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A b s t r a c t  

The article provides a complete and rigorous analysis based on calculus for 
the foUowing topics in the theory of compound interest. 
i) the monotone convergence properties of the rates of interest and discount 
payable m times per interest conversion period in relation to the force of inter- 
est; 
ii)the monotone convergence properties of the present value and accumulated 
value of an ordinary annuity with m payments per interest conversion period 
in relation to those of a continuously paying ordinary annuity; 
iii) a method for approximating the present value of an ordinary annuity, or 
an increasing annuity with rn payments per interest conversion period, by ac- 
cumulating, at compound interest for the fraction (m - l ) /2m of an interest 
conversion period, the present value of the same type of annuity with one pay- 
ment per interest conversion period. 

The presentation is based on the concept of the derivative and the deft- 
nite integral of the accumulation function for compound interest and can be 
visualized graphically. The exposition is largely self-contalned. 

The purpose of this article is to provide a rigorous yet e lementary analysis  of the 
l imiting properties for: i) cer ta in  rates of interest and discount, payable several t imes 
per  interest  conversion period; ii) the present value and accumlflated value of related 
ordinary annuit ies immedia te  or due, which involve several payments  pe r  interest  
conversion period. In addi t ion,  a me thod  is given for approximat ing the  present 
value of an ordinary annui ty  or an increasing annui ty  with multiple payments  per  
interest  conversion period by the  present  value of an annui ty  of the same type  with 
one payment  per interest  conversion period. It provides a more complete t r e a tmen t  
of this  impor tan t  topic t h a n  t h a t  found in the s t andard  texts on compound  interest  
and  annuities. The approach of presentat ion is based on the  concept of derivative 
and  definite integral of the exponent ia l  accumulat ion function and is easily visualized 
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geometrically. [t has been used by the author for dealing with this topic in teaching an 
intermediate level course on the mathematics  of finance to actuarial science students 
that  has calculus as prerequisite. The  exposition is largely self contained for the 
benefit of the reader who is only slightly acquainted with the theory of compound 
interest as developed in Broverman [1] or Kellison [3]. 

"~Vhen money accumulates at compound interest, the effective rate of interest i and 
the effective rate of discount d per interest conversion period, usually per year, are 
constant over time. Furthermore, i measures the interest earned per unit of money 
invested at the beginning of each period, whereas d measures the interest earned 
per  unit of accumulated value at the end of each period, and (1 + i)(1 - d) = 1. 
The  nominal rates of interest i(m} and discount d ('~} payable m times per interest 
conversion period are defined by the equations 

(1 + i(m)/m)"~ = 1 + i, (1 - d(")/m)" = 1 - d (1) 

This makes i(m)/m the effective rate of interest and d(m)/m the effective rate of 
discount per mth of an interest conversion period. Note i O) = i and d O) = d. Under 
compound interest, the accumulation function for a $1 at the end of time t is given 
by a(t)  = (1 + i )  t . On the other hand, the present value of a $1 due at the end of 
t years is given by the reciprocal of a(t),  the  present value function or discounting 
factor for year t. The force of interest ~5 = a' ( t ) /a(g)  = In(1 + i) is constant over time, 
and it represents the slope a'(0) of the tangent to the graph of a(t) at t = 0, as shown 
in the figure below. 

a ~  
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T h e o r e m  1 
(a) i("*) is a decreasing sequence that converges to the force o/interest 5 as m increases 
indefinitely. 
(b) d("*) is an increasing sequence that converges to the force o/ in teres t  5 as rn 
increases indefinitely. 
(c) d < d (2} ... < d( ' )  ... < 5 < ... i {'~) ... < i {2) < i. 

P roof .  Consider the accumulation function a(t) = (1 + i) t. This is the exponential 
function whose graph is shown in the figure above. The graph of a(t) is convex, i.e., 
concave up, because a"(t) = ln2(1 + i)(1 + i) t > 0 for i > - 1 .  From equation (1) it 
follows that 

i {m) = m[(1 + i) '/'* - 1]. 

Thus, i ('~) represents the slope of the chord, shown in the figure above which joins 
the point (1/m, a(1/m))  to the point (0,1) on the graph of a(t). Therefore, i (=~ is 
a decreasing sequence which converges to I,n(1 + i), the slope a'(0) of a(t) at t = 0. 
This proves (a). The proof for (b) is similar. From equation (1) it follows that 

d <m> = rai l  - (1 - d )  '/m] = m[1 - (1 + 0 - ' / %  

Now, d (m) represents the slope of the chord, which joins the point ( - 1 / m ,  a ( - i / m ) )  
to the point (0,1) on the graph of a(t) and, consequently, it is an increasing sequence 
whose limit is In(1 + i), the slope a'(0) of a(t) at t = 0. Finally, property (c) follows 
directly from (a) and (b). 

We now consider an annuity immediate that pays $(1/m) at the end of each 
ruth of an interest conversion period for n periods. This is equivalent to an annuity 
immediate of mn  payments of $(1/m), where the effective rate of interest and discotmt 
per payment period are i(m)/m and d(m)/m, respectively. Therefore, the formulas for 
its present value a~ "~) and its accumulated value s~ 'n) are obtained from those for an 
ordinary annuity an  and sm on replacing n by nm, i by i('n)/m, and d by d(~I/m, 
respectively. Thus 

a ~ ) =  t t - ( l + i ( ~ V m )  -~"  1 - ( 1 + ~ ) - °  i 
m i ( " ) l ~  = i ( " )  - i-C-~a~-7 (2) 

s~m~ = 1 (1 + ic"~ / m )  m" - t (1 + i )"  - t i 
m m i(=)/rn = i(=) = / - ~ s m  (3) 

Similarly, if each payment of $(1/m) is made at the beginning of each mth of an 
interest conversion period for n periods, then the corresponding formulas for such an 
annui ty  due are: 
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5~qm ) 1 1 - ( l + i ( ' ~ ) / m )  ' ~  1 - ( 1  + ~ ) - "  d 
= .-~ d( '~) /m - d ( " ) / m  - a(,~)a.n (4) 

~(.,) = 1 (1 + i ( ' / m )  ~ "  - 1 (1 + i )" - 1 d 
m d ('~) - d(m) = d(~i:4~ (5) 

Finally we recall the formulas for the present value d~ and accumulated value sm 
of an annuity that  pays continuously at the rate of a $1 per interest conversion period 
for n periods. They are 

£ " ( 1  i ) - ' d t  = 1 - (1 + i ) -"  
5,v = + 6 (6) 

[ " ( 1  +i )*dt  - (1 + i ) " -  1 

For a more extensive discussion of the theory of annuities we refer the reader to 
Broverman [1], chapter 2 or Kellison [4}, chapters 3 and 4. The lhmt properties for 
these values listed in Theorem 2 below are now immediate consequences of those for 
the rates /(m) and d (m) established in Theorem 1 and the formulas in equations (2) 
through (7). 

T h e o r e m  2 
( a j  a ~  "~) a n d  s (m) are  both i n c r e a s i n g  s e q u e n c e s  t h a t  converge  to am a n d  - ~  respec-  

t ive ly ,  as  m i n c r e a s e s  inde f in i t e l y .  
.. (,,~) ..(,,,) 

~b) a m a n d  s ~  are  both decreas ing  s e q u e n c e s  tha t  co nverge  to ~ a n d  -5~, respec-  

l ive ly ,  as m i n c r e a s e s  inde f in i t e l y .  

( c )  ~ < 4 ~  ) .. .  < 4 ~ ' )  .. .  < ~ ... < a~m) ...  < a g )  < 
_(2) _(,~) ..(m) ..(2) 

(d )  s ~  < ~ ... < ~ ~  ... < ~ ... < s ~  ... < ~ < ~ .  

There is an alternative method for establishing Theorem 2 that is independent of 
the proof of Theorem 1. As a result Theorem 1 is derivable from Theorem 2 and the 
formulas given by equations (2) and (4). This approach is based on the observation 

that each pair ^(m) ~(,~), and a~ m), /i~ ")  can be interpreted as two Riemann sums a n 7  

that  represent a lower and an upper approximation for the area under the graph of 
the exponential functions a ( t )  and 1 / a ( t ) ,  respectively, from t = 0 to t = n. For a 
more extensive discussion of Riemann sums and the concept of the definite integral 
we refer the reader to Thomas and Finney [5]. 

From the definition of .(m) .:(,~) and the fact that  the effective accumulation Sn- 1 ~ S ~  , 

factor for each ru th  of an interest conversion period is constant, namely (1 + i)  l /m ,  

or, equivalently, the effective rate of interest per r u t h  of an interest conversion period 
is (1 + i)l/m _ 1, we have 

t n n  r ~  

&~>= Z (  1 + i)(~_,)/~ 1 =(~> • -m ' ""~ = Y : 0  + i)  ~ / ~  _1 
r n  

k = l  k = l  
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s~ m) and ~m"(m) represent the lower and upper Riemann sums for the definite integral 
~.~ of a(t)  over the interval [0, n], as shown in figure 1 and 2 above. These Riemann 
sums are based on the partit ion {0= 1 / m ,  2 / m  .... , m n / m  = n} of the interval, where 
the m n  division points are equidistant with a spacing equal to 1 / m  which decreases 
with m increasing. 

Thus s (m) is the total  area of the rectangular regions in figure 1 that  are included 

below the graph of a(t),  whereas b'm='(m) is the total area of the rectangular regions in 

figure 2 whose union includes the area under the graph of a(t) .  Therefore, Am) is ~n-'l 

an increasing sequence, sm':('~) is a decreasing sequence and, as m increases indefinitely, 
both converge to the area Sm under the graph of a(t )  from t = 0 to t = n. This 
proves property (d) and the second half of (a) and (b) of Theorem 2. A similar 
argument, when applied to the function 1/a( t ) ,  yields property (c) and the rest of 
these properties. 

An advantage of the second technique is that it can be used to obtain a better 
estimate for the rate of convergence of the sequences o~tim) and o~(m), a~ m) a n d / i ~  m), 
i ('~) and d (m) to their corresponding limits. 

T h e o r e m  3 
(m) i and ~(m) _ g~ < ~ (a )  -~.7 -- s ~  < ~ s ~  d 

1 1_ 1 1 ~ 1 1 (c) ~ - m < , -~  < ~ < < ~ +-,~ 

P r o o f .  To prove (a) we observe that the total excess in area between the rectan- 
^(m) and =(m) gular regions, whose respective areas are ~ ~m as shown in figure la  and lb, 

is larger than that by which each differs from the entire area under the graph of a(t)  
f r o m t  = 0 t o t  = n. That  is 

..(m) ~(m) _(,~) 

1 ~qn  

Z [(1 + i) (1 + i)( 
m k = l  

( 1 + i ) - - 1  i d..  
- -  - -  8 n - - 1  ~ - ~  - -  8 n - - I  

m '17], m 

Note that  the sum telescopes to ((1 + z)'~ - 1)/m, reflecting the fact that the two 
annuities have identical payments except those at t ime n and at t ime zero. (b) follows 
from (a) by discounting the inequalities in (b) or from a similar argument applied to 
the area under the graph of 1/a(t) .  (c) follows upon substi tut ing the formulas given 
by equations (3), (5) and (7) in (a) and simplifying the resulting expressions. 
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Theorem 4 
(a) (1 + 0 - ~  < , -~  < (1 + ~-~i )  
(b) (1 - d ) ' ~  "l _< ~ <_ (1 _ T~_d ) m - I  

(c) am(1 + i ) ' 3  "£/~ _< a~  "~) < am(1 + " - l i ~  
- -  2 m  J 

(d) fi~(1 - d ) ~  < ii~ '~) < am(1 - r e - ' d )  
- -  - -  2 r n  

• " - '  ( l a )~  ' ') <<_ (/a).~(1 + '~-'i) (e) ( s a ) ~ ( 1  +,)-~--~ _< ~,,, . 

P r o o f .  For the proof  of the lower bound  for i / i  (m) in (a) we use the formula  

( q m _  1 ) / ( q -  1) = 1 +  q + . . .  + q '~- '  

for the sum of finite geometr ic  series wi th  q = (1 + i) l / ' ,  and the classical inequal i ty  
tha t  relates the geometr ic  mean of a finite set of posi t ive  real numbers  q0, ql,-.-,  qm-1 
to their  a r i thmet ic  mean,  where qj = q/, j = 0, 1, ..., rn - 1. T h a t  is 

~lqoql,...,q~-I <- l (qo + qi + " "  + q,~-l) 
m 

Thus  we have 
i 1 ((1 + i) , /m)m _ 1 

i - ~ = r n  (1 + i ) l / m _  1 

1 [i + (1 + i) l i "  + ((1 + i ) ' i = )  ' ] = - + . . .  + ((1 + i ) ' ~ ' ) " - '  
m 

>_ ~/((1 + i),/,,,)i+,+...+(,,~-,) = (1 + i) ~2~-~ ij/  = (1 +z)T~-~'-i 

• m - I  

= (1 + ,)-~-~ 
For j = 1 ,2 , . . .m  - 1 we have 

[(1 + ~/,~ m - 1] 

Hence ( l + i )  j Im< 1+ 2 i 
r n  

i 

= i Sd(i + x)Jl~-ldx 
i 

< i i _ 7 f ~ l d x = l  

= ~, [i + (1 + i ) ' / "  + (1 + 0~ / "  + ...(1 + O<m-')/"] 

. [  < ± l + ( l + - ) + ( i + - ~ ) + . . . ( l + c )  

= -'~ [m + ~(i + 2 + ..(m - i))] 

-mira-l) m-I i = l + i  2"--~-¢~ - - - - I+  2,- 
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The proof for (b) is identical with that for (a), except that in this case q = (1 - d )  ~/m. 
Finally (c), (d) and (e) follow immediately from (a) and (b), since 

and 

a~.. ~ i ..(,,,) d 
= / - ~ a m  a~  = ~ /im 

i 

for an increasing annuity. This completes the proof of Theorem 4. 
The usual approximation for a~ "*) in terms of an found in the standard textbooks 

is given by 
m - 1  a~ m) " - a m + - ~ - m  ( 1 -  ( l + i )  " ) =  

rn - I i~ . 
an (1 + 2m / (8) 

This is the upper bound for a~ "q in Theorem 4(c) and it is tantamount to approxi- 

mating a~ "~) by accumLdating the present value 0,~7, at simple interest for the fraction 
,,,-1 of an interest conversion period. On the other hand, the lower bound for a~ ") in 

2 m  

Theorem 4(c) provides an approximation for a~ 'n) by accumulating the present value 
am, at compound interest for the fraction ,n I of an interest conversion period. That 
is 

4~ m~ - o~(1 + i ) ~  (9) 

However, an examination of the interest tables show that the lower bound 
(1 + i)(m- 1):'2,~ provides an approximation for i / i  {m), which is far more accurate than 

m - |  • 
that by the upper botmd 1 + T~-~ z, since it agrees to at least three decimal places for 
rates between lC70 and 12~. Hence, equation (9) provides a better approximation for 
a~ "0 than equation (8). 

The same property is also valid for the lower bounds in (d) and (e) which provide 
better approximations than the corresponding upper bounds for 

ah ~) and (I~)~ ~) 

On taking limits in Theorem 4(a) and (b), we get 

( 1+ i )~  _< i -< 1+½i  (10) 

(~-~)~ < ~ < 1 - ~ a .  (11) 
As before, a glance at the interest tables confirms that the lower hounds in (10), 
and (11) provide better approximations for i/(5 and  d /~  than the upper bounds. 
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Consequently, the time it takes for money to double at compound interest can be 
approximated as follows 

In2 ln2 i .6931 
- - -  ~ / 1  + i .  

In(1 + i) = i ~ i 

The latter is a more accurate formula than the rule of 72 used in Kellison [4], 
because it agrees with the exact time to almost two decimal places for interest rates 
between 1% and 25~. 

~+~ i.e., the force of The  approximation ~ -x /1  + i, is equivalent to ~ - v / ~  < 2 , 
interest is approximately the geometric mean of the rates of interest and discount. 

Finally, we note that on multiplying the inequalities (a) and (b) in Theorem 4, 
we obtain the following inequality, 

i('~)d ('~) <_ id. 

This yields that  (5 2 < id on letting m go to infinity. 
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