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Abstract 

The data on cash-flow-testing in Robbins, Cox, and Phillips (1997) was given a 
parametric fit by the authors, and the confidence regions of various models were 
studied in a discussion by Chart (1998). In this paper, we compare percentile estimates 
by parametric and non-parametric methods. 
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1 In t roduc t ion  

Robbins, Cox, and Phillips (1997) asked the question: Given a large number of cash- 
flow-testing scenarios resulting in only a very small number of scenarios landing in 
the adverse area (ruin tail), how can the results of the entire set of observations be 
used to better estimate the area under the ruin tail? They fit parametric models to the 
500 point data in the paper. Among these parametric models, Chan (1998) chose the 
Gamma and the DB2 models to work through the confidence regions of the parametric 
space to obtain the confidence bands of the percentiles. 

We give a summary of the above by three figures. Figure 1 is a histogram of the 500 
point data, Figure 2 shows the fitted Gamma models' distribution functions, and 
Figure 3 shows the fitted DB2 models' distribution functions. The 95% confidence 
band of the 99th percentile, for example, is read off by a horizontal line through 0.99 
in Figures 2 or 3. 
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Figure 2 

.F(xla, t3) with (a, 13) running through its 95% confidence region 
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Figure 3 

F(xla, b, p, q) with (a, b, p, q) runnin0 through its 95% confidence region 
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2. N o n - p a r a m e t r i c  m e t h o d  

We take 1000 bootstrap replications of the 99th percentile. The same is repeated five 
more times to produce Figure 4. Each of  the six tells that I(100 replications captured 
the features of the 99th percentile. Figures 5, 6, and 7 do the same for the 95th, the 
5th, and the 1st percentiles 

The non-parametr ic  method here do not take advantage of tile entire set of 
observations to eslimatc the tail as was done in Ihe parametric mclhod before. As we 
shall see later, it uses obscr',,ations near the tail to estimate the tail. The 99th percentile 
and the 95th percentile appear more unstable than the 1st and the 5th. This is a direct 
consequence  of the nature of the 500 point data. The lowest 25 points thin out nicely 
while the highest  25 points spread across a wide range. While the parametric 
percentiles (Figures 2 and 3) show the difference between the extreme low and the 
extreme high end, it is less sensitive to local tail behaviour as the non-parametric 
percentiles {.Figures 4 to 7!. If the percentile of intcrest is on one end of the 
distribution, such as the Vatue at Risk, the re,n-parametric method given here appears 
to be more responsive to observations near that end. 
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