ACTUARIAL RESEARCH CLEARING HOUSE 1997 VOL. 1
 An Old-Age Social Security Program
 for
 Bangladesh

by
John A. Beekman
Departme nt of Mathemarical Sciences
Ball State University
Muncie, IN 47306 , USA

Md. Humayun Kabir Institute of Statistica! Research and Training University of Dhakah Dhaka - 1000, Bangladesh

I. Introduction

The purpose of this paper is to describe a possible Old-Age Social Security Program for Bangladesh, with financial projections through the year 2025. The United Nations sponsored report (Kabir, 1994) has as its number one recommendation: "Government should give serious consideration to introducing a national welfare pension programme to ensure income security for the elderly. Such an effort will contribute significantly to removing the great resistance to family planning arising mainly from the fear of old age income insecurity. Efforts should be made to institutionalize income security in old age." (loc. cit., p. 49). Actuaria! projections for the cost of a national social security program are needed to justify the inauguration and maintenance of such a financial protection system. The reference (Andrews-Beekman, 1987) discusses such projections. This paper and proposed program relate to old-age income protection. and not to a survivor, and disability social insurance program. Recently Cecil J. Nesbitt and others have developed models to calculate reserve funds for a social insurance program (Nesbitt, 1991; Nesbitt, Messner, Robertson, 1993; Nesbitt, Cohen, Gallers, Houghton, Myler, Weiss, 1994; Nesbitt. Rosenberg, Berger, Levinsky, Nerdrum, O’Donnell, Samaniego, Trendel, 1995; Nesbitt, Nerdrum, Clark, 1996). Those models will prove helpful in our development.

Assume that each citizen of Bangladesh aged 60 and higher will receive x units of money at the beginning of each month that he (she) is alive. The present value of the cest to provide that benefil for the year k would be (approximately) $\sum_{\mathrm{y}=60}^{\infty} 1 . \quad 12 \times \mathrm{a} \quad \mathrm{ili}$, where the
demographic function

$$
\begin{aligned}
\mathrm{L}^{k} & =\int_{0}^{1} e^{k} \mathrm{y}+\mathrm{t}
\end{aligned} \mathrm{dt} \text { } \begin{aligned}
& \mathrm{y}^{k} \\
&=l^{y+1 / 2}
\end{aligned}
$$

$=$ Average number of recipients (aged y last birthday) of monthly
benefits during the year \mathbf{k}; and the annuity function of \mathbf{x} per month for one year

for an effective annual rate of interest i for the year ($k, k+1$).
k
In the notation of (Nesbitt et al, 1995; Nesbitt, Nerdrum, Clark, 1996),

Thus, 0 represents the present value (as of the beginning of year k) of the projected monetary k outgo for the year k.

Assume that through a combination of employee. employer, and national government contributions, for each citizen of Bangladesh aged 20 through $59, \forall \mathrm{x}$ units of money, $0<\theta<$ 1. will be deposited at the beginning of each month that he (she) is alive. The present value of the contributions during the year k would be (approximately)

$$
\begin{aligned}
& 59 \text { k .. (12) } \\
& \Sigma \text { L } 12 \theta \times \mathrm{a} \\
& \mathrm{y}=20 \quad \mathrm{y} \quad \overline{1} \mathrm{i} \\
& \text { k }
\end{aligned}
$$

Let us now use the notation and ideas of the last two cited papers. If 1 is the required n k income in year k , excluding interest, to maintain n -year roll-forward reserves, and it is elected to maintain one-year roll-forward reserves, then

$$
\begin{equation*}
\frac{I}{1 k}=\sum_{y=20}^{59} \mathrm{~L}_{\mathrm{y}}^{\mathrm{k}} \underset{\mathrm{k}}{12(, \theta \mathrm{x}) \mathrm{a}_{\mathrm{T}} \mathrm{i}_{\mathrm{k}}} . \tag{2.2}
\end{equation*}
$$

By Figure 2 and explanation of (Nesbitt, Nerdrum, Clark, 1996),

$$
\begin{equation*}
\underset{1 k}{I}=0(1+i)^{-1} . \tag{2.3}
\end{equation*}
$$

Therefore, the contribution rate for one-year roll-forward reserves

From Section 4 of (Nesbitt, Nerdrum, Clark, 1996),
$\mathrm{A}=$ Amount of reserve fund required at the beginning of calendar year k under n k n-year roll-forward reserves.

Thus, the one year roll-forward reserves

$$
{ }_{1 k}^{A}=0
$$

and the two year roll-forward reserves

$$
\begin{equation*}
\left.2 A_{k}^{A}=00_{k+1}^{(1+i}\right)_{k}^{-1} . \tag{2.6}
\end{equation*}
$$

The required income in year k would be

$$
\begin{equation*}
\left.2_{k}^{1}=0_{k+2}^{(1+i)_{k}^{-1}} \underset{k+1}{(1+i}\right)^{-1} . \tag{2.7}
\end{equation*}
$$

To maintain two year roll-forward reserves, the contribution rate

III. Contribution Rates To Provide One and Two Year Roll-Forward Reserves for Years 2000 Through 2025

In this section we will develop roll-forward reserves for the years 2000 through 2025, under certain assumptions.

Our population projections were developed by Dr. Ataharul Islam (see Acknowledgement). In particular, we will be using the projections and the related ratios of Table 1.

TABLE: 1

Calendar	\sum_{i}	k	59	k
Year	$\sum_{k=60}$	L	y	$\sum_{y=20}$
	y			

∞	k+1	59	k	∞	k+2	59	
Σ	L ,	Σ	L	Σ	L $\quad 1$	Σ	L
$y=60$	y	$y=20$	y	$y=30$	y	$y=2(1$	y

1998	6.482.696	54,873,620	0.120835	0.123×20
1999	6.630 .643	$56,746,183$	0.119735	0.122911
2000	6,794,479	58,830,229	0.118557	0.121839
2001	6,974,717	61,106,193	0.117301	0.120594
2002	7,167,813	63,550,037	0.115956	0.119218
2003	7,369,033	66,125,741	0.114575	0.117769
2004	7.576,331	68,797,409	0.113195	0.116383
2005	7,787,546	71.535,763	0.111928	0.115186
2016	8,006,836	74,308,184	0.110888	0.114401
20017	8.239 .906	77,061,497	0.110314	0.114249
2008	8.500,942	79,739,294	0.110412	0.114816
2009	8,804,202	82,289,108	0.111259	0.115033
2010	9,155,382	84,639,341	0.112811	0.117742
2011	9,548,288	86,722,981	0.114913	0.119736
2012	9.965,602	88,481,323	0.117357	0.121926
2013	10,383,865	89,860,176	0.120055	0.124315
2014	10,788,140	$90,726,788$	0.123127	0.127212
2015	11,170,933	92,010,618	0.125437	0.129571
2016	11,541,499	93,354,342	0.127706	0.132211
2017	11,921,875	94,721,102	0.130304	0.135383
2018	12,342,497	96,077,023	0.133473	0.139139
2019	12,823,666	97,403,067	0.137245	0.143367
2020	13,368,058	98,698,482	0.141486	0.147938
2021	13,964,426	99,974,380	0.146050	0.152654
2022	14,601,245	101,239,745	0.150746	0.157351
2023	15,261,512	102,507,035	0.155406	0.162035
2024	15,930,174	103,783,021	0.160043	
2025	16,609,719	105,051,940		

To the extent that the future actual populations deviate from the promectans, le reserver will also be different.

For cur calculations. atsumptions must be made about future interest intes. We will une the following assumed rates:

TABLE 2

Culendar Year k	j	Year	i	
1998	k		k	
1999	0.05	2002	through	0.045
2000	0.05	2011		
20011	0.05	2012	through	

These rates have been chosen to be conservative. To the extent that the actual rates earned are better, the reserves should be greater.

For the one year roll-forward reserves, formula (2.1) was used to calculate the projected outgoes. Formula (2.5) then gives the required reserves. The required income was computed from (2.3). The contribution rate θ was determined from (2.4).

A specific value for x was not chosen. The U.S. Social Security employee contributions, employer contributions, and income payments to retirees have changed many times since the inception of the system in 1935. It is expected that a Bangladesh system would also have many changes. Our general value x allows for future changes.

The assumed rates in Table 2 were used in obtaining the following needed financial functions:

TABLE 3

Calendar	..(12)	..(12)	..(12)
Year	a	a	a
k	$\overline{1} \mid i$	1 i	$\overline{1} \mathrm{i}$
	k	k+1	k+2
		..(12)	..(12)
		$\binom{1+i}{k}_{\bar{I} \mid i}^{a}$	$\left({ }^{1+i} k\right)\left(^{1+i} k+1\right)^{2}{ }_{\overline{1}} i$
1998	0.978001	0.952381	0.907029
1999	0.978001	"	0.907029
$2 \mathrm{KK} \times$	0.978001	"	0.908946
$20 \% i$	0.978001	0.954394	0.913296
2002	0.980068	0.956938	0.915730
2003 through	0.980068	0.956938	0.915730
2009	"	"	"
2010	0.980068	0.956938	0.917729
2011	0.980068	0.959027	0.922142
2012 through	0.982208	0.961538	0.924556
2025	"	"	"

TABLE 4
Projections If a One-Year Roll-Forward Reserve Is To Be Maintained (all multiples of $12 x$, except for, θ)

Calendar	Outgo	Fund At Beginning	Income Required in Y ur k	Contribution
Year	k	A	,	θ
		$1 \mathrm{k}+1$	1 k	1
1999	6,645,007	6,328,578	0.114113.3
2000	6,645,(4)7	6,821,280	6,496.457	0.112911
$2(0) 1$	6,821,280)	7,024,944	6.722,434	0.111951
2002	7.1224,944	7,222,153	6,911,151	0.110963
2003	7,222,153	7,425,320	7,105,569	0.109641
2004	7,425,320	7,632,325	7,303,660	0.108321
20×15	7,632,325	7,847,244	7.509 .324	0.107108
2006	7,847,244	8,075,668	7,727,912	0.106113
2007	8,075,668	8,331,501	7.972 .728	0.105564
2008	8,331,501	8,628,717	8,257,145	0.105657
2009	8,628,717	$8,972,897$	8,586,504	0.106468
2010	8,972,897	9,378,405	8,974,550	0.107953
2011	9,378,405	9,788,294	9,411,821	0.110205
2012	9,788,294	10,199,115	9,806,841	0.112843
2013	10,199,115	10,596,197	10,188,651	0.115437
2014	10,596,197	10,972,180	10,550,173	0.118391
2015	10,972,180	11,336,153	10,900,147	0.120612
2016	11,336,153	11,709,761	11,259,386	0.122794
2017	11,709,761	12,122,899	11,656,634	0.125292
2018	12,122,899	12,595,507	12,111,064	0.128339
2019	12,595,507	13,130,214	12,625,206	0.131966
2020	13,130,214	13,715,971	13,188,434	0.136044
2021	13,715,971	14,341,460	13,789,865	0.140433
2022	14,341,460	14,989,979	14,413,441	0.144948
2023	14,989,979	15,646,744	15,044,946	0.149429
2024	15,646,744	16,314,199	15,686,730	0.153887
2025	16,314,199			

For the two year roll-forward reserves, formulas (2.1), (2.6), (2.7), and (2.8), and Tables 1, 2, and 3 were used.

TABLE 5
Projections If a Two-Year Roll-Forward Reserve is To Be Mamained (all multiples of $12 x$, except for $\boldsymbol{\theta} \boldsymbol{\theta}$)

Calendar	Outgo	Fund At Beginning	Income Required	Contribution
Year	0	of Year $k+1$	in Year k	Rate
k	k	$2^{A} k+1$	2_{k}	2^{0}

1998
1999
2010
$2(0) 1$
2002
2003
2004
20105
20106
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025

6,328,578
13,141,464
13,543,714
13,936,095
14,327,722
14,728,980
15,141,649
15,575,156
16,048,396
16,588,646
17,215,221
17,947,447
18,790,226
19,595,135
20,387,766
21,146,370
21,872,327
22,595,539
11,336,153
11,709,761
23,366,395

12,122,899
12,595,507
13,130,214
13,715,971
14,341,460
14,989,979
15,646,744
16,314,199

$6,027,217$	0.112308
$6,187,112$	0.111484
$6,402,319$	0.110745
$6,613,542$	0.110138
$6,799,588$	0.109171
$6,989,149$	0.107845
$7,185,956$	0.106575
$7,395,131$	0.105479
$7,629,405$	0.104760
$7,901,575$	0.104621
$8,216,751$	0.105140
$8,588,086$	0.106255
$9,006,527$	0.108055
$9,429,655$	0.110414
$9,796,780$	0.112727
$10,144,397$	0.114936
$10,480,911$	0.117615
$10,826,332$	0.119196
$11,208,302$	0.122236
$11,645,254$	0.125169
$12,139,621$	0.128642
$12,681,186$	0.132551
$13,259,486$	0.136777
$13,859,078$	0.141137
$14,466,294$	0.145480
$15,083,394$	0.149810

We will interpret the first two lines of Table 4. During $1 y^{9} 9$, contributions of $75,942,936 x=(6,328,578) 12 x$ units of money would be provided by a combination of employee, employer, and national government contributions, for each citizen aged 20 through 54 at the beginning of each month during the year 1999 that he (she) is alive. The contribution rate would be 0.1140, 93 . This would provide a fund on Jan. 1,2000 of $79,740,0) 84 \mathrm{x}=(6,645,017) 12 \mathrm{x}$ units of money. During the year 7000 , the $79,740,084 x$ units of money would be expended, with each Litizen aged 60 and higher receiving x units of money at the beginning of each month that he (.he) is alive during the year 2000. During the year 2000 , contributions of $77.957 .484 \mathrm{x}=$ $(6,496,457) 12 x$ units of money would be collected at a rate of 0.112911 to develop a fund of $81,855,360 x$ units of money on Jan. 1. 2001. This one-year roll-forward reserve would be sufficieni for the outgo during the year 2001 of $81,855,360 \mathrm{x}$ units of money. Simitar interpretations could be given for the other lines of Table 4.

Let us now interpret parts of the first three lines of Table 5. In preparation for outgoes beginning in the year 2000 , during 1998 , contributions of $72,326,604 x=6,027,217(12 x)$ units of money would be provided by a combination of employee, employer, and national government contributions, for each citizen aged 20 through 59 at the beginning of each month during the year 1998 that he (she) is alive. This is the present value of the $79,740,084 x=6,645,007(12 x)$ units of money expended during the year 2000 , with each citizen aged 60 and higher receiving x units of money at the beginning of each month that he (she) is alive during the year 2000 . The contributions during 1999 would be $74,245,224 x=6,187,102(12 x)$ units of money. The contribution rates for 1998 and 1999 would be 0.112308 and 0.111484 , respectively. This would provide a fund on Jan. 1, 2000) of $157,697,568 x=13,141,464(12 x)$ units of money. This twoyear roll-forward reserve, when increased with interest, would be sufficient for the outgoes during the years 2000 and 2001 . Similar interpretations could be given for the other lines of Table 5.

The contribution rates in Tables 4 and 5 can be compared with those of (Nesbitt, Cohen, Gallers, Houghton, Myler, and Weiss, 1994). The one-year and two-year roll-forward reserves contribution rates for OASDI under Alternative 11 are contained in tables OASDI-II-1 and OASDI-II-2 on pages 71 and 73, loc. cit.. The OASDI contribution rates involve the incomes required in years \mathbf{k} from workers to the taxable payrolls in years k. Our contribution rates involve one year annuity values for the populations aged 60 and higher, and the populations aged 20 to 59 . Despite these differences, the cited tables contain fairly close numerical values.

The U.S. Social Security system now covers more than 90% of the U.S. citizens. However, the coverage didn't start that high in 1935. Rather, more and more people have been included in the system. Our projections assume a 100% level for contributions, and income outgo. Although that level may not be achieved for some years, clearly that is the intent of the number one recommendation in the United Nations sponsored report (Kabir, 1994).

V. Future Research

In a future paper, the authors will discuss a suitable Survivors Program, and Disability Program for a Bangladesh Social Security program. This would complete the development of a full Social Security program as described in (Andrews-Beekman, 1987). A second research project would be to develop an Old-Age Security Program where contributions would only come from salaried employees, and benefits would only be paid to retirees of that set of workers. A third research project would be to develop a level contribution rate for the program, constant over m years, where m is a multiple of n . The theory for such constant rates has been developed in (Nesbitt et al, 1995); and (Nesbitt et al, 1996). A fourth project would be to suggest possible break-downs of the θ rates between employee, employer, and national government contributions. This would involve a study of Social Security systems in various countries.

The authors are grateful to Dr. Ataharul Islam of Dhaka University for preparing the Bangladenh popilation projections for the years 1994 through 2025 from which the entries in Table I were prepared. Dr. Istam was a member of the "Technical Review Committee" formed by the Ministry of Health and Family Welfare, Government of Bangladesh, to prepare the "Strategic Plan for the Bangladesh National Family Planning Program 1995-2005." That Committee projected the Bangladesh population from 1995 through 2005.

The authors are also appreciative of the helpful suggestions made by Professor Cecil J.
Nesbitt in the preparation of this paper.

References

Andrews, George H., John A. Beekman, 1987. Actuarial Projections for the Old-Ag;, Survivors, and Disability Insurance Program of Social Security in The United States of America, Actuarial Education and Research Fund, Itasca, Illinois.

Kabir, Md. Humayun, 1994. "Local Level Policy Development to Deal with the Consequences of Population Ageing in Bangladesh," United Nations, New York.

Nesbitt. Cecil J., 1991. "Elementary Models of Reserve Fund for the Old-Age, Survivors and Disability Insurance in the U.S.A.," Actuarial Research Clearing House, Issue 1991.1, pp. 63-91, Schaumburg, Illinois.

Nesbitt, Cecil, Felicity Messner, Aaron Robertson, 1993. "Review of Social Security Financing and Related Matters," Actuarial Research Clearing House, Issue 1993.1, pp. 249-282, Schaumburg, Illinois.

Nesbitt, Cecil, Andrew Cohen, David Gallers, Brett Houghton, Angela Myler, Paul Weiss, 1994. "n-Year Roll-Forward Reserve Financing of Social Security." Actuarial Research Clearing House, Issue 1994.1, pp. 30-80, Schaumburg, Mlinois.

Nesbitt. Cecil, Marjorie Rosenberg, Lee Berger, Marc Levinsky, Alexa Nerdrum. Suzy O'Donnell, David Samaniego, Amy Trendel, 1995. "Some Financing Options for Social Security," Actuarial Research Clearing House, Issue 1995.1, pp. 381-417, Schaumburg, Illinois.

Nesbitt, Cecil, Alexa Nerdrum, Sarah Clark, 1996. "Conclusions from Michigan Studies of Social Security Financing," Actuarial Research Clearing House, Issue 1996.1, pp. 377-389, Schaumburg, Illinois.

