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Abstract 

I)esign and future maintenance of an asset portfolio I)acking a new 
line of business is critical for proper asset and liability management for 
that business. Most portfolio optimization methods utilize linear or 
quadratic programming and require the user to specify lhe asset and 
liability attributes and cash flows into the program. The programmer 
must also supply an objective function to allow the program to find 
the optimal asset mix for the associated liabilities. Two problems with 
this approach are that the liability cash flows are fairly static and that 
one must frequeutly rebalauce the portfolio. 

An alternative approach would be to develop a corporate model of 
bolh the assets and liabilities and incorporate various econon,ic sce- 
narios as input into the model. Asset. strategies would be measured 
against a specific objective function that is calculated by the corl)orate 
model. Unfortunately, the majority of inaximization algorithms avail- 
able are very t ilne consuming, and obtaining a reasonable portfl)lio 
mix becomes impractical. We overcome this difficulty by using a very 
rapid optimization method from the chemical engineering profession. 
We will include an example of the use of this process to determine an 
optimal portfolio. We will also discuss modifications of the algorithnl 
that is required when the shorting of assets is not permitted. 

Key Words: 

Corporate Models, OAVDE, ROE, Portfolio Optimization, Floppy 
Triangle, Experhnental Design, Stocha.stic lmmunizalion 
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1 I n t r o d u c t i o n  

Many assel portfolio ol)t, i lnizatiou methodologies eint)loy linear or quadratic 
f)i'ogratlinliiig, (o obtain a portfolio i l iat best iiiatchcs or iiiiiiililiiZ('S a geii- 
erally slaiic set of liability cashflows. These iiietilO(ls al'(' fairly ('oliit.~tltei' 
inexpensive, and work well when the l iabi l i ty models are no l  exl relncl.y coin 
plex. 

hi the life insurance industry, most liabililies are very dynanlic and con> 
plex, and pr,,)l)er pricing requires stochastic nlodeling. Denlbo in [5] addresses 
stochaslic portfolio design by using simple linear or quadratic pi 'ogramming 
on each scenario lo find lhe best asset, t | iat matches that  scenario's cashllows. 
[7sing a weighting systenl on each scenario, he associates the anlount of that  
specific asset to be held iIl the overall portfolio. His method lelids 1o avoid 
the barbell effect, which is observed with other ol)tilnizatiori niel.iiods by liot 
discarding ativ of his assels. 

All ol) l i inization prol)leins require l imits or constraint, s. The insurance 
industry is very /lIliq(le, and /.lie following are industvy-relal.ed constraints 
that should be iilcludcd in any insurance portfolio opl.ilnization probh,m. 

1. t/isk Based ( 'apital.  The s ta tu tory  reqvircment.s prescribe addilional 
surphis be established for asset default,  pricing risk, interest rate risk 
and business risk. T|le amount  of surphls depending upon lhe level of 
the risk. 

2. 

3. 

|{eserve requirements. There are several methods to set up appl'Ol)riate 
lial>ility reserves, and generally the most <'ost-effective reserve utilizes 
company sui'l)[Us lllOSt efiqciently. 

Sta tu tory  Lin i i ta t ionsof  Distributable Earnings. There is a sl.alutory 
l imitation of the alnounl that a sl.ock insurance company can distribute 
to their stockholders. 

4. (:apil.al Requirenicnts of a Genii)any. Investn]ents of an insurance con> 
pany should exceed the conq)anies cost of capilal; otherwise the coni- 
pany is using its cat)ital inefficienily. 

t3e('ause of the above the actuary should seriously consider the efticien( use 
of surplus. Tile analysis of surplus requires accurate asset alid ]iabilil.y models 
that  not only produce reliable assel, and ]iat)ilily ('ash tlows, bul also properly 
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model reserves, risked based capital and statutory distributable earnings. 
From these models, tit(" actuary needs to obtain the cash [tow streams of tile 
distributable earnings to either calculate the economic value of the stream 
or t.o determine the internal rate of return of the stream. This internal rate 
of return would correspond to the company's return on equity. Additionally, 
the actuary would use the models to obtain tile best product design and asset 
mix that would have the greatest impact on the bottonl [inc. Later in the 
paper we will describe a new business model that will maximize the return 
on equity while at the same time take into consideration the various risks 
associated with the distributable earning st.reams. 

Taking the above approach creates complex models that require optimiza, 
tion on either the economic value or the return on equity. These sophisticated 
models can be very expensive models to produce results. ]'he concept of ex- 
pense is related to the length of time to create, audit and use the computer 
to process. Also, as the number of scenarios processed increase, the run 
times of the model also increase. Most optimization methods such as chief 
descents or Levenberg-Marquardt methods (see [12]) require extensive com- 
puter simulations to obtain the proper estimation of the gradients on the 
non-linear surface. One is not even guarantee([ that the solution obtained by 
these optimization methods will be the best. global solution. In fact. the best 
global solution might not actually be the best business solution. This situa- 
tion corresponds to the physical concept of a stable or unstable equilil)riunL 
The best global solution may give you the highest value or highest return on 
equity, but could require a constant rebalancing of the portfolio 1o maintain 
the position. The solution would not be a s{able solution that could easily' 
move away from oi)tima.l to sub-optimal quickly. Whereas, the best business 
solution may be a product or asset mix that inay not have the highest return 
but would give the highest stable return, without frequently rebalancing. 

Due to all of these possible constraints, both theoretically and practically, 
a very good answer in a timely manner would have more value than the 
untimely best answer. 

These constraints of time, expense and stability were reasons that chemi- 
cal engineers in the 1960's developed a non-linear optimization method called 
the Floppy Triangle (hereafter denoted FT). The oddity of tile name will be- 
conle apparent ft'onl the geometric explanation given later in Section 2. 

In Section 2 we will give a geometric description of FT. In Section 3 we will 
describe the process of setting up tile initial experiments. In Section 4 we will 
describe the necessary risk and return metrics and define the optimization 
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target.  In Section 5 we will describe the basics of the business models and 
the asset universe used. Here we will discuss the r i sk / re turn  of the various 
test portfolios and the optimal portfolio obtained by the FT a.lgorithm. In 

Section 6 we will use an efiqcient fi'ontier method  t.o display' our exper imental  
results. In Section 7 we will discuss our conclusions and fur ther  possible 
research. 

2 Floppy Triangle 

C. I). [ lendrix ' in his introduct ion of the FT algorithm to the chemical 
engineers at Union Carbide, says: 

Few people can think in terries of three or more indel)en- 
dent  variables acting simultaneously. Those who can are usually 
quashed by the surrounding "two-dimensional thinkers".  ,*ks a 
result, otte rarely finds projects  in which more than two variables 
were investigated before a report  was written. Hence the origin 
of the sequences: vary one or two variables, wr i t ea  report .  Then 
vary another  variable (perhaps two), write another  report .  Each 
report  discusses the effects of the variable upon selected responses 
ra ther  than directing the effort, to the objectives: Find the best 
combinat ion of the variables. 

Variations on this thetne include factorial and fractional fac- 
torial (-xperim('nts. These methods  are inadequate for systems of 
more than five or six potent  variables. They will reveal effects of 
the varial)h,s upon each response. 

The  matt.er is further  cotnpli<'al.cd l>y the fact that variablos 
may interact.  Tha t  is, the effect of a variable ttpon a given re- 
sponse det>('tlds upon the levels of one or more other  variables in 
the system. It then follows that. the optimtmt lev('l of any variable 
nlay (lepend upon the lew~l of several other variables, and indeed 
that  it. may be quite meaningless to speak of (he opt i tnum of any 
single variable. It is clear that  the simull.atwous ol)l.intttnl of all 
such varial>h's is most meaniugfll[. 

tThis section is derived in part from C. D. Hendrix's paper '+Empirical Optimization in 
Ftesearch and l)evelopntetlC'. This paper is a very old internal working paper for the Unioll 
( :arbide Cort>oration. We will be glad to provide a copy of the original upon request. 
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It is well, even necessary, to know tile effects of each and 
every variable in a system. But  would it not. be bet ter  to find the 
near -opt imum combinat ion of all variables simultaneously,  then 
explore the effects of variables near the op t imum? 

He goes on to say: 

This method  begins with k + 1 trials in k dimensions (k inde- 
pendent  variables), those k + 1 trials being arranged in the forln 
of a regular simplex. The k + 1 outcomes are ranked from best to 
worst. Here a full ranking is not necessary'. Only the worst out- 
comes are of immedia te  interest.  The  worst trial is then rejected. 
iX trivial calculation indicates a trial to replace the one rejected. 
The  procedure is repeated sequentially, maintaining an inventory 
of k + I trials at every stage. 

A variation on this scheme was developed by' a. S. Bodenschatz 
at. Union Carbide. In this variation, tile rn worst trials are rejected 
and replaced by m new trials. The  choice of m is at tile discretion 
of the experimenter .  However, some choices of m are be t te r  than 
ot hers. 

There  are several advantages of the FT method.  The question 
of "when to move" does not arise. Once the original set of k + 1 
trials is completed,  a move is made every m trials. The  t ime 
intervals between moves are thereby abbreviated,  thus support ing 
a high level of in te res t . . .  

The  question of "where to move" is settled by the trivial cal- 
culation rule: 

7'wice the average of the best, minus the worst. 

We will demons t ra te  the use of this rule in the following subsection. 
l lendrix goes on to say: 

The FT method is not without shortcomings. The principle 
difficulty is that  the method may lead in tile wrong direction (or 
fail completely)  if the grad ien t /e r ror  ratio is too low. A "false 
op t inmm" can arise if an ou tcome is fortuitously "good". These 
shortcomings have not greatly det rac ted  from the advantages of 
FT. The simplicity of the FT  methods requires little or no training 
in statistics or opt imizat ion methodology. 
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Next, we will use a simple geometric presentation that  demonstrates  the 
simplicity of the algorithm (as well as reveal why FT is called the "Floppy 
Triangle" ). 

2.1 A FT E x a m p l e  in Two  Variables  

(!onsider a portfolio selection process with three separate assets to be pur- 
chased. (',all the percentages of the assets purchased ,\~ ,X2,1 - -\'l - X2. The 
objective is to increase the rate of return, We will outline how to improve 
the combiaations of ,\'~ and X,z. We will begin with t.hree separate asset. 
allocations arranged as a triangle" in the two variables. Denote the three as 
points A, B, and C. See Figure 1. 
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[:igure 1: 

Trial .V1 ,V2 I - Xt - X2 Rate of Return 
A 20% 15% 65% 7.:I ~Ft 
B 25¢7c 15% 60% 7.6% 
C 22.5% 20¢/ 57.5~7, 8.2% 

Table 1: Initial Portfolio Allocations 

Example values of the rate of return are contained in Table 1. Note that  
point "A" is the worst of the three trials. We will discard "A" and obtain a 
new trial at "I)". (Note how triangle ABC "flops" over into triangle t3CI)). 
See Figure 2. 
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Figure 2: 

Trial Xl X~ 1 - X1 - X2 Rate of Return 
B 25% 15% 6 5 %  7 .6% 
C 22.5% 20(28 57.5(28 8.2% 
D 27.5% 20% 52.5% 8.5(28 

Table 2: Second Portfolio Allocation 

Processing ttle allocation we obtain the result of the "I)" allocation in 
Table 2. Note that because of the discarding of "A", the inventory of trials 
remains constant at three. 

Now examine the current inventory of trials and select fi'om these the 
worst point "B". See Figure 3. 

Trial .\'l .\'~ 1 - X~ - X2 Rate of t/eturn 
C 22.5% 20% 65% 8.2% 
D 27.5% 20% 52.5% 8.5% 
E 25% 25% 50% S..q% 

Table 3: Third Port.folio Allocation 

As before, reflect tile worst point "B" to a new trial point "E". Discard 
B from further consideration. Process asset allocation "E". See Figure 4 and 
Table 3. 

Continuing tile process, one will approach an optimal answer. 
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Figure 3: 
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Figure I: 

To extend the FT to more than two variables requires one to use the 
following rule: 

Twice thr aev ragr of the brsl poilfls, minus lhc worm point. 

There are some difficulties associated with using FT and that of proper 
portfolio allocation. If the portfolio manager is a.llowed to short from the 
assets in the asset universe, the standard FT algorithm will be sufficient 
for designing the optimal port.folio, floweret, if shorting is not allowed the 
FT algorithm may create unreasonable asset allocations. A simple three 
asset allocation example will demonstrate this problem. In Figure 5, there 
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are three different asset, allocations A, B and C. However, suppose that. 
experiment "B" is the worst experiment in the inventory. The next step in 
the FT algorithm will cause the situation in Figure 6 to arise. 
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Figure 5: 
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Figure 6: 

We developed two methods to prevent the asset allocation from leaving 
tile allowable allocation space. The first hint.hod is to use tile s tandard FT 
algorithm, and if a specific asset's allocation goes negative, set that  specific 
allocation to zero and adjust all of tile other asset's allocations pro rata by 
tile sum of all of the remaining positive allocations. Mathematical ly,  as- 
sume {,\'t, X2 . . . .  , X,~} is the asset universe, and {a,, a2 . . . .  , a~} is the asset 
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allocation such that  ~ = z a i  = 1 .  If lhere exists an aj such that. a/ < 0, 
1 the new allocation will lw {al, a 2 , . . . ,  a i- t ,  0, "i+1 . . . .  , ( , ! , t  } ~ f l  I ¢/t_~_~123+1 rJt 

This method cft'ectively reduces the asset universe by the single asset with the 

negative asset allocation. This technique actually speeds Ii l) the optimiza- 
~i()II })('(alls,o 1}1(' ('o['i)o['at,(" 111o¢[c,1 ill(-/'oaso,s ill spcct l  as tl~(" as se t  universe is 
w d m c d ,  lIowevcr, because of the reduction of the asset universe, portE)- 
lio allocations are created that replicate (h(' problem of barbell port folios as 
discussed in l)emt)o [5]. lie discusses that  most asset allocations obtained 
lhrough lhc llSO of [inear or quadratic programming I('a(I to a small asset trot- 
verse of o))e or (we assets utlless certain r('strictions (e.g. positio)~ limi)s) are 
placed on the optimization algorithm. This also appears to occur when using 
this typ(" of modiIication of the FT algorithm. (Note: \Ve have observed that. 
when shortit~g is allowed this problt'm does not occur" with the FT. llere, the 
optimal portfolio mix It-ads to a mixt,lv(" of all of the assets in the universe.) 

The second m('ihod pr(wents tlm reduction of t h(" asset universe and allows 
an asset allocation of all of the assets. The allocation may become very small 
for some (>f the assets, but positio)~ limits (lo not have 1o 1)(' forced upon the 
FT algorithm moditication, l';ffectively the rule: 

Tu,ic~ lh~ a~,erage of lh~ b¢~,4 poi~#s, minus th~ tror,~l point. 

is replaced with 

Th~ .,q~torc of g~om~tric m,rm of the b~:st poi~t.,~, divided by the corrc- 
.,~po1~dmg coordinate ~,ahu of tht u~or.,~! point. 

This nwthod effectively replaces the new experiment design by that  of log- 
ari thnls to pr(weni the possible occurence of a negative ai. l lowcver, the all(t- 
cations obtained purely by this method violate the comli(ion of ~i~=1 a , =  l. 
t]y adding the pro t'ata approach as in the first method,  where the a, are 
rescalcd by the sum of the allocations, tiffs prol ) ]enl  is relnoved. T hi s ,  of 
course ,  transforms the pure gcollletric interl)retation of the FT into that  of 
a FT algorithm with scaling. ]h)wever, the algorithm is still effective in de- 
signing the subsequent experiment.s. This moditied algorithm is the method 
that wc used in our example in Section 6. 
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3 Initial Experimental Design 

One disadvantage of the use of the FT  algori thm is the need t.o develop the 
initial experhnents .  Neither of us are experts  in the various forms of exper- 
imental design so we simply used the s t ruc ture  that  IIendrix laid out in his 
t)a.per [7]. His methodologies were to use certain types of exper iment  de- 
signs called P lacke t t -Burman plans or near-saturated or saturated factorials. 
t tendrix gives the following discussion and rules: 

As a rule, a large excess of trial points (beyond k +  1 in k vari- 
ables) will decrease the rate of progression. In spite of this, we 
have found it. convenient to use near-saturated (rather  than satu- 
rated) factorials all.([ P lacket t -Burnlan  plans in lieu of simplexes 
in high dimensions. Hence we recommend the following: 

1. if k = 2, use simplex. 

'2. if k = 3, use sinlplex or sa tura ted  factorial (same thing). 

3. if :1 < k < 7 use factional factorial in 8 experiments ,  or a. 
simplex a.s seems appropriate.  

4. if 8 < k < 11, use P lacke t t -Burman plan in 12 experiments .  

,5. if 12 < k < 15, use fractional factorial in 16 experiments .  

6. if/," => 16, use higher P lacke t t -Burman  plans (or consider 
using supersaturated two-level plans.) 

Samples of each such plan are included here. 

S mple× 

In two variables, a simplex(tr iangle) is just  this: 

Var iabh . s  V a r i . b l e  s 

- - , for example:  6 20 
+ - 8 20 

0 + 7 26 

where "0" implies average of all above. 

In three variables, a. s implex( te t rahedron)  is this: 
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1.'ariabl~:.s i ' a r i a b h  .s 

A tl (: .4 B (: 
6 20 37 

+ , for example:  8 20 37 

0 + - 7 23 37 
0 0 + 7 21 111 

Or, in three variables,  a sa tura ted  factorial (a ro ta ted  s implex)  is 

this: 

V ari  abh .~ V ariabl  e.~ 

A B C .4 B (" 

+ 6 20 41 
+ , for example:  8 20 37 

- + - 6 2 : {  37 
+ + + 8 23 41 

:2. Fractional Factorials (3), (5) 

The initial pa t t e rn  for fl)m" to seven variables can be developed 
by assigning "'high" and "low" levels to the " ÷ "  and "-" signs in 
t, lw following table.  

V , r i , b h . ~  

A t~ (i' D E F G 

1 . . . . .  + + + 

3 - + - + - + - -  

,l - -  + + + 

5 + 4- + 
6 + - + + - 

7 + + + 
8 + + + + 4- + + 

This  initial pa t t e rn  for 8 - 1 5  variables is developed fl'onl the 

ff~llowing fable in tile same memner. 
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Variable,s 

A t3 C D E t" G H 1 J K L M ?¢ 0 
[ 

2 

3 

4 

,5 - + 

6 - + - + + + + - + 

7 - + + - + - + - + 

8 - + + + + 

9 + + + - + 

10 + + + + - + 

11 + - + - + - + + + 

12 + - + + + - + + + 

13 + + + + + + + 

14 + + - + + + - + - + - 

15 + + + + + + - + 

16 + + + + + + + + + + + + + + + 

+ + + + + + + 

+ + + + + + - + 

+ + - + + + - + - + - 

+ + + + + + + 

+ + + + + + 

+ - 

+ + 

+ + + 

+ + + 

+ + 

+ - 

3. P l a c k e t t - B u r m a n  P l a n s  (4 ) , (6 )  

A P l a c k e t t - B u r m a n  p l a n  in 1'2 e x l ) e r i m e n t s  is o u t l i n e d  in t h e  

f o l l o w i n g  table. 

V(u'iable.~ 

A H ( '  D E F G t t  1 J A 

1 + + - + + + + - 

2 - + + - + + + + 

:3 + - + + - + + ÷ 

,1 - + - + + - + + + 

5 + - + + - + + + - 

6 + - + + - + + + 

7 + + - + + - + + 

8 + + + - + + - + 

9 + + + + - + + - 

10 - + + + + - + + 

II + - + + + + - + 

12 
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4. S u p e r s a t u r a t e d  P l a n s  (6) 

If t h e r e  is se r ious  q u e s t i o n  a b o u t  t h e  p o t e n c y  of  some  va r i ab l e ,  

t h e r e  is e v i d e n c e  that, a s u p e r s a t u r a t e d  p l an  ( inore  va r i ab l e s  t h a n  

e x p e r i m e n t s )  is a p p r o p r i a t e .  T w o  of m a n y  such two- leve l  p l a n s  

a re  shown here .  T h e  first  is for up to  16 va r iab les  in 12 e xpe r i -  

m e n t s ,  t he  second  is for up to 24 va r i ab l e s  in 12 e x p e r i m e n t s ,  

Vari(~bh.~ 

A B (' D E b' G H I d A" L M N 0 P 
L + + + + + + + + + + + 
'2 + + 4- + + + + - + 

3 + + + + + 

4 + + + 

5 + + 

6 + + 

7 + 

8 + 

9 - + + - + + + 

10 + + - + + + 

l l  -I- - + -t- -I- 

12 - ÷ - + + + 

+ + + + - + + 

+ + + + + + 

+ + - + + + - + - 

+ - + + + + + - + 

+ - + + + + - + + + 

+ - + + + - + - + - + 

+ + + + - 

+ + 

+ + + 

+ 

V a, 'b,  bles 
A B (: D led F G f f  1 J t~ L M N O P (--2 R S T ~,- V W X 

1 + + + + + - + + + . . . . . .  + + 

2 - - - + + - + + - + + - - - + 

3 + + + - + + -- + . . . . . .  + + + + 

,t - + + + - + + + - + + + . . . .  

5 + + + - + + - + 4- - + + + - + + - + - + 

6 + + + + + - + . . . .  + - + - + + --  + + - 

7 + + - - - + + + + --  + + + 

8 - + - + + . . . . .  + + + + + + - -  - + + - + - + 

9 + + + --  + + + + + + + + + 

10 + - + + + + - + . . . . . . .  + + + + + + 

11 + + - + + + + + + + + + + + + + - + + + + + 
12 - + + + + - + + + + + + + + + + + + + 

T h e  a c t u a l  c o n s t r u c t i o n  of  an in i t ia l  t ab l e  of  ex l )m ' imen t s  is 

i l l u s t r a t e d  us ing the  P l a c k e t t - B u r l l a m  plan  in 1'2 e x p e r i m e n t s .  

1. Ass ign  va r i ab l e  n a m e s  to  t he  co lumns .  

"2. ( : o n s i d e r  ( : o l u m n  "A" .  Se lec t  a low level and  a high level  of  

t h e  t i rs t  va r i ab le ,  "A" .  Ass ign  the  low level of "A" w h e r e v e r  
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a (-) is shown in Column "A". Assign the high level of "A" 
wherever a (+) is shown in Column "A". CAUTION: It is 
wise to be conservative at this point. Do not space the levels 
of the variables too widely. 

3. Repeat (2) for each variable under consideration. 

NOTE: It is not necessary that each experiment be executed 
at precisely the prescribed conditions. The achieved conditions 
should be r~povted and used to progress to the next experiment(s). 

In our example in Section 6, the raw asset allocations (before division by 
the sum of the raw allocations), were 80% for variables calling for "+" and 
20% for the ones calling for "-". If we used 0% for "- ' ,  the FT algorithm would 
exclude that asset and reduce the asset universe, as discussed in Section 2.1. 

We are exploring other experimental design methods including low dis- 
crepancy sequences [3, 6, 9, l l ,  131, Latin hypercubes, or the new merger of 
the two Latin supercube sampling [10]. 

4 Profit  Metr ics  and Risk  M e a s u r e s - O A V D E ,  
E x p e c t e d  R O E  

In the first subsection, we will discuss various "bottom-line" profit measures, 
such as option-adjusted value of distributable earnings (OAVDE) or expected 
return of capital (ROE). These stochastic profit measures allow the actuary 
to measure the anticipated profits of the company by incorporating the effects 
of the embedded options in both the assets and liabilities. 

In tile second subsection, we will discuss various risk measures that quan- 
tify the risk in a stochastic pricing environment. Some of these are percentile 
estimators, and modifications of the standard deviation. 

4 .1  P r o f i t  M e t r i c s  2 

Let us adopt the following notation: 

2The following is based in part on Russ Osborn's article Key Profit and Risk Measures: 
Definitwns 
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Let ill be the number  of projection months for the corporate  model. 

Let m be the projected month  index, m = 1 . . .  M. 

Let (;,,~ be  the nel s ta tu tory  gain at. the end of the projection month m. 

Let ]~,q',,, be the required risk surplus (also known as target surph~s) at 

the end of projection month  m. 

Let. AR5,,, = I~'N,, - lg,q,,-i be lhe increase in required surplus in month 
777. 

Let, NIH,q',,~ denote the net (after-tax) investment income on required 
surplus in tllOltlh /l.,. 

Let DE',~ = ( ; , ,  - _Xt~5',,, + /VIR. 'q , ,~  be the distributat)h" earnings at. the 
end of m o n t h  m .  

Let N be the number  of stochastic scenarios processed. 

Let s denote the stochastic scenario index, s = 1 . . .  N. 

Let p~ be the probability assigned to scenario .s. 

Let D E  ...... = 1)t".,,~ be the resultant distr ibutable earnings for scenario s. 

Let r (2) denote the gross short- term Treasury rate for scenario s in month 

m. This r a t e  is in bo~ld equivalent yield format(Blt{Y). 

Let r~ .... denote lhe gross short - term Treasury rate for scenario s in month 
tn. This rate is an ammal percentage rate format (APR).  

Let r', .... b e  the after-lax short- term Treasury rate for scenario s in month 
m. This is an elfectivc rat(,. 

1.et T t ~  denote lhe corporate tax rate. 
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Let f{OE denote the expected return on equity. This is also known as 
the expected return on total capital (ROTC) or option-adjusted yield. 

Let OA,9 represent the option-adjusted spread over risk-flee Treasury 
rates. 

Let O A V D E  denote the Option-Adjusted \;alue of Distril)utable Earn- 
ings. 

Let } be tile target. ROE (also known as the target ROTC). 

l,et ,q' denote the target ()AS. 

OA I /DE represents the expected present value of filture profit, where tile 
expectation is taken over a probability space of stochastic model scenarios. 

"Fo find the appropriate short-term Treasury rates, we convert the nominal 
rates to annual effective rates and adjust for quarterly taxes as follows: 

1 12) \ 7  
7s.m = 1 q - ~ ) - l ,  and 

,'. ..... = {1 +(I-TR)[(1 +r,,m)¼-1]} 'l- 1. 
Tile formulas for O A V D E ,  HOE, and OA5 will exhibit the following 

general form: 

,,v / ~ D E .... } 
Pre,s{,,lVoluc(~) = ~ p~ ' , 1) 

where i = {i ..... } is the given array of monthly interest rates by scenario by 
projection month.  These rates are determined according to the purpose at 
hand, as described below. 

Assuming the present value of filture distributable earnings is never neg- 
ative, we can compute profit measures as shown in Table 4. ttowever, since 
sotne scenarios may have trailing negative distributable earnings, it would 
be improper to discount such future earnings at the assumed discount rates 
above. Instead, we need t.o discount fllture negative earnings in the same 
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'Ik) ( ' o m p u t e :  Set i ...... equal to: Solve  Eq 1 for: Assuming: 

OA~.'DE(}')  Y O.I~DI:'  i ...... = } is constant  
O.-l~L)l¢(,~, ') ( r ,  .... + 5 )  O.I~DI,'. 5' is constant  

H O E  H O E  t~O E Pre,~e , t V a l , ~  ( i) = 0 
0 . t 5  (r., .... + O A 5 )  OAS" f ' r ~ , ~ l l a l ~ ( ( i )  = 0  

Table 4: lh'otit Measures 

way we would discount future  benefits to compu te  a reserve by using after  
tax hlvestln(,nt earnings rates. Therefor( ' ,  we cannot  write the l)resent value 
Colnputation as a s imp[e summat ion .  Rather ,  we must  s ta te  the cal('ulat.ion 
as an a lgor i thm tha t  s tar ts  at tim(' .'11 and discounts backward month-by-  
month ,  i teratiw:ly discounthlg ea('h inonth 's  value to the preceding month  at 
the appropr i a t e  interest  rat:e: 

P r c s c n t  Va/u¢ (s, -'/I ) 

P r { s ~ : n t t ' a l u c ( s ,  m - 1) 

where Os,m 

PreseT~t I.1.~:( ~) 

= 1) f'2~,.~, 

t O r e s c , l V a l u e ( s ,  rn) for m .. 
= D E  ....... t + , = M . 1, 

( t + 0  ..... )'q 

f i ..... when Pres~ l z t l . " , l , e ' ( s ,  m )  >_ O, 

l r~,,, when P r v s e n l V a l u ~ ( s  m )  < O. 

N 
= ~ p ,  Pr( ,s ,  n t I ' a l u c ( s , O )  

a = ]  

We use realistic r andom  interest rates for our scenario set, and so we 

a for all s. assign p,, = 

The above discounl.ing a lgor i thm is discussed in Becker [1]. A less tech- 
nical overview tha t  explains tile mot ivat ion behind this type  of proIits model 
is Becker [2]. 

4.2 Risk M e a s u r e s  3 

The  nmasure lnent  of risk requires the l)ortfolio manager  to quantify the pos- 
sible dispersion of results from the expected.  Tile portfolio manager  will 

aThe following is based in part on Buss Osborn's art Me hYy Profit and Risk Measures: 
D( finitums 
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use the risk metrics in one of two ways. The first is that  they will produce 
a risk~return t rade off graph (efficient frontier) where the various potential  
returns will be graphed against the level of risks measured. See Section 6 
for our example  of this graph. The  other  use is to use the metr ic  in an opti- 

mizat.ioll scheme to maximize a return metric of the portfolio while reducing 
the risk metric. This will design the portfolio lhat  will best fit. the situation 
behtg studied. This is the approach thai  we will take in this paper where we 
are using the FT algori thm as the maximizat ion scheme. However, we will 
deviate from the common portfolio approach of finding the best. asset portfo- 
lio tha i  matches a liability cash flow. t lere we will maximize the stockholder 
retul'll metric while reducing the overall risk metric. 

The  various risk measures tllat we will discuss besides the sample s tandard 
deviations are partial sample s tandard deviation, percenliles and "comfort 
levels". 

The  formula of the partial sam pie s tandard deviation (denoted PA RSTD) 
is: 

" Mil~(X; - X,O) 2 
PAR,~;7'D = ' : '  (2) 

/1 - -  1 

The justification of the 3 I i n ( X i -  X , 0 )  te rm is to make sure that  the metric 
measures the disl)ersion of results associated with downside risk. The  com- 
mon s tandard deviation,  when used to nleasure dispersion of results, includes 
values both above and below the mean. PAR,<,'7'D however only emphasizes 
the contr ibut ion to the dispersion due to the lower "tail" results. When try- 
ing t.o maxintize return while reducing risk, the s tandard deviation is not 
the best risk metric. If one tries to maximize the return and reduce risk, 
the portfolio manager  will be discarding potential  upside profit if he or she 
uses s tandard deviation as the measuretnent  of risk. PARSTD is a be t te r  
indicator of the downside risk, where the measurement  of risk by PARSTD 
does not include any potential  upside profits. (Note: If" a portfolio manager  
were try'ing to match a fired index exact ly (e.g., S&P 500 Large Cap), the 
s tandard deviation would be a correct measure of the risk). 

If 0 < p < 1, then the (100p) t~ percenti le of the probabil i ty distr ibution 
of a. continuous variable X is a value 4p for which P r ( X  < ~,) = p. 

Suppose we would like to conservatively est.imate a given percenti le  level of 
a distr ibution using da ta  from a random sample, such that  we have a certain 
level of contidence that  we are not overstat ing the value of that  percentile.  
In mathemat ica l  terms, we want to find Xp,,- such that  Pr(Xp,~ <_ 4p) = c 
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where c is the level of desired confidence, <c, is the true (l()0p) °' percentile of 
the distribution and Xp,~ is termed the [1 -(100p)](/c, "comfort level". For 
example, the 80% comfort level at a 98% confidence gives us a conservative 
valu(" for the 20 o' percentile of the distribution, with only a 2% probability 
that the true 20 tt~ percentile is actually higher lhan the stated 80(Z comfort 
level. For ,V = 50, the 80% comfort level is given by' the 5 t~ order statistic. 
See lIogg &: Craig [8]. 

5 D e s c r i p t i o n  of  the  B u s i n e s s  m o d e l  

We utilized the FT algorithm on a single premium life insurance liability. Our 
asset universe consisted of noncallat)le corporate "A" rated bonds with vari- 
ous maturi t ies ranging froIn one year to thir ty years. We employed stochaslic 
pricing on a s ta tu tory  basis for 20 },cars and assumed that  the po[icy cred- 
ited interest rate would be determined at each policy anniversary. Also, 
we assumed that  this credited interest rate is based on an asset portfolio 
net earned rate less a spread. Additionally, we assumed that  policyholder 
lapses would only be tile result of disintermediation, and lapses would occur 
when the competi tor  rat(', (specifically the five-year Treasury plus a spread), 
excee(ted the credited rate by a threshold. The pricir~g model purchased neg- 
alive assets whetl  cash was needed. This serves the s a m e  econo ln ic  purpose as 
selling assets, except that s ta tutory interest maintenance reserve accounting 
is avoided and no taxable event occurs. 

The initial portfolio strategy consisted of a. proport.i(m of various corporate 
"A" rated noncallable bonds. Any reinvestments and disinvestinents in the 
projection used the same initial investment strategy. The initial portfolio 
strategies are first, found by the initial experhnelltal design, then they are 
determined 1)y the FT algorithm. 

6 Efficient  Frontier  R e s u l t s  

As we discussed in Section 4, many profit and risk met, rics could be used for 
optimization. \Vhen applying the FT algorithm we set the objective function 
to maximize tile l'eLurn Oil equity (ROE) and to minimize the PARSTI) on 
the distributiou of" distr ibutable earniHgs. To accomplish this, we had to 
rescale tile PARSTI)  value ill such a way' to maximize the objective flmction 
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when PARSTD is minimized. This was accomplished by the following: 

H S _ P A R £ ' T D  = ( P A R S T D -  M A X P A R S T D )  
( M I N P A R S T D  - M A X P A f { S T D )  

(3) 

The  above formula limits RS_PARSTD between zero and one, and it is max- 
imizes RS_PARSTD as PARSTD is minimized. (Note: Here MA X P A RS TD  
and MINPARSTD are initially es t imated by the highest and lowest. PARSTD 
values obtained from the initial series of experiments .  These values are then 
"grossed tip" to make sure that  PARSTD does not go outside of the bounds 
MIN PA RSTD and MAXPARSTD. )  

In a similar fashion, we had t.o rescale the ROE vahms obtained fl'om the 
initial experiments.  The formula used is: 

( ~ o E  - M I X t { O V )  
RS_ROE = ( 4 )  

( M A X R O E  - M I N R O E )  

Unlike PARSTD,  ROE will be maximized if RS_ROE is maximized.  This 
formula also assures tha t  the value of RS_ROE will between zero and one. We 
determined MINROE and MAXROE in a similar fashion as MINPARSTD 
and MAXPARSTD.  

We used the following object ive function, which placed twice the emphasis 
on ROE. 

1 

= -' q " '  - 1 ( 5 )  r [(1 + Rs_~ou)")( l  + R~_PAR,~ ~ D)] ~ 

This object ive flmction was designed in tile same fashion as recommended 
by Itendrix [7]. 

We were somewhat surprised when the FT opt imizat ion de termined that  
the best static investment  s trategy was effectively a barbell strategy. (We 
actually could have used all of the assets, however the sum of the two assets 
in the barbell covered over 99.9% of the allocation.) We did additional opti- 
mization experiments  with other  metrics,  which confirmed the initial results. 

Figure 7 shows the performance of a three-year  and a ten-year barbell 
versus various bullet (or ladder) bond strategies. 4 As you can see, the point 

4Unlike other barbell type results that increase risk with a barbell strategy, the static 
barbell strategy in this business model actually reduced the risk, 
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corresponding to the 3 / l0  barbell is above the efficient fl-ontier determined by 
the ladder portfolios, r' Note, in order to reduce experimental  volatility, each 
matur i ty  consisted of an equally allocated ladder. For example, a five-year 
corporate bond consisted of an equal weighting of four-year, five-year, and 
six-year matur i ty  bonds. Similarly, the three-year/ ten-year  barbell, consisted 
of two-year, three 5,ear, four-year, nine-year, ten-year and eleven-year bonds. 

The explanation for the selection of the barbell portfolio include: 

1. The differences of the corporate yield curve at various maturit ies.  

. We are assuming the initial asset strategy is used for all investments 
and disinvestments. For example, when the initial strategy is a three- 
year / ten-year  barbell, the asset portfolio at the" start  of year four would 
consist of 25~X, three-year, 25% ten-year and 50~Z: of a seven-year bond, 
which lengthens duration. 

. The nature  of the interest rate generator. The generator produces yield 
curves from a realistic l)erspective, and the emt)edded risk premium 
within the generator would lead to a bias for longer assets. 

4. Other interactions of assumplions in the business model. 

5. The possibility that  the model inefficiencies were optimized. 

We found that  the FT algorithm to be very, effective in the selection of 
the opt imal  static asset allocation for our specific new business model. In 
fact, in our initial experiments,  we used only fifty, interest rate scenarios and 
obtained the barbell strategy,. When we expanded the study to 250 scenarios, 
we observed that  the barbell s trategy still outperformed the various ladder 
strategies. 

Our emphasis in the use of the F T  a.lgorit.hnl was a. preliminary foray 
into a t t empt ing  to lind optimal portfolio mixes that  would maximize the 
stockholder's return. The use of our objective function .5 was in effect a 
uti l i ty function that  we placed upon the business model t.o evaluate the profit 
position. We will continue our research in the optimal choice of assets using 
risk neutral pricing on the dist.rilmtable earnings. 

5This is not exactly an efficient frontier, since it is in tile fourth quadrant, and it uses 
PARSI'D instead of the standard deviation. These types of graphs occur when a product 
line underperforn~s from the target ROE. 
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7 C o n c l u s i o n s  a n d  F u r t h e r  R e s e a r c h  

We were very pleased with the ease of use and rapid convergence of the FT 
algorithm. This method would be a wonderful addition to any actuary's 
optimization toolbox. 

One of our next steps will be to employ a dynamic asset strategy through- 
out the projection period, We have examined various papers that are being 
used in the generalization of statistical regression. See [4, 14]. These meth- 
ods discuss a method to graphically obtain the smallest dimensional model 
that does an adequate explanation of the data. We plan to use some of these 
methods to determine the optimal dynamic asset strategy to support a line 
of business. 

The usage of Hendrix's experimental design is a very reasonable approach 
for most problems. However, due to the unique aspects of portfolio optimiza- 
tion, we are exploring alternative methods to construct the initial experi- 
mental design. One method we are considering is the use of low discrepancy 
sequences in the design phase. 

We have found that the FT algorithm is a Very effective optimization 
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tool, and we believe that this tool should be(:onm a standard within the 
actuarial community. We hope tim! its simplicity and ulility will help others 
to optimize their decision making as well. 
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