attribution. Although 

not discussed in this paper, another method for quantifying uncertainty is through the entropy and 

information theory approach (see, for example, Brockett, 1991). The variance measure can also be 

obtained as a special case from this framework. These two approaches provide frameworks for 

generalizing the risk measure. 

Because much of the work on assessing relative importance has arisen in studies of regression 

analysis methodology, in Subsection 5.2 we review this line of thought. In regression analysis, measures 

of relative importance are often based on functions related to variability. Not only does this methodology 

provide an additional motivation for examining the variability measure, it also suggests a method for 

investigating multivariate risks decomposition, the subject of Section 6. 

Section 5.1 Ordering of Risks 

In economic theory, decision makers express preferences concerning alternative bundles of wealth 

using utility functions (see, for example, Bowers et al, 1986, Chapter 1). As an important variation, risk 

managers choose among stochastic risks by maximizing expected utility. These utility functions are often 

referred to as Von Neumann-Morganstern utility functions. Von Neumann and Morgan.stern (1947) were 

the first to provide a consistent set of axioms that showed expected utility maximization to be the 

consequence of ~rational" decision-making. 

Arrow-Pratt  Risk Premia 

Under mild conditions on the utility functions (such as concavity), it can be shown that a risk 

manager is risk-averse. A risk manager with utility function u(.) is said to be risk-averse (at wealth W) 
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if u(W) > E u(W+ I/) for all risks Y where E Y = 0 and Var Y > 0. Thus, if a risk manager is to take 

on risk Y in addition to the certain wealth level W, then it seems reasonable to ask what level of  

compensation is required. The Arrow-Pratt risk premium x is this additional level of compensation, 

defined by 

u(W-a') = E u(W+ Y). (5.1) 

From equation (5.1), it is apparent that the risk premium a- is a function of  wealth W, the utility 

function u and the distribution of the risk. Some special cases will help to interpret the risk premium x. 

Throughout, we assume that E Y = 0. This can always be done through relabeling W, if necessary. 

Example 5.1 Quadratic Utility 
Consider the utility function u(x) = bx - cx 2 . First note that u(W-x) = b(W-~r) - 

c (W-x) 2 and E u(W+F)  = b W -  cfVar Y + W2). From equation (5.1), we have 

(W-~r) 2 - (b/c)(W-~r) = Var Y + # - w b/c 

SO 

x :  - ~r(2W - b/c) = Var Y .  

Completing the squares yields 

Or-(W-b/:2c))) 2 = Var Y + (W- b/(2c)) 2 . 

Because cardinal utility functions are invariant up to affine (location and scale) 
transformations, we may choose b such that W=b/ f2c ) .  With this choice, we have 

x 2 = VarY. 

Example 5.2 Normally Distributed Risks 
Suppose that Y is normally distributed with mean zero and variance o 2. For 

1 1 simplicity, further suppose that u exists and that both u(.) and u- (') are increasing. 
Then, from equation (5.1), we have 

g 

t:- 

(5.2) 

(5 .3 )  
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A straightforward calculus exercise shows that x is an increasing function of o 2, although 
it still depends on W and u('). For an illustration where this is easy to see, consider 
Example 5.3. 

Example 5.3 Exponential Utility 
Suppose that we define u(x)= (1-eC~)/a. Thus, from equation (5.1), 

(1-e'a(W-~r))/a = u(W-lr) = E u (W+D = (l-e-~w E e-a~')/a. 

This yields x = -(In (E eaY))/a. For the case of Y - N(0,o2), this yields 

1 e=2,2rz a = - - I n  = - - a  2 . 

a 2 

Pratt Asymptotic Approximation 
Pratt (1964) provided an approximation for x that is simpler to calculate than the definition in 

equation (5.1). It is based on two Taylor-series expansions of the form 

u(W)- ~r u'(W) = u(W-x') = E u(W+Y) == E(u(W) + Yu'(W) + I,~/2 u"(W) ) (5.4) 

Pratt argued that these expansions could be justified by considering distributions with variances that are 

small relative to wealth W. 

Equating the left and right-hand side of display (5.4) yields the approximate risk premium, 

,rp = (r(V¢)/2) Var  Y, (5.5) 

where r(W) = -u"(W)/u'(W) is known as the Arrow-Pratt absolute risk-aversion function. Thus, if a risk 

manager is comparing two risks, then a higher risk premia will be sought for the risk with the higher 

variance. As in Examples 5.1 and 5.2, we see that the variance measure summarizes risk in several 

important special cases. 

One advantage of the Arrow-Pratt risk premia defined in equation (5. I) is that any two risks can 

be compared. That is, a risk manager will choose the risk with the smaller risk premium. Thus, this 

choice mechanism provides a complete ordering of risks. However, the Arrow-Pratt risk premia uses just 

one summary measure of a risk's distribution, and other aspects may be relevant. 

More generally, several criteria have been established to provide ordering of risks. See, for 

example, Levy (1992) for an overview of the area of stochastic dominance and Kass et al. (1994) for an 

actuarial perspective. Here, we focus on a specific ordering called weakly less risky that has found broad 
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applications in the financial economics literature. 

Weakly Less Risky Order ing 

Consider two random variables X and Y. We say that X is weakly less risky (WLR) than Y if 

Eu(X) > Eu(Y) for e a c h u e U . .  (5.6) 

Here, U.  is the class of utility functions where both u(X) and u(IO are integrable for u ~ Uo. Thus, WLR 

provides a partial ordering between two random variables. The ordering is only partial because it is 

possible that neither (i) X is WLR than Y nor (ii) Y is WLR than X are true. Using equation (5.1), we 

see that if W + X is WLR than W + Y, then x(YO < x(13 for each increasing u(.) c Uo. Thus, the partial 

ordering of  the WLR principle is preserved when examining risk premia. 

Recall that if u(W) > E u(W + I3, then the consumer is said to be risk averse at W. If the 

relationship holds for all wealth levels W, then the consumer is said to be globally risk-averse. For global 

risk aversion, a necessary and sufficient condition is that u(.) is strictly concave (see, for example, 

Ingersoll, 1987, p. 37). Thus, we will work with U, defined to be the class of  stricdy concave, increasing 

utility functions. Recall that a function u(.) is strictly concave if u(tx + (l-t)y) > t u(x) + (l-t) u(y) for 

0 < t <  1 and all x, y. If u " ( x ) < 0  for all x, then u(.) is strictly concave. 

The following is an important characterization of the WLR ordering. A necessary and sufficient 

condition for X to be WLR than Y with respect to U is that there exists a random variable ~ such that 

y =a X + e  and E ( e l X = x ) = O  for allx.  (5.7) 

Here, the symbol =d means equal in distribution. This characterization is due to Rothschild and Stiglitz 

(1970). See, for example, Ingersoll (1987, p. 119) for a proof. Henceforth, when we say X is WLR than 

Y, we implicitly mean with respect to U. If display (5.7) holds, then it is well known that X and e are 

uncorrelated although they may not be independent. 

Now consider the case where X is a factor that may be used to help understand the risk Y. In 

general, two random variables X and Y need not be ordered through the WLR principle. However, we 

can always find a function of  X that is WLR than Y. 
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PROPOSITION 5.1 

Consider a stochastic element X and a random variable Y that are defined on a common 

probability space such that E [ Y [ < o0. Define T(x) , .  E (Y [ X=x). Then, T(X) is WLR than Y. 

Further, if there exists another function T,  such that (i) T,  has a unique inverse and (ii) T,(X) 

is WLR than Y, then T(X) = T,(X) with probability one. 

PROOF: Define e = Y- T(X). With this definition, the equations in display (5.2) trivially hold and thus 

T(X) is WLR than Y. 

Now suppose that T,(X) is WLR than Y. Then, by (5.2), there exists a random variable e. such 

that Y =d T.(X) + e. and E (e, [ T . (X)=x)=0  for all x. Thus, 

T(x) - E(YI X=x) = E ( T.(X)+~.  I X=x) 

= E (T, (X)  [ X=x) = T.(x) for all x, with probability one. 

This is true because E (~. I X=x) = E (e. [ T . ( X ) = y ) = 0  for all y=T.(x). 

The requirement of a "common probability space" is a mild one and can always be accomplished 

by redefining the random elements (see for example, Serfling, 1980, Theorem 1.6.3, or Kass et al, 1994, 

Theorem t.2). The element X may be a random variable, a random vector or an element taking values 

in a more general space. The only requirement is that it represent the domain of a real-valued 

transformation T(.). 

Proposition 5.1 shows that if we wish to assess the effect of X on Y, then T(X) = E (Y [ X) is 

the appropriate function, at least in terms of the WLR ordering. AlternativeLy, we will see in Subsection 

5.2 that there are several measures that can be used for assessing the effect tha tX has on Y. The function 

T(X) is appropriate for summarizing the effect due to X for two reasons. First, the risk T(X) accounts for 

nearly all the uncertainty in Yin the sense that residual, Y-T(X), is uncorrelated with X. More precisely, 

we have that E(Y-T(X) I X=x) = 0 for all x, a condition stronger than zero correlation although not as 

strong as statistical independence. Second, and more importandy, all risk managers whose preferences 

can be represented by u(.) E U.  will prefer T(X) to Y. Moreover, we have that T(.) is essentially unique, 

at least if it has a unique inverse. To sununarize the uncertainty of E (Y I X), Examples 5.1 and 5.2 and 

the Pratt asymptotic approximations suggest the use of Var( E (Y I X) ). Of course, other classes of utility 

functions will suggest other generalizations. 
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Section 5.2 Regression Methodologies 
Questions of relative importance of explanatory factors arise naturally in regression analysis. Here 

the focus is on modeling a stochastic element Y in terms of one or more explanatory factors. The basic, 

and most widely applied, model assumes that Y can be expressed as a linear combination of the 

explanatory variables, X L . . . . .  Xk, and an unobserved "error" term e. That is, 

r = ~0 + 0 1 X I  + . . . + # k X k + e  (5.8) 

where fie, 81, ..., 0k are fixed, yet unknown, parameters. The error term is generally assumed to be 

independent of the explanatory variables and is used to represent the "inherent variability" in K Hence, 

with the linear representation in equation (5.8), it is natural to wish to describe the relative influence that 

an explanatory variable has on Y. 

As described by Kruskal (1987), the following are the most widely cited measures for assessing 

the impact of Xj on Y. Here, we assume that {X1, ..., Xk, Y} are random variables. 

1. /91. 7 - the correlation between Xj and Y, without regard to the other explanatory 

variables. 

2. 0j - the j th  regression coefficient. This is defined to be the partial derivative of the 

conditional expected value of Y with respect to ~ .  It is interpreted to be the 

change in the (conditional) expected value of Yper unit change in Xj, holding the 

other explanatory variables fixed. 

3. 0~ - the standardized regression coefficient. Defined to be equal to By ((Var Xj)/(Var 
y))lt2, that is, t he j th  regression coefficient standardized to be unitless. 

4. Oj E Xj - thejth regression coefficient time the expected value of ~ .  

5. p2 - the j th  coefficient of partial determination. 

The ftrst measure only captures relationships between Y and Xj. The second through fourth are based on 

small changes in the (conditional) expected value of Y. The fifth measure is based purely on variation and 

is described more fully below. 

Denote the variance of Yby a2r and let X = (X 1 . . . . .  Xk)'. Further, define a r t  = Coy(Y, X) and 

g x  = Var X. Then it turns out that (Anderson, 1958, Section 2.5.2), 

¢, 
Ort  " maxa Corr(Y, ~ 'X)  = ° r I  I~]t 1 ° r r  (5.9) 

Thus, Prx is called the multiple correlation coefficient. Further, p 2  is the (population) coefficient of 

determination. For further interpretation, assume that Y, X are jointly normally distributed. Then, Y I 

384 



X is normally distributed with mean E (Y ] X) = E Y + ayX' I~X-I (X - E X) and variance Var (Y [ 

X) = a~,- arx'  I~x 1 arx. Thus, 1 - Var (Y I X) / Var Y = p 2 ,  that is, the coefficient of 

determination is one minus the proportion of variability still remaining after conditioning on X. Another 

interpretation is 

2 Var ( ~r I X)  ) (5.10) 
Prx = 

Var Y 

which is consistent with the measures introduced in Section 3. 

More generally, let XO) = (X t . . . . .  Xj)', ay(/) = Coy(Y, Xq)), I~9- ) = Var X~0 and a r l  (,-~ = a2r - 

O'rq) ]~(/.)-1 O¥(13, for j = l ,  k. Define 2 = 1 j = 2 ,  k and p 2  = 1 - ' " ' "  P~ I q-t) - ay I (D/aY I q-t) . . . . .  
ar I O)/a~r" With this notation, we may state the well-known result (see, for example, Anderson, 1958, 

Section 2.5), 

p2 1 -P~x  = ( l - p h ) ( l - p 2 ]  1 ) " "  (1 -  ~l(k-1)) (5.11) 

Equation (5.11) provides a decomposition of the coefficient of determination into interpretable 

components. Assuming normality, it can be checked that Corr(¥, Xj [ X 1 . . . . .  Xj-l) = # rJ I  q-l), the 

correlation between I" and ~ ,  conditional on X 1, ..., ~-1. Thus, Pr,~ [ (k-l) is called a partial correlation 

coefficient and oy~,2 1 (k-l) = p2 is called a coefficient of partial determination. 

Equation (5.11) provides a satisfactory decomposition of P~'X when the explanatory variables are 

(i) hierarchical or (ii) orthogonal. When they are hierarchical, because p~ I (j-l) can be interpreted as the 

proportion of Ys variability explained by X 1 . . . . .  ~ ,  it is reasonable to build p2yx according to equation 

(5.11). Equation (5.11) makes an assumption about the ordering of the explanatory variables. For 

example, in general we have p ~  ~ p ~  I 1. 

However, if the explanatory variables are orthogonal, several simplifications arise. In this case, 

Var X is a diagonal matrix and equation (5.11) yields 

2 ~ Cov(Y.Xj)" " 2 
Pyx = /_. - ~ P r j .  

j-i Vat" Xj Vex Y j-t 

Thus, the total proportion of variability can be directly decomposed into individual components. In a 

more tedious fashion, this can be checked using equation (5.10) and the relation 

2 2 
2 1 - P r l  - . . .  - P r j  

P D I  ~-1) = 2 2 
1 - PrJ - . . .  - PrJ-t 

3 8 5  



When the explanatory variables are neither hierarchical nor orthogonal, several measures have 

been proposed to determine the relative importance of each factor. Overviews and broad discussions of 

the interpretation of relative importance in the social sciences can be found in Pedhazur (1981, Chapter 

5), Williams (1978) and Kruskal and Majors (1989). To overcome this asymmetry of the relation in 

equation (5.11), averaging techniques have been proposed by Kruskal (1987), Pratt (1987) and 

Genizi(1993 ). Other methods have been recently described by Chevan and Sutherland (1991) and Budescu 

(1993). This fundamental decomposition is the subject of ongoing research. 

S e c t i o n  6 R i s k  A t t r i b u t a b l e  to  S e v e r a l  S o u r c e s  

Section 6.1 Multivariate Risk Decomposition 

Although the Section 3.1 discussion was given in terms of a single source of risk, the extension 

to multiple risks is immediate. Thus, for a risk Y, we define 

Re (Xl, X 2 . . . . .  Xk) --- Vat'( E(Y I XI, X2 . . . . .  Xk) ) 

to be the risk of  Y attributable to the multiple sources X1, X2, ..., X k. The case of  a single source of  risk, 

presented in Section 3.1, corresponds to k= 1. 

As described in Section 2.3, it is desirable to have a measure of  riskiness due to one source, after 

having controlled for other sources. Suppose that we are interested in the riskiness of Y attributable to 

the p variables Xk+ t . . . . .  Xk+t,, after having controlled for the effects of k variables X l . . . . .  X k. We 

define this measure to be 

Ry(Xk+ 1 . . . . .  X k + p l X  1 . . . . .  X t) = Ry(X 1 . . . . .  X k + p ) - R r ( X I ,  X 2 . . . . .  X t ) .  (6.1) 

This measure of additional riskiness is always nonnegative. Indeed, straight-forward calculations show 

that 

Rr(Xk+ 1 . . . . .  Xk+/, [ XI . . . . .  Xt) = 

We often will examine the case o f p  = l,  

E( Vat( E(Y[ X, . . . . .  Xk+p) I X,,  X 2 . . . . .  Xk) ) > O. 

(6.2) 

R y ( X k + t l x t ,  X2 . . . . .  Xk) = Ry(X I . . . . .  Xk+t) - R r ( X t  . . . . .  Xk), (6.3) 

interpreted to he the riskiness of  Y attributable to Xk+ 1, after controlling for the effects of X l . . . . .  X k. 
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For example, equation (6.3), together with (6.2), yields the following ordering of risks: 

RI,(X t) < Rr (Xt ,  X 2) < ... < Rr(XI ,  X 2 . . . . .  Xk) < R y .  (6.4) 

Here, Ry = Vat Y is the overall risk. 

Risks attributable to different sources are not additive. That is, 

k 
R~(X,,...~,), ~ R.~x) 

1-1 
in general. However, if the sources of risk are hierarchical, then it is appropriate to use the 

decomposition 

/t 

Rv(Xt,...,X~ ) = ~ Rv(Xj I Xp...,X;_I ) . (6.5) 
1-1 

Here, R 1, (Xj ] X 1 . . . . .  Xj.I) evaluated at j =  1 is defined to be R I, (Xt). To demonstrate the nonadditivity 

of  risks from different sources, we return to a previous illustration. 

Example 3.1 - Continued 
Recall that Y = X C, where X and C are independent. We have established that 

Var( E(Y [ JO ) = R r  (JO = Var( X ) (E C) 2. Similarly, R r (C) = Var( C ) (E X) 2. 
Straightforward calculations show that 

Vat Y = Rlt = R r. (X, C) = Var( X )Vat( C ) + Var( X )(E C) 2 + Vat( C )(E X) 2. 

Thus, Rz(X ) < Rr(X  , C) and R r ( C  ) < R r ( X  , C), in accordance with equation 
(6.4). Further, if Vat( X)Var (  C ) > 0, then 

Rr (JO + Rr (C) < R r (X, C). 

In this application, because X represents the interest rate risk, we interpret it to 
be more "fundamental" than C, the random claim amount. Thus, we use 

Ry(X) = V a t ( X )  (E C) 2 
and 

R r (C I X) = Vat( X)Var(C) + Vat( C )0~ X) 2 

to decompose R r , the overall risk. • 

In general, the order of attribution matters, even for independent sources of risk. To illustrate 

in the above example, we have R l, (C J X) :~ R r (C). In the special case of linear independent sources 

of risk, the order of attribution is unimportant. To see this, consider Y = X 1 + X 2 + Z, where Xl, X 2 
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and Z are mutually independent. Then, straight-forward calculations show that Rr(X1) = Var Xl, Ry(X2) 

= Var X2, R r (X I ,X2) = Var Xj + Vat X 2 and 

Rr (Xt I X2) - Ry (x I ,22)-  R r (X2) = Var X t = R r (X1). 

Section 6.2 Pool of m-Year Term Policies 

To assess the effect of  several factors on a risk, this subsection considers a pool of policies that 

are subject to (i) mortality risk, (ii) risk of  a common disaster and (iii) risk of  a common investment 

environment. Specifically, the mortality risk is denoted by M = {T 1 . . . .  , T,}, where T i is the future 

lifetime of  the ith policyholder. As in Section 4, the common disaster component is described by the 

variables D = {Cl, ..., cn, Z'}, where c i indicates whether the/ th  policyholder succumbs to disaster and 

Z is the time until disaster. As in Example 3.2, 4- = {A1, A~ z . . . .  } describes the money market returns 

so that v(k) = ll~s= j exp(-A,) is a k-period discounting function. 

The risks are n, m-year, term policies that, for convenience, we assume are each issued to a male 

life (x) age 30. The following additional assumptions are made. 

Assumptions: 

1. We assume that 4,, D and M are mutually independent. Further, for convenience we assume that 

{ci} and {Ti} are i.i.d., as in Section 4. Because policies lifetimes {T/} are i.i.d., we assume that 

all lives are age x at contract initiation. 

2. For convenience, we assume that time to disaster follows an exponential distribution with 

parameter X, as in Section 4. 

3. Interest and mortality distributions are the same as in Example 3.2. 

4. Policies are payable at the end of  year of  death. 

Similar to equation (4.2), we use Y = I;7= 1 Y/for the pool risk, where 

[ v ( [ ~ ] . l )  I(~<m) Cq = o 
(6.6) 

Yt = ~ [v([mln(.TpZ)]+l) I(min(T~Z)<m) i f  cj 1 

Here, the square brackets [.] denote the greatest integer function. For simplicity, we define T/* = [Ti] 

and Z* - [Z]. To reduce the notational complexity, we drop the star (*) notation. 
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Table 6.1 and Figures 6.1-6.3 assess the effects of  the three basic risk factors for a pool of  term 

policies. The tables provides values for (i) p2+ = Ry(at)/Ry, the proportion of  risk due to the interest 

environment, (ii) p 2  = Rr(D)/Rr ' the proportion of  risk due to a common disaster, (iii) p 2  = 

Ry(M)/Rr, the proportion of  risk due to mortality and (iv) p2~D = R1, (.t., D)/Ry, the proportion of  risk 

due to the interest environment and a common disaster. The tables show the effects of  n, the number of  

policies in the pool, m, the term of the policy, q, the probability of  a policyholder being affected by 

disaster and ),, the parameter controlling the expected time until disaster. 

Table 6.1, and the corresponding Figure 6.1, illustrate the impact on n and q on the risk factors. 

Here, we consider only m = 5 year term policies with the expected time until disaster equal to )- l  = 

(0.02) -l = 50 years. For policies without disaster corresponding to q = 0, we see that for most pool size, 

mortality dominates as a risk factor. It is only for the extremely large pool size, n = 10,000, that the 

common interest environment becomes an important factor for this short term policy. Interestingly, in 

the case of  complete disaster corresponding to q = 1, mortality has almost no impact as a risk factor. 

Even for moderately large values of  q, we see that the disaster component dominates the risk. Again, 

because of  the short term nature of  the policy, we see that the disaster component dominates the interest 

component. 

TABLE 6.1. Relative Importance of Risk Sources for a Pool of m = 5 Year Term 
Policies. The Expected Time to Disaster is X "t = 50 yeats. 

0.00 1 0.007 0.01 0.00 98.08 0.01 0.08 

lO 0.074 O. 12 0.00 97.97 O. 12 0.26 

50 0.371 0.62 0.00 97.49 0.62 0.58 

1(30 0.742 1.23 0.00 96.89 1.23 0.82 

10000 74.249 55.49 0.00 43.66 55.49 12.16 

0.02 1 0.009 0.02 18.30 78,23 18.65 0.09 

10 0.091 0.15 20.63 75.82 21.16 0.29 

50 0.454 0.65 29.46 66.68 30.66 0.68 

lO0 0.909 1.13 37.89 57,95 39.73 1.03 

100(30 90.851 4.21 91.83 2.15 97.76 53.68 

0.20 I 0.024 0.04 72.06 20.92 73.43 O. 14 

I0 0.240 0.19 86.25 9.41 88.05 0.66 

50 1.201 0.27 94.49 2.73 96.53 2.75 

100 2.403 0.29 96.07 1.45 98.16 5.35 

10000 240.268 0.30 97.84 0.02 99.90 518.77 

1.00 1 0.090 O. 17 98.05 0.00 1(30.00 0.26 

10 0.904 O. 17 97.99 0.00 1(30.00 2.59 

50 4.522 O. 17 97.99 0.00 100.00 12.96 

100 9.043 0.17 97.99 0.00 100.00 25.91 

10000 904.342 0.17 97.99 0.00 100.00 2591.28 
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Figure 6.2, and the corresponding Table B. 1 in the appendix, illustrate the impact on m and q 

on the risk factors. Here, we consider only n = 50 policies with the expected time until disaster equal 

to ~-1 = (0.02)-1 = 50 years. Not surprisingly, we see that as the term m increases, the importance of 

the interest environment increases. As in Figure 6.1, Figure 6.2 shows that as q increases, the importance 

of the disaster component increases. Interestingly, for moderate levels of q = (0.02), the mortality 

component does not seem to be severely affected by the term of the policy. Only when the term increases 

to a large level (m = 50) does the mortality component shrink dramatically. 

Figure 6.3, and the corresponding Table B.2 in the appendix, illustrate the impact on q and X on 

the risk factors. Here, we consider only n = 50, m = 1 year term policies. As anticipated, Figure 6.3 

shows that such a short term means that the interest component is negligible, over all values of q and k. 

It is interesting to note that the disaster component still dominates for q = 1, even in the ease when the 

time to disaster is k t = (0.002) t = 500 years! 

Section 7 Summary 

Actuaries manage insurance risks through (i) classical pooling techniques, (ii) risk transference 

techniques including reinsurance and (iii) financial risk management techniques such as hedging. These 

broad categories, and a plethora of special cases and variations, of risk management techniques exist to 

enable actuaries and other financial analysts to cope with the many sources of risk that exist in the world 

today. These risk management tools are designed to provide relief from specific sources of risk. The 

purpose of this paper is to introduce a measure that identifies the relative importance of a risk source. 

With a measure to understand the importance of a factor, the risk manager will be in a position to decide 

upon the appropriate risk management tool. 

The measure was shown to be intuitively appealing when assessing the effectiveness of basic risk 

management techniques including risk exchange, pooling and financial risk management. In particular, 

an example illustrated how a common investment environment dominates when pooling mortality risks, 

thus substantiating the common actuarial wisdom that investment dominates mortality risks. We also 

showed how catastrophe risks could be modeled and their impact assessed. Catastrophes, or common 

disasters, are similar to investment risks in that they represent factors that are common to all policies and 

hence cannot be reduced through pooling techniques. The presence of an important catastrophe risk 

requires other techniques, such as policy limitations and reinsurance. 
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Our measure of relative importance arises from both the statistics and economics literatures. The 

statistics literature addresses primarily linear risks that are not necessarily monetary. However, this 

literature provides the richest source of prior investigations on questions of relative importance. The 

economics literature provides important motivation for identifying a variable, T(X) = E (Y [ X), as the 

"source" of a factor in a risk Y, through the weakly less risky ordering. The idea argued in Section 5.2 

is that all rational decision-makers would prefer T(X') to Y and, thus, T(X) captures all the important 

information in Y that is due to X. To assess the risk of T(X), we have used the variance functional. An 

important area of future research is to examine the usefulness of other measures to summarize risk. 

Our measure of relative importance extends naturally to the multivariate situation, where several 

factors may affect a risk simultaneously. The paper discussed the importance of factor hierarchies. To 

illustrate the relative importance measure in a multivariate situation, we considered a pool of policies that 

is subject to mortality, catastrophe and a common investment environment. Here, the new measure 

substantiated our intuition of relative importance in situations reflecting different mixes of pool sizes, term 

limits, relative frequency of disaster and probability of the occurrence of disaster. 
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APPENDIX A. SECTION 6.2 CALCULATIONS 

Part 1. Calculation of  E (Y/ I 4-, D) 

For c i = 0, we have 

E (v(T + 1) I(T < m) [ 4 ,  D) = E (v(T + 1) [(T < m) I = 7 = =  v(k~ ~= ,  

Here, t I °'r = Prob (T = k) for a life aged x. 

For  c i = 1, we consider E (v(min(T, Z) + 1) I(min(T, Z) < m) I • D). If  Z > m, this reduces to the case of 
c i = 0. If Z < m, this reduce.s to: 

E (v(min(T, Z) + 1) I + ,  o) = ~k=l  v(k) k-[ I qx + •x v ( Z + [ ) .  (A. 1) 

Putting these calculations together, we have: 

E (Ys I 4 ,  o )  = (I(q = 0) + I(q = l)t(z  > m)) ( ~ = t  v(k) k t I q~) (A,2) 

+ I(c i = I)I(Z < m) (L"~k=l v(k) k-I (~ + ZPx v(Z+l)) 

Part 2. Calculation of E (Yi [ 4-) 
Using the law of  iterated expectations, we have E (Yt ] 4 ) = E ( E (It/ I ~ ,  o )  I 4) Thns,  m equation (A.2), 
the difficult term to evaluate correslxmds to the case where q = ! aad Z < in. Thus, we consider 

z 
E ( t ( Z  < m ) ( ~  v(k)k . ,  i q  ~ + d ~ v ( Z + t ) )  I 4") 

t t - t  

= (1-e -x) e -~" ( ~  v(k) k t t q,  + ,Ix v(s+ D) 
==0 ~I 

with Prob(Z = s) = ( l -e  "x) • -M. Interchanging the order of  summation yields 

(l'¢'k) e'krsPx v(s+l) + (l-cO') E e'~rv(k) t'l lqx 

z=O a=l k-I 

m-I m-I 
= 0 ~x) ex(t"> k-,P~ ,,(k) + O-e x) ~ ~ e -x" v(k) k-t i~ 

l~l l~l J'~ 

~_| 
= (e~-l) e'~ k.lP, v(t) + ~ v(t) k-t I q, (e'~- e-x"*) 

= ~ v(k) ft(k, m), 
kmt 

where f l (k,  m) = (ex-t)  e -xk k-lPx + k-I I qx ( e';~ " e'X~) • 
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where 

Thus, from equation (A.2) and the notation q = Prob(c = 1), we have 

E(Y~ I 4-) = ( 1 - q  + q e  "hnt) ~ v(k) k_llqx + q ~ v(k) fl(k,m) 
t-1 k=l 

= ~ v(k) f2(k, m), 
k=1 

(A.3) 

f2(k, m) = (I - q + q e ";~'n) k-I I ~ + q ft(k' m) 

= (i - q) k-t 1% + q e-~ ((eX-l) k-lPx + k-! I q" ) " (A.4) 

Part 3. Calculation of E (Yi D) 

Again, using the law of iterated expectations, we have E (Yt ] D) = E ( E (Yi I # ,  D) ] D). For the 
MA(1) model, from Proposition I of Frees (1990), we have E v(k) = C 1 exp(-k 81). Thus, from equation (A.2), 
we have 

E ( Y  t [ D) = C l ( ( I ( c  t =  O) + l(q = I)I(Z > m))(L~t=lexp(-kSl)k_ t lqx)  

+ I(q -~ I)I(Z < m) (I;kZ, t exp(-k/~1) k-1 I qx + zPx exp(-(Z+ l)~l) ) ) 

= CI ( L'~k=l exp('k 4~1) t-I Iqx (A.5) 

+ I(q = x)I(z < m) ( ~ x  exp(-(Z+ t)* 0 - ~T=z+l exp(-k ~1) k-t I q" ) )" 

Part 4. Calculation of  E (Y/  ] M )  

From equation (6.6), we have 

E (I',' I M) = C t ( t ( r  t < m) (1 - q) exp(-(Tt+l)~ 0 + q E (exp(-(min(T v Z)+ t )60I (Z<m)  I Ti) ) 

m-I 
= C t (I(T/ < m) ( I  - q) exp(-(Tt+l)81) + q(1-e  -k) ~ exp(-ks-(min(To s)+ l)~t) ). (A.6) 

m-0 

Part 5. Calculation of E Y/ 

From equation (A.3), we have immediately 

E Y/ = C 1 ~ exp(-k 81) f2(k, at), (A.7) 
t.=l 

where f2 is defined in equation (A.4). 
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Part 6. Calculation of Ry ( 4 : )  

For the MA(I) model, from Proposition 2 of Froes (1990), we have E v(k) 2 = C 2 exp(-k cq) and, for s 
< r, E v(s)v(r) = C 3 exp(-s cq - (r-s)~l). Using this and equation (A.3) yields 

Rr(4- ) = Var( E(YI "~) ) = V~  (n ~ v(k) f2(k, m) ) 

k-! 

r-! 
= C2 n2 ~ exp(-k ~t) f2( k, m) 2 + 2C3 n2 ~ E exp(-s oq-(r-s)$1)f2(s , m)f2(r, m) .  

k*l v-2 s-I 

-( c: ~ exp~-t ~t) f2( t, m) )2. 
k~t 

Part 7. Calculation of Ry (D)  

To calculate Ry (D) = Vsr( E(Y [ D) ), we first note from equation (A.5) that E(Y~ I D) still depends on 
i. Thus, we use the law of total variation to isolate the conunon disaster and the succumbing to disaster that is 
individual-specific, as follows. 

First, using equation (A.5), denote the conditional expectation 

E ( r  I D)  = C~ ( ~ A~ ÷ ~ .  Xfct ~ l)f3(Z,m) ) m 

J*l 

Here, A] = L'~,= l exp(-k 5]) ~-1 I q~ is the pure premium for an m-year term policy at ~1 force o f  mter~t  and 

= I(s < m) ( sPx exp(-(s+ 1~1 ) - ~ exp(-k 51) t-I 1% ) f3fs,m) 
k,,#+l 

Now, with the law of total variation, we have 

Rr(D ) = Vat (E( r  I D ) )  ~ V ~ E ( E ( Y I D )  IZ)) + E ( V , ~ E ( Y I D )  IZ)) .  

The first term on the right-hand side of equation (A.9) is 

Vat'( E( E(Y [ D) I z)) = ~ v ~  E( n A t + ~ I(q = l)f3(Z,m)) I Z ) 

(A.S) 

(A.9) 

= ~ v ~  n a~ + n q f3Cz.,.) ) = ~ F q2 v ~  f3(Z,m) ). 
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The second term on the right-hand side of equation (A.9) is 

E (Var (E(YID)  IZ))  = C~tE(Var(nA t + ~ I ( Q  = 1)f3(Z,m ) IZ) )  
J-I 

= ~1 n q (1 - q) E(f3(Z,m) 2 ). 

Thus, 

Rr(D) = ~ n q ( ,, q V ~  h(Z,") ) + (l - q) E( f3(Z,m): ) ). (A. 1o) 

Part 8. Calculation of R y  (M) 

From equation (A.6), we have 

Ry(M) = Vat( E(Y I M) ) = C12 n Vat( fa(T,m,/it) ), 

where 
m-I 

f4(t,m,fl) = (i-q) l(t<m) exp(-(t+ l)ff) + q (1-~ O') E exp(-)~s-(min(t, s)+ 1)~). (A.II) 

Part 9. Calculat ion o f  R y  ( 4 - ,  D )  

Similar to equation (A.5), from equation (A.2) we have 

E(Y I 6,D) =nL~k= lv(k) k_llqr + ~ I ( Q  = I)I(Z< . ) ( z p x v ( Z + l ) -  ~ v(k) k . l l% ) 
l - l  l=Z, , I  

(A. t2) 

Similar to equation (A.9), we condition on if, Z and use the law of total variation. The first term is 

E(Var(E(YI 4 . ,D)[  4 . ,Z))  = nq(1-q) EI(Z < m)(,zpxv(Z+l)- ~ v(k) t . l lCk)2 .  
k-Z+I 

= nq(1-.q)(1-e -x) ~ e-XJE (apxv(s+l) - ~ v(k) k-l[ q.x)2" 
l'~ l'vl+l 

a-.O k ,~+l  k..m*| 
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= nq( l -q ) (1 -e  "k) ~ e  "M ( (  C2,px2 ¢xP(-($+l)CXl) + C 2 ~ exp('(k+l)al)(k-I ]qx )2 
a-O k '~+ l  

+ 2 C  3 ~ ~ exp(-(j+l)~l-(k-j)61))j_llqxk.,l ~ (A.13) 
j.,#*l lk,-a- l.~.J 

- 2 C 2 ~ x ,  I ~  ¢xp(-(s+ l)al) - 2 C-- 3 ,Px ~ k-| I°~ exp(-(s+ l)a I - (k-(s+ 1))81) ) .  

The second term is Var( E( E(Y I "~, D) I 4 ,  Z )) = Vat'( E(r  I ~,  z) ) = E( E(r  I 4 ,  z) )2_ (E })2. Now, E 
Y can be determined directly from (A.7). From equation (A.2), we have 

E(Yi I "/',Z) = ( 1 - q  + qI(Z ~ m)) ( ~ - l  v(k) k-l lq~) 

+ qZ(Z < m) (Ez=l v(k)k. 1 I% + zPx v(Z+ I)) 

/c-Z+l 

Thus, for the first part, we have 

(A. 14) 

E( E(YI 4 ,  Z) )2 = n2 E( ~ v(k) k-t I q~ + q I(Z < m) ( ~u x v(Z+l) - ~ v(k) ~.1 i o~ ) )2 
k-I k-Z+l 

= ,,2 E( ~ v(k) k-~ t ,02 + F q2 E IfZ < m) ( zP~ v(Z+ 1) - ~ v(k) k - t  I q~ )2 
I~-I  k . Z * l  

÷ 2n2E( ~v (k )  k.ltqxqI(Z <m)(zPxV(Z÷l) - ~ v(k )~_ l lqz ) ) .  (A.15) 
k~l k-Z*l 

The second term on the right-hand side of equat/on (A.15) can be determined directly from equation (A. 13). The 
first term on the right-hand side of equation (A. 15) can be expressed a s  

,2 E( ~ v(k) k-~ I '02 
k=l 

(A. 16) 

= n2( ~ C 2exp(-kal) k . l lqx2+ 2 C 3 ~ ~ exp(-soLl-(r-s)61)s.llqzr.ljqx). 
k=I #-I  r - I , l< r  
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The third term on the right-hand side of equation (A.15) can be expressed as 

2 n 2 q  (l-e "?') ~ e "xs E( ~ v(k)k.l [ o~ (sPx v(s+ 1)- ~ V(])j-I ] qx ) )  
i=0 k-I j-a'÷l 

m-I 

k=l j ' l  k't .I,,0 j'a*l 

=2n2q (1-¢'k) (~ ~ ~ v(k) ~-)~J")v(/~ t-I , qx j-IPx ~ ~ v(k)k-| ' q~ ~ J-1 
k=l j=l lk~l jol a-O 

k.l j . l  k=l j- l  

= 2 n 2 q  ( E  ~ ~ v(k)e "~q v(/) k.l [ o~ ((e~'-l)j.lpx+j_l [ q x ) -  E( ~ v(k) k-t[ qx) 2 )" (A.17) 
/ml j=l k=l 

The second term on the right-hand side of (A. 17) is expressed by (A. 16). The first term on the right-hand side of 
(A. 17) can be expressed as 

2n 2 qE ~ ~-'~ v(k) e';Vv(J')k.llqx((e~'-l)j_lPx+k.l Io~. ) 
k-I j - I  

= 2 ~ q ( C 2 ~ exp(-kal)exp(-k&) k-I I q~ ((eX'l)k-IP~÷k'l I q~ 
t=l 

+ C-~ ~-e ~, exp(-s°tl-(r's)~l)exp('s~k)r'llqz((eX-1)"lPx+"ll°~) 
a=l r.l.w¢.r 

#'I e-l,~'r 

Part  10. Calcula t ion o f  R y  

We condition on 4-, Z and use the law of total variation to get 

R r = W r Y =  E(Var(g I -~ ,Z))  + Var(E(Y I 4 - , z ) )  

where Var( E(Y ] 4 ,  Z) ) was computed in Part 9. For the first term on the right-hand side, by the independence 
we have 

E(v~frl  4 , z ) )  = n E ( v ~  I ~ ,z ) )  (A. 18) 
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To calculate this, first note that 

E( V ~ ( Y  l I ~ ,  Z) ) = E( E(~2 I 4", Z) - fE(~ I 4", Z)) 2 ) • (A.19) 

Equation (A.15) provides an expression for E((E(Y~ [ 4., Z))2). From equation (6.6), we have 

E(r~ 2 I 4", z)  = Eft(r~<m)(v(~+ 1)I(q=O) + v(mia(r~,Z)+ ~)I(Z<m)t(q= l)) 2 I 4", Z) 

= E( I(T, <m) (v(~+ 1)2I(c,,=0) + v(mm(Ti,Z)+ l)2l(Z<m)l(q= 1)) I 4", Z) 

= E ( I ( ~ < r n )  (v(~+l)2(1-q) + v(mm(r~,z)+l)21(z<m)q) I 4", z) 
Thus, 

E( E(r j  2 I 4", Z) ) = ( l -q)  E f~(r~<m)(v(r~+ 1) 2) + q E( v (min( r , ,Z )+  I )2 [ (Z<m)  ) 

= (l-q) q exp(-k~|)k-l l% + qC2( l ' e 'x )  E Eexl~O~'-(min(T~'s)+l)eq)) " 
t=l s,,O 

= C 2 E h ( r t ,m ,a t )  

where f4 is defined in equation (A. 11). This, (A. 18) and (A. 19), is sufficient for the calculation o f  E( Var(Y I 4", 
Z) ) and hence R],. 
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APPENDIX B. Section 6.2 Tables 

TABLE B. 1 Relative Importance of  Risk Sources for a Pool of  n = 5 0  Term 
Policies. The Expected Time to Disaster is )-1 = 50 years. 

m q E Y p2 p~ p2yM 0% RyI/2 

1 0.00 0.073 0.04 0.00 99.41 0.04 0.27 

0,02 0.092 0.04 33.89 64.21 34.12 0.32 

0.20 0,262 0.02 96.62 2.26 97.17 1.41 

3 0.00 0.221 0.24 0.00 98.53 0.24 0.45 

0.02 0.274 0.25 31.64 65.56 32.28 0.54 

0.20 0.752 0.11 95,58 2.48 96.86 2.28 

5 0.00 0,371 0.62 0.00 97.49 0.62 0.58 

0.02 0.454 0.65 29.46 66.68 30.66 0.68 

0.20 1,201 0.27 94.49 2.73 96.53 2.75 

10 0.00 0.768 2,59 0.00 93,97 2.59 0.80 

0.02 0,910 2.67 24.36 68,29 27.82 0.91 

0.20 2.187 1.06 91.47 3.43 95.59 3.34 

20 0.00 1,718 13.29 0.00 80.94 13.29 1.13 

0.02 1.928 13.21 15.62 64,48 29.65 1.24 

0.20 3,825 4.95 83.76 5.09 93,35 3.63 

50 0,00 6.654 84.32 0.00 13.47 84.32 3.04 

0.02 6.875 83.26 1.81 12.61 85.14 3.10 

0,20 8.861 52.45 39.72 4.78 93.71 4.28 

TABLE B.2 Relative Importance of  Risk Sourc, e8 for a Pool o f  n=50, 
m = 1 Year Terra Policies. 

0 .00 0.002 0.073 0.04 0.(20 99.41 0.04 0.27 

0.020 0.073 0.04 0.00 99.41 0.04 0.27 

O. 100 0.073 0.04 0.00 99.41 0.04 0.27 

0.02 0.002 0.075 0.04 4.97 92.55 5.04 0.27 

0 .020 0.092 0.04 33.89 64.21 34.12 0 .32 

0 .100 0.164 0.06 70.08 28.73 70.53 0 .48 

0.20 0.002 0.092 0.02 77.43 17.61 77.87 0 .50  

0.020 0.262 0.02 96.62 2.26 97.17 1.41 

0.100 0.982 0.06 98.75 0.52 99.35 2.94 

1.00 0.002 O. 169 0.00 99.45 0.00 100.00 2.14 

0 .020 1.019 0.01 99.44 0.00 100.00 6.67 

0 .100 4.617 0.06 99.40 0.00 100.00 14.05 
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