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ABSTRACT:  This paper discusses a problem in corporate 

finance, the problem of selecting from among a group of possible 

economic projects. This problem most  certainly involves future 

contingent events and is a natural  for consideration by actuaries 

interested in expanding into non-traditional practice areas. 

Current  texts on Corporate Finance usually favor discounted 

present  value methods over internal rate of return methods. In 

part  this is due to the problem of non-uniqueness  of internal 

rate of return. However,  as we point  out, whenever  non- 

uniqueness  occurs there is also a problem with the discounted 

present value method. In this paper  an internal rate of return 

method developed by Terchroew, Robichek, and Montalbano 

(see Kellison's Theory of Interest, 2 nd ed., pg. 158) is used as the 

basis for a stochastic model for solving the above selection 

problem.  
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EXPECTED INTERNAL RATE OF RETURN 

INTRODUCTION 

The major role of the actuary is to control the financial consequences of future 

contingent events. The actuary traditionally performs this role for an insurance 

company or in the field of employee pensions. However,  this major role clearly has 

application in other areas and for the past few years actuarial organizations have 

been educating current and prospective membership about the opportunities for 

applying act,o, arial skills in financial areas outside of the traditional ones. All large 

corporations are faced with financial decisions whose success depends on future 

contingent events. The mathematical/f inancial  tools for dealing with these 

decisions are becoming more sophisticated and it is probably fair to say that in many 

corporations the financial officers are not equipped to use these tools. Thus the 

opportuni ty  for a mutually beneficial relationship exists between the actuarial 

profession and the (non-insurance) corporate world. 

The purpose of the current paper is to discuss an aspect of corporate finance. Our 

interest is in the area of capital budgeting in which a corporation is faced with the 

problem of deciding whether  to proceed with an economic project. 

1. R A N K I N G  ECONOMIC PROJECTS 

Bv an economic project we mean a finite sequence of cash flows, 

C = {c0,cl,c2,...,Cn} with c o negative and at least one of the c i positive. Denote the 

set of all such projects by I. We think of the ci as the net periodic cash flows 

generated by an economic project undertaken by a corporation. Faced with the 

problem of choosing from a number of possible projects, the corporation must rank 

them by some method. A common method of doing this is to use the discounted 

present value of the sequence of cash flows at some discount factor, v. This method 
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will p rov ide  a ranking  bu t  d i f ferent  choices of v will yield di f ferent  rankings  and 

one m u s t  p rov ide  a ra t ionale  for the choice of d iscount  factor. A second  m e t h o d  for 

ranking projects  is to use internal  rate of re turn  (IRR). Let t ing x0 = 1 + i0, i0 is an 

IRR for the project C if x0 >- 0 and is a root of the equation: 

C0 xn + Cl xn-1 + ... + Cn = 0. (1) 

Here  w e  have  the p r o b l e m  that such an equa t ion  may have  mul t ip le  real roots  or  it 

may  have  none.  In the case w h e r e  (1) has a single non-nega t ive  root  we  will call the 

c o r r e s p o n d i n g  i0 the  classical IRR. In most  of the m o d e m  corpora te  f inance 

textbooks internal  rate of re tu rn  m e t h o d s  are d o w n p l a y e d  in favor of d i scoun ted  

p re sen t  value m e t h o d s  for eva lua t ing  inves tmen t  projects. The a r g u m e n t  is that  

the latter give a def ini te  a n s w e r  to the ques t ion  of whe t he r  a project  should  be 

accepted.  That is, accept  if the p resen t  value of projected cash flow is posit ive.  

How e ve r ,  w h e n e v e r  the  cash f low sequence  has a n o n - u n i q u e  IRR, the p re sen t  

value m e t h o d  is also anomalous .  For example  in Exhibit I, a project  is rejected if a 

rate of re turn  i1 is used  for d i scount ing  and yet  accepted if a still h igher  rate i2 is 

used.  This is cer tainly counte r  to intui t ion and sugges ts  that  pe rhaps  internal  rate of 

re turn  m e t h o d s  shou ld  not  be d i sca rded  premature ly .  

EXHIBIT 1 

Hencefor th  we  shall  refer to the classical IRR as C_IRR. Pure  loan projects  are 

examples  of projects  h a v i n g  a C_IRR. These are projects hav i ng  co < 0 and all 

o ther  ci non-negat ive .  The class of all such projects  is s imply  o rde red  by the C_IRR 

(treating as equiva lent ,  projects  hav ing  the same IRR). Moreove r ,  the C_IRR 

prov ides  a s imple  o rde r i ng  on the class of all projects having a C_IRR. The o rde r i ng  

on ei ther  of these sets d e t e r m i n e s  a partial  o rde r ing  on the collect ion of all projects  

descr ibed  above. There  is subs tant ia l  l i terature devoted  to the  a t t empt  to ex tend  the 

partial  o rder ing  g iven by the  classical IRR to the set I. Mathemat ica l ly ,  there  is no 

problem.  Any  partial  o rde r ing  on a set, S, may  be ex tended  to a total o rder ing  on S 
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by t ransf in i te  induct ion .  The p rob lem is to do  this in a w a y  wh ich  has economic  

m e a n i n g .  

2. A N  A X I O M A T I C  T R E A T M E N T  

In [3], [4] P r o m i s l o w  and  Spring give an axiomatic  f r a m e w o r k  for ex tend ing  the 

no t ion  of in ternal  rate  of r e tu rn  to all projects  of the type  cons ide red  here.  Their  

ax ioms  desc r ibe  a func t ion  w h o s e  values  co r r e spond  to the accumula t ion  factor 

1 + i ra ther  than  to the  rate i. Briefly s ta ted their  axioms are: 

Cont inu i ty :  The in ternal  rate of re turn  shou ld  be a con t inuous  funct ion  of 

the  ci. 

Monotonic i ty :  The internal  rate of re turn  is non -dec rea s i ng  wi th  respect  to 

each ci. 

Normal i za t ion :  For pu re  loan projects ,  the internal  rate of re turn  shou ld  

agree  wi th  the classical IRR. 

A func t ion  m: I -~ [0,~) satisfTing the above axioms is called an in te rna l  rate of  

r e t u r n  f u n c t i o n .  

P r o m i s l o w  and  Spr ing  deve lop  a theory t e rmed  the Theory  of C-spaces  wh ich  is 

then  used  to obta in  internal  rate of re turn  funct ions .  They s h o w  that so lu t ions  of 

the p r o b l e m  be ing  cons ide red  here previous ly  obta ined by Ar row and Levhari  [1] 

and by Teichroew,  Robichek,  and Monta lbano  [5], [6] can be got ten  by these m e t h o d s  

and they  also obta in  a n e w  vers ion of the internal  rate of re tu rn  which  p rov ides  a 

rank ing  for I. We cons ide r  each of  these solu t ions  in the next  section. 

3. THREE R E A L I Z A T I O N S  

We first  descr ibe  the me thod  of Ar row and Levhari.  Given  a project  

C = {c0,cl,c2,...,cn} let 

~Jp(X) = c0 + Cl /x  + c2/x2 + ... + Cp/X p 0 _ < p < n .  (2) 
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Note  that  Up(X) is the d i s coun ted  presen t  value of the t runca ted  project  cons is t ing  

of the first p + 1 cash f lows at d iscount  factor 1/x.  The funct ion 

~(x) = sup(~0(x),~l(X),...,~n(x)) (3) 

is a con t inuous  dec reas ing  funct ion  and has  exactly one  real root  x0. The Ar row-  

Levhari  IRR is de f ined  to be i0 = x0 - 1. We will refer to this as the A_IRR. As 

P romis low-Spr ing  s h o w  this m e t h o d  does  yield an internal  rate of re turn  funct ion  

and thus  g ives  an ex tens ion  to I of the classical IRR on the  set  of pure  loan projects.  

H o w e v e r  this does  no t  solve our  economic  problem.  The root  so obta ined is an IRR 

for a t runca ted  project  and  t runca t ion  may  not  be a feasible opt ion .  Let us cons ider  

two s imple  examples .  Let 

Cl  = [-1,5,-11,7} C2 = {-1,5,-11,15}. (4) 

Each of these projects  has  a classical IRR. For C1 it is 0 and for C2 it is 2. The 

A_IRR is 4 for bo th  projects .  Though  the A_IRR ex tends  the  partial  o rde r i ng  

given by the C_IRR on  pu re  loan projects,  it does  not  ex tend  the partial  o rde r ing  

g iven on  the set of projects  hav ing  a C IRR. 

The m e t h o d  of Te ichroew,  Robichek,  and Monta lbano  is t reated in Kell ison's  

Theory of Interest [2]. The ma in  idea of this me thod  is to cons ider  two states for the 

project  d e p e n d i n g  u p o n  w h e t h e r  the balance of the cash f low s t ream is nega t ive  or 

posit ive.  The project  e a rn ing  rate appl ies  only  in the fo rmer  state.  W h e n  the 

project has  a pos i t ive  ba lance  a market  rate applies.  To descr ibe  the me t hod  we 

def ine  a col lect ion of  ope ra to r s  T d acting on funct ions f: [0,,~) --9 R w h e r e  R is the 

set of real n u m b e r s  and  d and  c are real wi th  d > 0. This opera to r  is def ined  by: 

Tdf(X)c- = ~[df(x) + c f(x) - 0 
txf(x) + c f(x) < 0. (5) 

In our  first use of this opera tor ,  d will be the (constant)  marke t  interest  rate. We  

will thus de le te  the supe r sc r ip t  d. We then recursively def ine  balance funct ions  Bk 

for the project  C by B0(x)= co and 
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d 
Bk(x) = Tck Bk-l(X) k = 1,2,...,n. (6) 

T h u s  Bk(x) is the  ba lance  of the  project after  k yea r s  u s i n g  a c c u m u l a t i o n  factor x 

in yea r s  w h e n  the ba lance  is nega t i ve  at the  b e g i n n i n g  of a year  and  a c c u m u l a t i o n  

factor  d o the rwise .  No te  tha t  s ince  co is nega t ive ,  the  Bk are  m o n o t o n e  

d e c r e a s i n g  c o n t i n u o u s  func t ions .  T h e y  are  all p iecewise  p o l y n o m i a l s .  H e n c e  if 

Bn(0) > 0 the re  is a u n i q u e  root  x0 of Bn(x). The  Te ichroew,  Robichek,  M o n t a l b a n o  

IRR w h i c h  we  will refer to as the  T_IRR is t hen  de f ined  to be  i0 = x0 - 1. If Bn(0) < 0 

the  T_IRR is -1. Aga in ,  as s h o w n  by  P r o m i s l o w  and  Spr ing ,  this  m e t h o d  y ie lds  an  

in te rna l  ra te  of  r e tu rn  func t i on  and  t h u s  e x t e n d s  the  class ical  IRR on  p u r e  loan  

projects .  C o n s i d e r  the  e xampl e s :  

C1 = {-5,6.5,-2.5,2} C2 = {-5,-1,1,8}. (7) 

N e i t h e r  is a p u r e  loan project  bu t  bo t h  h a v e  class ical  IRR. For C1, C_IRR = .166 a n d  

for C2, C_IRR = .16. The  T_IRR for t hese  projects  for ma rke t  rates d = 1.08 a n d  

d = 1.25 are: 

1.08 1.25 

C1 .157 .173 

C2 .160 .160 

(8) 

A l t h o u g h  C1 ha s  a C_IRR, the  T_IRR is no t  equa l  to the  C_IRR. That  is, the  

T_IRR d o e s  no t  ex t end  the  r a n k i n g  g i v e n  by  the  C_IRR on  the set of all projects  

h a v i n g  a C_[RR. If we  are  c h o o s i n g  projects  on  the  bas is  of  the  T IRR we  w o u l d  

prefer  C2 to C1 at m a r k e t  rate 1.08 b u t  w o u l d  choose  Cl  over  C2 at ma rke t  rate 

1.25. In itself this  is no t  a cr i t ic ism of the  mode l .  The  choice  of a project should be 

d e p e n d e n t  on  ex te rna l  cond i t ions .  T he  p r o b l e m  is tha t  a f ixed marke t  rate is 

a s s u m e d  for w h a t  m i g h t  be  a long  t e rm project.  In the  nex t  sec t ion of this  pape r  we  
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will g ive  a vers ion  of this m e t h o d  wh ich  incorpora tes  a s tochast ic  marke t  interest  

rate mode l .  Before d o i n g  this we  discuss  an internal  rate of r e tu rn  funct ion 

obta ined  by  P r o m i s l o w  and  Spring.  

To obta in  the P romis low-Spr ing  IRR (P_IRR) let I.t be the Lebesgue  measu re  on 

the line. For f a real va lued  funct ion on (0,o~) let Xf ÷ be  the set on which  f(x) is 

posit ive.  Then  the project  C has P IRR equal  to ~l(X~) - 1 w h e r e  ~ is the p resen t  

value funct ion  of the project  C. That is: 

~(x) = CO + Cl/X + C2/X 2 + .-- + Cn/X n. (9) 

For a pu re  loan project  this funct ion is m o n o t o n e  dec reas ing  and  has a un i que  root  

X + xo. Note  that x0 equals  I , t (w)  in this case and hence  P_IRR = C_IRR. Moreover ,  

X + w h e n e v e r  C has a C_IRR the root xo equals  11(V) so, unl ike the A IRR and  the 

T_IRR, the P_IRR ex tends  the C IRR on the set of all projects  hav ing  a classical 

internal  rate of return.  The P_IRR ranks projects  by the m e a s u r e  of the sets  of rates 

for w h i c h  the project  has  a posi t ive  p resen t  value.  N o w  s u p p o s e  that the two  

curves  in Exhibit  2, labelled C1 and C2 are g raphs  of p resen t  value funct ions  for 

projects  C1 and  C2. The P_IRR selects C1 over  C2. Howeve r ,  it may well  be  that  

C2 is the better  economic  choice. Perhaps ,  as h in ted  by this pic ture  there  is an 

internal  rate of re tu rn  func t ion  g iven  by in tegra t ing  the p r e sen t  value funct ion over  

some  subse t  of (0,o~). 

EXHIBIT 2 

To i l lustrate  the P_IRR, cons ider  the project: 

C = {-1,3.8,1.25,-14.85,11.7}. (10) 

The p r e se n t  va lue  func t ion  is: 

V(x) =-1 + 3 .8 /x  + 1.25/x 2-  14.85/x 3 + 11.7/x 4 (11) 

and the accumula t ed  va lue  at the end  of the project  life is: 

x 4 ~d(x) = -(x - 1.3)(x - 1.5)(x - 3)(x + 2). (12) 
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The P_IRR is thus ( 3 - 1 . 5 + 1 . 3 ) - 1 = 1 . 8 .  

4. A STOCHASTIC  I R R  M O D E L  

We modify the model  of Teichroew, Robichek and Montalbano by permitting 

the market interest rate in year k to be a random variable, d k. We then have 

balance functions 

Bk = T dk Bk-l(X) k = 1,2,...,n. (13) 

The monotonicity is not effected by allowing random market interest rates so if 

Bn(0) is positive Bn will have a unique positive root. Consider the case of four cash 

flows. That is C = 1c0,c1,c2,c3}. With interest factors dl, d2, d3, we have the final 

balance function: 
d2 dl 

B3(x ) = Tc d3 To2 Tq Bo(x). (14) 

This function is piecewise polynomial with up to three different polynomials 

defining it depending upon whether  the end of period balances are positive or 

negative. That is, the function will be linear-quadratic-cubic or quadratic-cubic or 

pure cubic. Also the root may occur in any of the pieces of B3. Thus there are six 

different graphs arising (see Exhibit 3). Also, Graphs 2 through 6 each arise in two 

different forms of the function B3. That is, there are 11 cases to consider. We are 

not including the cases where B3(0) is negative, giving xo = -1. 

EXHIBIT 3 

As more cash flows are added the picture becomes more complicated exponentially. 

Thus calculating an expected internal rate of return is a somewhat  delicate 

programming problem. We give the results of a number of calculations using 

several interest rate scenarios. For each of these we use an initial market rate 

do = 1.08. In each case the expected IRR is gotten using 50 simulations of the 

projects life. The stochastic interest rate scenarios are given to illustrate the model 
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and are not proposed as models to be used in actual practice. We compare the 

rankings of projects given by each of the stochastic models  and by the models 

described earlier. 

We use the fol lowing interest rate scenarios: 

I. In each year the market  interest rate will increase by 25% or decrease by 20% each 

wi th  probabili ty .5. 

1]. In each year the market  interest rate will increase by 25% or decrease by 20% with 

probabilities .75 and .25 respectively. 

IT[. In each year the market  interest rate will increase by 25% or decrease by 20% 

with probabili t ies .25 and .75 respectively. 

IV. For the first [n /2]  years the interest rate will remain  fixed or will rise by 50% 

with probabil i t ies .25 and .75 respectively. For the remaining project years 

the rate remains the same or decreases by 50% with probabilities .25 and .75 

respectively. 

V. For the first [n/2]  years the interest rate will remain fixed or will decrease by 50% 

with  probabili t ies .25 and .75 respectively. For the remaining project years 

the rate remains the same or increases by 50% with probabilit ies .25 and .75 

respectively. 

Now consider the following four projects. Each consists of six cash flows. 

C1 = {-1,3.15,-4.29,4.2885,-3.29,1.1385} 

C2 [-1,3.11,-2.465,3.895,-6.346,2.72} (15) 

C3 = I-1,9.3,-32.77,54.075,-41.245,11.55} 

C4 = {-1,2.49,-1.476,.9955,-2.4945,1.4715}. 

None of these has a classical internal rate of return. In Exhibit 4 we give the IRR 

computed by each of the methods  discussed and  include in parentheses the ranking 

of the project de te rmined  by the method.  
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EXHIBIT 4 

Note that the various methods for computing an IRR give rise to seven different 

rankings of the four projects. Also observe that EII> El > EIII and EIV > EV. This 

is expected since the T_IRR is an increasing function of the market rate d and 

hence the stochastic models with higher probability of greater market rates yield 

higher internal rates of return. 

We next consider a set of eleven four cash flow projects representing each of the 

eleven branches alluded to above. That is, at a fixed market rate of 1.08 each of the 

possible branches is included among these projects. 

PI = [-I200,-2345,-1234,5500} 

P3 = {-1200,-2000,5000,-1100} 

P5 = {-2000,5000,-8000,3000} 

P7 = {-2000,5000,-2000,1000} 

P9 = {-10000,8000,2000,3000} 

P]I = {-1000,5000,4000,-8000} 

P2 = {-2300;320,345,560} 

P4 = {-1230,120,-1340,2700} 

P6 = [-2345,1345,-1234,3000} 

P8 = {-3000,13000,-2000,-2000} 

Pl0 = {-2000,3000,2000,-2000} 

(16) 

In Exhibit 5 we list the IRRs and rank these projects according to the classical IRR 

(for those which have a classical IRR) and the T_IRR, A IRR, P IRR, and the 

stochastic model labelled I above. 

EXHIBIT 5 

In projects P3, FS, and P10 the accumulated value polynomial has onIy one 

positive root greater than one and hence had we used this for the condition for 

existence for a classical IRR these projects would have IRKs of .1891, 3.133, and 

.7446 respectively. A financial calculator may well use this latter condition and 

hence give these values for IRR for these projects. For the stochastic model used 

here the ranking agrees with that given by the T_IRR There are severe differences 

with the Arrow and Promislov,, rankings however.  Also the stochastic IRR ranks 
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those projects which have a positive classical IRR in the same order as does the 

classical IRR. Those with a negative classical IRR get reversed. 

For a final illustration we consider some ten cash flow projects. The projects are: 

D1 = {-1,2,-2,1,-1,3,-2,1,-2,1} 

D2 = [-1,4,1,2,-8,-3,5,-3,2,1} (17) 

D3 = {-1,-1,-1,3,-2,2,-1,-3,3,2.5} 

For each of these projects, the present value of the cash flows at interest factor 1.08 

is close to zero. These present values are -.0194, .2079, -.0199 for D1, D2, D3 

respectively.* Thus if the discounted present value criterion is used and a return of 

8 percent is required, projects D1 and D3 will be rejected while D2 will be accepted. 

Using an internal rate of return criterion in a stochastic interest rate environment  

may give a different choice of project to pursue. With our scenarios, only EV fails 

to rank D2 first. Among the three projects only D3 has a classical IRR. It is .07844 

and is also the IRR given for this project by each of the methods. The present value 

function for D1 has positive roots .6702 and 1 with the latter being a root of 

multiplicity two. The present value function for D2 has positive roots .9735, 1 and 

4.2362. These are approximate except for the root 1. Exhibit 6 shows that there is 

considerable fluctuation in expected IRR given different stochastic interest rate 

scenarios. In the case of D3 this is not the case. This is not because D3 has a classicM 

IRR but because the balance functions remain negative until the end of the project 

and hence the stochastic market rates do not enter. 

EXHIBIT 6 

5. C O N C L U S I O N  

The purpose of this paper  has been to develop a meaningful method for 

extending the partial ordering of pure loan projects given by the classical internal 

rate of return to a much larger class of investment projects. While there already 
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exist a number  of ways for doing this it is our belief that the use of a stochastic 

interest rate model improves the Teichroew, Robichek, Montalbano model. To 

actually carry out the computat ions with or without the stochastic structure is 

somewhat  complex as indicated in Exhibit 3. The main contribution here has been 

to carry out the computations and illustrate the dependence of ranking on the 

interest rate scenario chosen. 
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3. 
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Present value function for a project with multiple IRR's. 

Discounted present value method suggests rejection of project 

at rate x 0 yet accepting at the higher rate x I . 

EXHIBIT 1 
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C I 

C I has higher P IRR but C 2 has higher present value for most rates. 

EXHIBIT 2 
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I. Pure Cubic 2. Quadratic-Cubic 

X 0 a Root of Quadratic 

3. Quadratic-Cubic 

X 0 a Root of Cubic 

Linear-Quadratic-Cubic 

X 0 a Root of Linear 

5. Linear-Quadratic-Cubic 

X 0 a Root of Quadratic 

\ 

6. Linear-Quadratic-CubJ 

X 0 a Root of Cubic 

EXHIBIT 3 
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PROJ P_IRR A_IRR T IRR EI ER EUI EIV ! EV 

C1 -.05(4) 2.15(2) .08(1) .083(4) .105(3) .068(2) .152(3)!.034(1) 

C2 .983(2) i 2.10(3) i-.062(4) .10(1) ,129(1) i.074(1) .232(1) .023(4) 
I 

C3 1.1(1) 8.3(1) .0795(2) .088(2)].106(2) .059(4) .174(2) .026(3) 

C4 .3t(3) 1.49(4) .0791(3) .087(3) ,101(4) I .063(3) , .148(4 ) .031(2) 
i 

EXHIBIT 4 
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PROJECT C_IRR P_IRR A_IRR T_IRR El 

P1 .0724(4) .0724(7) .0724(9) .0724(8) .0724(8) 

P2 -.3442(6) -.3442(10) -.3442(11) -.3442(11) -.3442(11) 

P3 . . . . .  0590(9) .3700(6) .1698(6) .1702(6) 

P4 .0503(5) .0503(8) .0530(10) .0503(9) .0503(9) 

P5 -.5000(7) -.5000(11) 1.5000(3) -.2779(10) -.2767(10) 

P6 .1215(3) .1215(5) .1215(8) .1215(7) .1215(7) 

P7 1.1420(1) 1.1420(3) 1.4900(4) .8299(3) .8303(3) 

P8 ... .  2.6190(2) 3.3333(2) 2.1533(1) 2.1473(1) 

1 x ) .1833(2) .1833(4) .1833(7) .1833(5) .1833(5) 

PIO .... .1000(6) 1.0000(5) .5498(4) .5461(4) 

P l l  .... 3.4500(1) 4.6900(1) .8934(2) .8394(2) 
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PROJ P_IRR A_IRR T_ITT EI EH EUI EIV EV 

D1 -.330(3) 1.00(2) .074(3) .077(3) .122(2) .047(3) .178(2) .019(3) 

D2 3.21(1) 3.34(1) .114(1) .109(1) .169(1) .089(1) .352(t) .036(2) 

D3 .078(2) .078(3) .078(2) .078(2) .078(3) .078(2) .078(3) .078(1) 

EXHIBIT 6 

140 


