ACTUARIAL RESEARCH CLEARING HOUSE
1999 VOL. 1

Portfolio Optimization in Corporate Models

William Babcock Steve Craighead

Nationwide Financial Services

November 1998

Abstract

Design and future maintenance of an asset portfolio backing a new
line of business is critical for proper asset and lability management for
that business. Most portfolio optimization methods utilize linear or
quadratic programming and require the user to specify the asset and
liability attributes and cash flows into the program. The programmer
must also supply an objective function to allow the program to find
the optimal asset mix for the associated liabilities. Two problems with
this approach are that the liability cashflows are fairly static and that
one must frequently rebalance the portfolio.

An alternative approach would be to develop a corporate model of
both the assets and liabilities and incorporate various econoniic sce-
narios as input into the model. Asset strategies would be measured
against a specific objective function that is calculated by the corporate
model. Unfortunately, the majority of maximization algorithms avail-
able are very time consuming, and obtaining a reasonable portfolio
mix becomes impractical. We overcome this difficulty by using a very
rapid optimization method from the chemical engineering profession.
We will include an example of the use of this process to determine an
optimal portfolio. We will also discuss modifications of the algorithm
that is required when the shorting of assets is not permitted.

Key Words:

Corporate Models, OAVDE, ROE, Portfolio Optimization, Floppy
Triangle, Kxperimental Design, Stochastic Immunization
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1 Introduction

Many asset portfolio optimization methodologies employ linear or uadratic
programming to obtain a portfolio that best matches or immunizes a gen-
erally static set of liability cashflows. These methods are fairly computer
mexpensive. and work well when the liability models are not extremely com-
plex.

In the life insurance industry, most liabilities are very dynamic and com-
plex, and proper pricing requires stochastic modeling. Dembo in [5] addresses
stochastic portfolio design by using simple linear or ¢uadratic programming
on each scenario to find the best asset that matches that scenario’s cashflows.
Using a weighting system on each scenario, he associates the amount of that
specific asset to be held in the overall portfolio. His method tends to avoid
the barbell effect, which is observed with other optimization methods by not
discarding any of his assets.

All optimization problems require limits or constraints. The insurance
industry is very unique, and the following are industry-related constraints
that should be included in any insurance portfolio optimmization problem.

i. Risk Based Capital. The statutory requircments prescribe additional
surplus be established for asset default, pricing risk, interest rate risk
and business risk. The amount of surplus depending upon the level of
the risk.

2. Reserve requirements. There are several methods to set up appropriate
lability reserves, and generally the most cost-effective reserve utilizes

company surplus most efficiently.

3. Statutory Limitations of Distributable Earnings. There 1s a statutory
limitation of the amount that a stock insurance company can distribute

to their stockholders.

4. Capital Requirements of a Comipany. Investmentsof an insurance com-

pany should exceed the companies cost of capital; otherwise the com-
pany is using its capital inefficiently.

Because of the above the actuary should seriously consider the efficient use

of surplus. The analysis of surplus requires accurate asset and liability models
that not only produce reliable asset and liability cash flows, but also properly
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model reserves, risked hased capital and statutory distributable earnings.
From these models, the actuary needs to obtain the cash flow streams of the
distributable earnings to either calculate the economic value of the stream
or to determine the internal rate of return of the stream. This internal rate
of return would correspond to the company's return on equity. Additionally,
the actuary would use the models to obtain the best product design and asset
mix that would have the greatest impact on the bottom line. Later in the
paper we will describe a new business model that will maximize the return
on equity while at the same time take into consideration the various risks
associated with the distributable earning streams.

Taking the above approach creates complex models that require optimiza-
tion on either the economic value or the return on equity. These sophisticated
models can be very expensive models 1o produce results. The concept of ex-
pense is related to the length of time to create, audit and use the computer
to process. Also, as the number of scenarios processed increase, the run
times of the model also increase. Most optimization methods such as chief
descents or Levenberg-Marquardt methods (see [12]) require extensive com-
puter simulations to obtain the proper estimation of the gradients on the
non-linear surface. One is not even guaranteed that the solution obtained by
these optimization methods will be the best global solution. In fact the best
global solution might not actually be the best business solution. This situa-
tion corresponds to the physical concept of a stable or unstable equilibrium.
The best glohal solution may give you the highest value or highest return on
equity, but could require a constant rebalancing of the portfolio to maintain
the position. The solution would not be a stable solution that could easily
move away from optimal to sub-optimal quickly. Whereas, the best business
solution may be a product or asset mix that may not have the highest return
but would give the highest stable return, without frequently rebalancing.

Due to all of these possible constraints, both theoretically and practically,
a very good answer in a timely manner would have more value than the
untimely best answer.

These constraints of time, expense aud stability were reasons that chemi-
cal engineers in the 1960’s developed a non-linear optimization method called
the Floppy Triangle (hereafter denoted F'T'). The oddity of the name will be-
come apparent from the geometric explanation given later in Section 2.

In Section 2 we will give a geometric description of F'T. In Section 3 we will
describe the process of setting up the initial experiments. In Section 4 we will
describe the necessary risk and return metrics and define the optimization
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target. In Section 5 we will describe the basics of the business models and
the asset universe used. Here we will discuss the risk/return of the various
test portfolios and the optimal portfolio obtained by the F'T algorithm. In
Section 6 we will use an efficient frontier method to display our experimental
results. In Section 7 we will discuss our conclusions and further possible
research.

2 Floppy Triangle

(. D. Hendrix ! in his introduction of the T algorithm to the chemical
engineers at Union Carbide, says:

Few people can think in terms of three or more indepen-
dent variables acting simultaneously. Those who can are usually
quashed by the surrounding “two-dimensional thinkers”. As a
result, one rarely finds projects in which more than two variables
were investigated before a report was written. Hence the origin
of the sequences: vary one or two variables, write a report. Then
vary another variable (perhaps two), write another report. Fach
report discusses the effects of the variable upon selected responses
rather than directing the effort to the objectives: Iind the best
combination of the variables.

Variations on this theme include factorial and fractional fac-
torial experiments. These methods are inadequate for systems of
more than five or six potent variables. They will reveal effects of

the vartables upon each response.

The matter is further complicated by the fact that variables
may interact. That is, the effect of a variable upon a given re-
sponse depends upon the levels of one or more other variables in
the system. It then follows that the optimum level of any variable
may depend upon the level of several other variables, and indeed
that it may be quite meaningless to speak of the optimum of any
single variable. It is clear that the simultaneous optimum of all
such variables iy most weaningful.

UThis section is derived in part from C. D. Hendrix's paper “Empirical Optimization in
Research and Development™. This paper is a very old internal working paper for the Union
Carbide Corporation. We will be glad to provide a copy of the original upon request.



It is well, even necessary, to know the effects of each and
every variable in a system. But would it not be better to find the
uear-optimum combination of all variables simultaneously, then
explore the effects of variables near the optimum?

He goes on to say:

This method begins with k& +1 trials in & dimensions (& inde-
pendent variables), those & + I trials being arranged in the form
of a regular simplex. The k+ 1 outcomes are ranked from best to
worst. Here a full ranking is not necessary. Ouly the worst out-
comes are of immediate interest. The worst trial is then rejected.
A trivial calculation indicates a trial to replace the one rejected.
The procedure is repeated sequentially, maintaining an inventory
of k + 1 trials at every stage.

A variation on this scheme was developed by J. S. Bodenschatz
at Union Clarbide. In this variation, the n: worst trials are rejected
and replaced by m new trials. The choice of m is at the discretion
of the experimenter. However, some choices of m are better than
others.

There are several advantages of the F'I' method. The question
of “when to move” does not arise. Once the original set of & + 1
trials is completed, a move is made every in trials. The time
intervals hetween moves are thereby abbreviated, thus supporting
a high level of interest. ..

The question of “where to move” is settled by the trivial cal-

culation rule:
Twice the average of the best, minus the worst.

We will demonstrate the use of this rule in the following subsection.
Hendrix goes on to say:

The I'T method is not without shortcomings. The principle
difficulty is that the method may lead in the wrong direction (or
fail completely) if the gradient/error ratio is too low. A “false
optimum” can arise if an outcome is fortuitously “good™. These
shortcomings have not greatly detracted from the advantages of
I'T. The simplicity of the I'T' methods requires little or no training
in statistics or optimization methodology.
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Next, we will use a simple geometric presentation that demonstrates the
simplicity of the algorithm (as well as reveal why FT is called the “Floppy

Triangle”).

2.1 A FT Example in Two Variables

Consider a portfolio selection process with three separate assets to be pur-
chased. Call the percentages of the assets purchased X,,X,,1 — X, — X,. The
objective 1s to increase the rate of return. We will outline how to improve
the combinations of X| and X,;. We will begin with three separate asset
allocations arranged as a triangle in the two variables. Denote the three as
points A, B, and (. See Figure 1.
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Figure I:

Trial X, X; 1 =X — X, Rateof Return

A 20%  15% 65% 7.4%
B 25%  15% 60%: 7.6%
C 22.5%  20% 57.5% 8.2%

Table 1: Initial Portfolio Allocations

Example values of the rate of return are contained in Table I. Note that
point *A” is the worst of the threc trials. We will discard “A™ and obtain a
new trial at *I»". (Note how triangle ABC “flops” over into triangle BCD).
See Figure 2.
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Trial X X2 1 —X; - X2 Rateof Return

B 25%) 15% 65% T.G%r
C 22.5% 20% 57.5% 8.2%
D 27.5% 20% 52.5% 8.5%

Table 2: Second Portfolio Allocation

Processing the allocation we obtain the result of the “D” allocation in
Table 2. Note that because of the discarding of “A”, the inventory of trials
remains constant at three.

Now examine the current inventory of trials and select from these the
worst point “B”. See Iigure 3.

Trial Xy Xy 1—X; —X,; Rateof Return

C 22.5%  20% 65% 8.2%
D 27.5% 20% 52.5% 8.5%
E 25%  25% 50% 8.9%

Table 3: Third Portfolio Allocation

As before, reflect the worst point “B” to a new trial point “E”. Discard
B from further consideration. Process asset allocation “E”. See Figure 4 and
able 3.
Continuing the process, one will approach an optimal answer.
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Figure 4:

To extend the FT to more than two variables requires one to use the
following rule:

Twice the average of the best points, minus the worst point.

There are some ditficulties associated with using F'I' and that of proper
portfolio allocation. If the portfolio manager is allowed to short from the
assets in the asset universe, the standard FT algorithin will be sufficient
for designing the optimal portfolio. However, if shorting is not allowed the
FT algorithm may create unreasonable asset allocations. A simple three
asset allocation example will demonstrate this problem. In Figure 5, there
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are three different asset allocations, A, B, and C. However, suppose that
experiment “B” is the worst experiment in the inventory. The next step in
the F'T algorithm will cause the situation in Figure 6 to arise.
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Figure 6:

We developed two methods to prevent the asset allocation from leaving
the allowable allocation space. The first method is to use the standard FT
algorithm, and if a specific asset’s allocation goes negative, set that specific
allocation to zero and adjust all of the other asset’s allocations pro rata by
the sum of all of the remaining positive allocations. Mathematically, as-
sume { X, X;,..., X, } is the asset universe, and {ay,aq,...,a,} is the asset
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allocation such that Y, a, = 1. Il there exists an «; such that a; < 0,

the new allocation will be {a;.az, ... ¢;-1.0,¢ coa,} !
24 2o U@y, T B T T
Z.:l ”‘+Z;=1+1 e

T'his method effectively reduces the asset universe by the single asset with the
negative asset allocation. This techuique actually speeds up the optimiza-
tion because the corporate model increases in speed as the asset universe is
reduced. llowever, because of the reduction of the asset universe. portfo-
hio allocations are created that replicate the problem of barbell portfolios as
discussed in Dembo [5). He discusses that most asset allocations obtained
through the use of linear or quadratic programming lead to a small asset uni-
verse of one or two assets unless certain restrictions (c.g. position limits) are
placed on the optimization algorithm. This also appears to accur when using
this type of modification of the FT algorithm. (Note: We have observed that
when shorting is allowed this problem does not occur with the F'T. Here, the
optimal portfolio mix leads to a mixture of all of the assets in the universe.)

The second method prevents the reduction of the asset universe and allows
an asset allocation of all of the assets. The allocation may become very small
for some of the assets, but position limits do not have to be forced npon the
F'T algorithm modification. Effectively the rule:

Twice the average of the best points, minus the worst point.
is replaced with

The square of geometric mean of the best points, divided by the corre-
sponding coordinate value of the worst point.

This method effectively replaces the new experiment design by that of log-
arithms to prevent the possible occurence of a negative «,. However, the allo-
cations obtained purely by this method violate the condition of 30, @, = L.
By adding the pro rata approach as in the first method, where the a; are
rescaled by the sum of the allocations, this problem is removed. This, of
course, transforms the pure geometric interpretation of the F'T into that of
a F'I" algorithm with scaling. However, the algorithm is still effective in de-
signing the subsequent experiments. This modified algorithm is the method
that we used in our example in Section 6.
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3 Imitial Experimental Design

One disadvantage of the use of the F'T algorithm is the need to develop the
initial experiments. Neither of us are experts in the various forms of exper-
imental design so we simply used the structure that Hendrix laid out in his
His methodologies were to use certain types of experiment de-

paper (7).
signs called Plackett-Burman plans or near-saturated or saturated factorials.

Hendrix gives the following discussion and rules:

As a rule, a large excess of trial points (beyond A+1 in & vari-

ables) will decrease the rate of progression. In spite of this, we
have found it convenient to use near-saturated (rather than satu-
rated) factorials and Plackett-Burman plans in lieu of simplexes
in high dimensions. Hence we recommend the following:

1.

2

3.

if & =2, use simplex.

if A =3, use simplex or saturated factorial (same thing}.

if 1 <k <7, use factional factorial in 8 experiments, or a
simplex as seems appropriate.

if 8 <k < 11, use Plackett-Burman plan in 12 experiments.
if 12 <k <15, use fractional factorial in 16 experiments.

if & > 16, use higher Plackett-Burman plans (or consider
using supersaturated two-level plans.)

Samples of each such plan are included here.

1. Simplex Plans (1),(2)

In two variables, a simplex(triangle) is just this:

Variables Variables
A4 B A B
— — , for example: 6 20
+ - 8 20
0 + 7 26

where “07 implies average of @l above.
In three variables, a simplex(tetrahedron) is this:
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Viartables Variables

A B C A B C
7, for example: 6 20 37
+ - = 8 20 37
0 + - T2} 37
0 0 + T 21 41
Or. in three variables, a saturated factorial (a rotated simplex) is
this:
Variables Variables
A B C A B C
o for example: 620 1
+ - = 8 20 37
-+ - 6 23 37
+ 4+ + 3 23 4l

2. Fractional Factorials (3), (3)

The initial pattern for four to seven variables can be developed
by assigning “high™ and “low™ levels to the 47 and “-* signs in
the following table.

Variables

AL CDLEEFEG
I — — — — + + +
2 — — o+ o+ b = =
R T
[ — + + - - — 4
5o+ — — o+ - = 4
6 + - + - - + -
T+ o+ - -+ = -
8 4+ + + + + + +

This initial pattern for 8-15 variables is developed from the
following table in the same manner.
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ABCDEFGH LI J KN LMNDO
i - - - -4+ - - - - 4+ 4+ + + + +
2 - = - 4+ - -+ + 4+ 4+ + - + - -
3 - = 4+ - -+ - 4+ 4+ + - + - + -
4 - -+ ++ + + - - 4+ - - - - +
5o— + = — — 4+ + + -~ + + - -+
6 — + — + + + - ~ 4+ - + - - + -
T -+ 4+ -4+ -+ -+ - -+ + - =
8 -+ 4+ + - = -4+ - - - - 4+ + +
9 + - - = -4+ 4+ - 4+ - - - 4+ + +
w + - -4+ 4+ 4+ -+ - - - + 4+ - =
I+ -+ -+ - 4+ + - - + = - + =
2+ -+ 4+ - - - -+ - 4+ 4+ = - +
B+ + - -4+ - =+ + 4+ - - - - +
Mo+ + — 4+ - — + - — + — + - + -
B+ + + = = 4 - = = 4+ + = 4+ = ~
6 + + + + + + + + + + + o+ + o+ +
3. Plackett-Burman Plans (4),(6)
A Plackett-Burman plan in 12 experiments is outlined in the
following table.
Variables
ABCDEFGCH T J K
I + + - + + 4+ - = - + -
2 - 4+ 4+ - 4+ 4+ - - +
30+ -+ 4+ - 4+ + + - - -
1 — + = + + = 4+ + + - =
5 — — + — + + - + + + -
&t - - - 4+ - 4+ + - + + +
T+t - - - 4+ -+ + - + +
8 + 4+ - - — 4+ - 4+ + = +
9 + + + - - = + - + + -
0 - + + + ~ - — + — + 4+
I+ - + + -+ = +

I+
f
t

!
§
|
|
|

t

—
N
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4. Supersaturated Plans (6)

If there s serious question about the potency of some variable,
there is evidence that a supersaturated plan (more variables than
experiments) is appropriate. Two ol many such two-level plans
are shown here. The first 1s for up to 16 variables in 12 experi-

ments, the second is for up to 24 variables in 12 experiments.

Variables

A B C D EF G H T
Lo+ 4+ + + + + + +
2 b b 4+ o+ o+ o+
3+ o+ 4 ko - =+
t + + + - - - 4+ = -
5o+ o+ - - = - —
6 + - - - + - - + -
T - - - 4+ - - 4+ - 4+
S — — 4+ - - 4+ - 4+ +
9 - + - - 4+ - 4+ + +
10+ — — + — + + + -
1 -4+ - + + + - -
2 — 4 — + + + — — -
¥

A B C D E F G H I J K
I+ - -+ o+ o+ - 1 ¥ -
2 - - — - ¥ + - 4+ - - %
3 - - + 4+ + -+ o+ - 4 -
.
5 0+ + + - 4 + - 4 o+ - -
6+ + 4+ +F + - + - - - ¥
T+ - - - - 4+ - - - 4+ 4
8 - 4+ - 4+ o+ - - - - 4 4
e
0+ - 4+ - - -+ o+ o+ -+
1M o— - 4+ o+ - o+ o+ o+ o+ o+ o+
2 - + 4+ 4+ - - - - + - -

J K
+ +
- +
+ -
- +
+ o+
+ +
+ -
- -+
_+__
L M
-
+_
+ o+
-+
+_
+ o+
F
+ o+

+ 4+ +

|

B T S S T T e R R T

| [

+ 4+ 4+

|

+ +

A

++ 1+ L+ D+ T

+ A+
+ + +

!

+H+ A+

IS

+ 4+ +

B S B S U I Sy G SR Ry

+ +

I

+ 1+ L+ L+

The actual construction of an initial table of experiments is
illustrated using the Plackett-Burham plan in 12 experiments.

1. Assign variable names to the columns.

2. Consider Column *A”. Select a low level and a high level of

the first variable,
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a (-) is shown in Column “A”. Assign the high level of “A”
wherever a (4) is shown in Column “A”. CAUTION: It is
wise to be conservative at this point. Do not space the levels
of the variables too widely.

3. Repeat (2) for each variable under consideration.

NOTE: It is not necessary that each erperiment be erecuted
at precisely the prescribed conditions. The achieved conditions
should be reported and used to progress to the next experiment(s).

In our example in Section 6, the raw asset allocations (before division by
the sum of the raw allocations), were 80% for variables calling for “+7 and
20% for the ones calling for “-”. If we used 0% for “-”, the FT algorithm would
exclude that asset and reduce the asset universe, as discussed in Section 2.1.

We are exploring other experimental design methods including low dis-
crepancy sequences [3, 6, 9, 11, 13], Latin hypercubes, or the new merger of
the two-Latin supercube sampling [10].

4 Profit Metrics and Risk Measures—OAVDE,
Expected ROE

In the first subsection, we will discuss various “bottom-line” profit measures,
such as option-adjusted value of distributable earnings (OAVDE) or expected
return of capital (ROE). These stochastic profit measures allow the actuary
to measure the anticipated profits of the company by incorporating the effects
of the embedded options in both the assets and liabilities.

In the second subsection, we will discuss various risk measures that quan-
tify the risk in a stochastic pricing environment. Some of these are percentile
estimators, and modifications of the standard deviation.

4.1 Profit Metrics?

Let us adopt the following notation:

2The following is based in part on Russ Osborn’s article Key Profit and Risk Measures:
Definitions
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Let M be the number of projection months for the corporate model.
Let 1n be the projected month index. m = 1... M.
Let (75, be the net statutory gain at the end of the projection month m.

Let /1S, be the required risk surplus (also known as target surplus) at

the end of projection month m.

1.

Let ARS, = RS, — £5,_, be the increase in required surplus in month

Let NIRS,, denote the net (after-tax) investment income on required

surplus in month m.

Let DI, = (7, — ARS,, + NIRS,, be the distributable earnings at the

end of month m.

m.

f.

mn.

Let N be the number of stochastic scenarios processed.

Let s denote the stochastic scenario index. s = 1....V.

Let p, be the probability assigned to scenario s.

Let DFE,,, = DFE, be the resultant distributable earnings for scenario s.

Let 7(2)

s,m

This rate is in bond equivalent yield format{BEY).

denote the gross short-term Treasury rate for scenario s in month
Let 74, denote the gross short-term Treasury rate for scenario s in month
This rate 1s an annual percentage rate format (APR).

Let r,,, be the after-tax short-term Treasury rate for scenario s in month
This is an effective rate.

Let TH denote the corporate tax rate.
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Let ROE denote the expected return on equity. This is also known as
the expected return on total capital (ROTC) or option-adjusted yield.

Let OAS represent the option-adjusted spread over risk-free Treasury
rates.

Let OAV DE denote the Option-Adjusted Value ol Distributable Earn-
ings.
Let Y be the target ROE (also known as the target ROT().

Let S denote the target OAS.

QO AV DFE represents the expected present value of future profit, where the
expectation is taken over a probability space of stochastic model scenarios.

To find the appropriate short-term Treasury rates, we convert the nominal
rates to annual cffective rates and adjust for quarterly taxes as follows:

Tsim = <1 + T_‘}l)i — 1, and
rom = {14 (1 = TR [(1 4 mm) b = 1]} = 1.

The formulas for OAVDE, ROE, and OAS will exhibit the following

general form:

il DEsm

I)V
PresentValue(i) = Zps Z ( - ) , (1)
s=1

m=1 H(l + l.,.,J)ll_z

j=1

where ¢ = {i,,,} is the given array of monthly interest rates by scenario by
projection month. These rates are determined according to the purpose at
hand, as described below.

Assuming the present value of future distributable earnings is never neg-
ative, we can compute profit measures as shown in Table 4. However, since
some scenarios may have trailing negative distributable earnings, it would
be improper to discount such future earnings at the assumed discount rates
above. Instead, we need to discount future negative carnings in the same
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To Compute: || Set i,.,, cqual to: | Solve Eq 1 for: Assuming: |

OAVDE(Y) Y OAVDE lem = Y is constant

OAVDE(S) (Tsm +5) OANVDE S 1s constant
ROFE ROFE ROE PresentValue(i) =0
OAS (Tom + OAS) | 0OAS PresentValue(i) =0

Table 4: Profit Mcasures

way we would discount future benefits to compute a reserve by using after-
tax investiment earnings rates. Therefore, we cannot write the present value
computation as a simple summation. Rather, we must state the calculation
as an algorithm that starts at time A and discounts backward month-by-
month. iteratively discounting each month’s value to the preceding month at
the appropriate interest rate:

PresentValue(s. M) = DE, u

PresentValue(s,mn)
(1 + dom)T2

{ lem Wwhen PresentValuels,m) > 0,

PresentValue(s,m—1) = DE,,_ +

where ¢ .
Pam Psm when PresentValue(s,m) < 0.

N
PresentValue(l) = EpsPr(.wnH'a/uc(s,O)

s=1

We use realistic random interest rates for our scenario set, and so we
assign p; = % for all s.

The above discounting algorithm is discussed in Becker [1]. A less tech-
nical overview that explains the motivation behind this type of profits model
is Becker [2].

4.2 Risk Measures®

The measurement of risk requires the portfolio manager to quantify the pos-
sible dispersion of results from the expected. The portfolio manager will

3The following is based in part on Russ Osborn’s article Key Profit and Risk Measures:
Defimtions

314

Jorm=M. ..



use the risk metrics in one of two ways. The first is that they will produce
a risk/return trade off graph (efficient frontier) where the various potential
returns will be graphed against the level of risks measured. See Section 6
for our example of this graph. The other use is to use the metric in an opti-
mization scheme to maximize a return metric of the portfolio while reducing
the risk metric. This will design the portiolio that will best fit the situation
being studied. This is the approach that we will take in this paper where we
are using the I'T algorithm as the maximization scheme. However, we will
deviate from the common portfolio approach of finding the best asset portfo-
lio that matches a liability cash flow. Here we will maximize the stockholder
return metric while reducing the overall risk metric.

The various risk measures that we will discuss besides the samiple standard
deviations are partial sample standard deviation, percentiles and “comfort

levels™.
The formula of the partial sample standard deviation (denoted PARSTD)
is:
A . — X,0)?
PARSTD = \/Z“ fin{. - .0) (2)
" —

The justification of the Min(X; — X,0) term is to make sure that the metric
measures the dispersion of results associated with downside risk. The com-
mon standard deviation, when used to measure dispersion of results, includes
values both above and below the mean. PARST D however only emphasizes
the contribution to the dispersion due to the lower "tail” results. When try-
ing to maximize return while reducing risk, the standard deviation is not
the best risk metric. If one tries to maximize the return and reduce risk,
the portfolio manager will be discarding potential upside profit if he or she
uses standard deviation as the measurement of risk. PARSTD is a better
indicator of the downside risk, where the measurement of risk by PARSTD
does not include any potential upside profits. (Note: If a portfolio manager
were trying to match a fund index exactly (e.g., S&P 500 Large Cap), the
standard deviation would be a correct measure of the risk).

[f 0 < p < 1, then the (100p)"* percentile of the probability distribution
of a continuous variable X is a value £, for which Pr(X < &,) =p.

Suppose we would like to conservatively estimate a given percentile level of
a distribution using data from a random sample, such that we have a certain
level of confidence that we are not overstating the value of that percentile.
In mathematical terms, we want to find X, . such that Pr(X,. < §) = ¢
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where ¢ is the level of desired confidence, £, is the true (100p)** percentile of

the distribution and X, . is termed the [1 — (100p)]% “comfort level™. For
example. the 30% comfort level at a 98% confidence gives us a conservative
value for the 20 percentile of the distribution, with only a 2% probability
that the true 20" percentile is actually higher than the stated 80% comfort
level. For N = 50, the 30% comfort level is given by the 5% order statistic.
See Hogg & Craig [8].

5 Description of the Business model

We utilized the F'T algorithm on a single premium life insurance liability. Our
asset universe consisted of noncallable corporate “A™ rated bonds with vari-
ous maturities ranging from one year to thirty years. We employed stochastic
pricing on a statutory basis for 20 years and assumed that the policy cred-
ited interest rate would he determined at each policy anuniversary. Also,
we assumed that this credited interest rate is based on an asset portfolio
net earned rate less a spread. Additionally, we assumed that policyholder
lapses would only be the result of disintermediation, and lapses would occur
when the competitor rate, (specifically the five-year Treasury plus a spread),
exceeded the credited rate by a threshold. The pricing model purchased neg-
ative assets when cash was needed. This serves the same economic purpose as
selling assets, except that statutory interest maintenance reserve accounting
is avoided and no taxable event occurs.

The initial portfolio strategy consisted of a proportion of various corporate
“A” rated noncallable bonds. Any reinvestments and disinvestments in the
projection used the same initial investment strategy. The initial portfolio
strategies are first found by the initial experimental design, then they are
determined by the F'T algorithm,

6 Efficient Frontier Results

As we discussed in Section 4, many profit and risk metrics could be used for
optimization. When applying the FT algorithm we set the objective function
to maximize the return on equity (ROE) and to minimize the PARSTD on
the distribution of distributable earnings. To accomplish this, we had to
rescale the PARSTD value in such a way to maximize the objective function
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when PARSTD is minimized. This was accomplished by the following:

(PARSTD — MAXPARST D)
(MINPARSTD — MAXPARSTD)

RS_PARSTD (3)
The above formula limits RS_.PARSTD between zero and one, and it is max-
imizes RS_PARSTD as PARSTD is minimized. (Note: Here MAXPARSTD
and MINPARSTD are initially estimated by the highest and lowest PARSTD
values obtained from the initial series of experiments. These values are then
“grossed up” to make sure that PARSTD does not go outside of the bounds
MINPARSTD and MAXPARSTD.)

In a similar fashion, we had to rescale the ROE values obtained from the
initial experiments. The formula used is:

o (ROE — MINROLE)
S_It = 4
f5-ROE (MAXROFE — MINROE) “)

Unlike PARSTD, ROE will be maximized if RS_ROE is maximized. This
formula also assures that the value of RS_ROE will between zero and one. We
determined MINROE and MAXROE in a similar fashion as MINPARSTD
and MAXPARSTD.

We used the following objective function, which placed twice the emphasis

on ROE.

Y = [(1+RS_ROEY)(1+ RS PARSTD)]® -1 (5)

This objective function was designed in the same fashion as recommended
by Hendrix {7].

We were somewhat surprised when the F'T optimization determined that
the best static investment strategy was cffectively a barbell strategy. (We
actually could have used all of the assets, however the sum of the two assets
in the barbell covered over 99.9% of the allocation.) We did additional opti-
mization experiments with other metrics, which confirmed the initial results.

Figure 7 shows the performance of a three-year and a ten-year barbell
versus various bullet (or ladder) bond strategies.® As you can see, the point

4Unlike other barbell type results that increase risk with a barbell strategy, the static
barbell strategy in this business model actually reduced the risk.
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corresponding to the 3/10 barbell is above the efficient frontier determined by

the ladder portfolios.® Note, in order to reduce experimental volatility, each

maturity consisted of an equally allocated ladder. For example, a five-year

corporate bond consisted of an equal weighting of four-vear, five-year, and

six-year maturity bonds. Similarly, the three-year/ten-year harbell, consisted

of two-year, three-year, four-year, nine-year, ten-year and eleven-year bonds.
The explanation for the selection of the barbell portfolio include:

I. The differences of the corporate yield curve at various maturities.

2. We are assuming the initial asset strategy is used for all investments
and disinvestments. For example, when the initial strategy is a three-
vear/ten-year barbell, the asset portfolio at the start of year four would
consist of 25% three-year. 25% ten-year and 50% of a seven-year bond,

which lengthens duration.

3. The nature of the interest rate generator. The generator produces yield
curves {rom a realistic perspective, and the embedded risk premium

within the generator would lead to a bias for longer assets.
4. Other interactions of assumptions in the business model.
5. The possibility that the model inefficiencies were optimized.

We found that the I'T algorithm to be very effective in the selection of
the optimal static asset allocation for our specific new husiness model. In
fact, in our initial experiments, we used only fifty interest rate scenarios and
obtained the barbell strategy. When we expanded the study 1o 250 scenarios,
we observed that the barbell strategy still outperformed the various ladder
strategies.

Our emphasis in the use of the I'T algorithm was a preliminary foray
into attempting to find optimal portfolio mixes that would maximize the
stockholder’s return. The use of our objective function 5 was in effect a
utility function that we placed upon the business model to evaluate the profit
position. We will continue our research in the optimal choice of assets using
risk neutral pricing on the distributable earnings.

>This is not exactly an efficient frontier, since it is in the fourth quadrant, and it uses
PARSTD instead of the standard deviation. These types of graphs occur when a product
line underperforms from the target ROFE.
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7 Conclusions and Further Research

We were very pleased with the ease of use and rapid convergence of the F'T
algorithm. This method would be a wonderful addition to any actuary’s
optimization toolbox.

One of our next steps will be to employ a dynamic asset strategy through-
out the projection period. We have examined various papers that are being
used in the generalization of statistical regression. See [4, 14]. These meth-
ods discuss a method to graphically obtain the smallest dimensional model
that does an adequate explanation of the data. We plan to use some of these
methods to determine the optimal dynamic asset strategy to support a line
of business.

The usage of Hendrix's experimental design is a very reasonable approach
for most problems. However, due to the unique aspects of portfolio optimiza-
tion, we are exploring alternative methods to construct the initial experi-
mental design. One method we are considering is the use of low discrepancy
sequences in the design phase.

We have found that the FT algorithm is a very effective optimization

319



tool, and we believe that this tool should become a standard within the
actuarial community. We hope that its simmplicity and utility will help others
to optimize their decision making as well.
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