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ABSTRACT: This paper discusses a problem in corporate
finance, the problem of selecting from among a group of possible
economic projects. This problem most certainly involves future
contingent events and is a natural for consideration by actuaries
interested in expanding into non-traditional practice areas.

Current texts on Corporate Finance usually favor discounted
present value methods over internal rate of return methods. In
part this is due to the problem of non-uniqueness of internal
rate of return. However, as we point out, whenever non-
uniqueness occurs there is also a problem with the discounted
present value method. In this paper an internal rate of return
method developed by Terchroew, Robichek, and Montalbano
(see Kellison's Theory of Interest, 2nd ed., pg. 158) is used as the
basis for a stochastic model for solving the above selection

problem.
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EXPECTED INTERNAL RATE OF RETURN

INTRODUCTION

The major role of the actuary is to control the financial consequences of future
contingent events. The actuary traditionally performs this role for an insurance
company or in the field of employee pensions. However, this major role clearly has
application in other areas and for the past few years actuarial organizations have
been educating current and prospective membership about the opportunities for
applying actuarial skills in financial areas outside of the traditional ones. All large
corporations are faced with financial decisions whose success depends on future
contingent events. The mathematical/financial tools for dealing with these
decisions are becoming more sophisticated and it is probably fair to say that in many
corporations the financial officers are not equipped to use these tools. Thus the
opportunity for a mutually beneficial relationship exists between the actuarial
profession and the (non-insurance) corporate world.

The purpose of the current paper is to discuss an aspect of corporate finance. Our
interest is in the area of capital budgeting in which a corporation is faced with the

problem of deciding whether to proceed with an economic project.

1. RANKING ECONOMIC PROJECTS

By an economic project we mean a finite sequence of cash flows,
C = lcp,e1,2,-4cn) with g negative and at least one of the ¢; positive. Denote the
set of all such projects by I. We think of the ¢; as the net periodic cash flows
generated by an economic project undertaken by a corporation. Faced with the
problem of choosing from a number of possible projects, the corporation must rank
them by some method. A common method of doing this is to use the discounted

present value of the sequence of cash flows at some discount factor, v. This method

124



will provide a ranking but different choices of v will yield different rankings and
one must provide a rationale for the choice of discount factor. A second methoed for
ranking projects is to use internal rate of return (IRR). Letting xg=1+1ip, ip is an
IRR for the project C if xg=0 and is a root of the equation:
coxP+ex™l + L+ cn=0. (1)
Here we have the problem that such an equation may have multiple real roots or it
may have none. In the case where (1) has a single non-negative root we will call the
corresponding g the classical IRR. In most of the modern corporate finance
textbooks internal rate of return methods are downplayed in favor of discounted
present value methods for evaluating investment projects. The argument is that
the latter give a definite answer to the question of whether a project should be
accepted. That is, accept if the present value of projected cash flow is positive.
However, whenever the cash flow sequence has a non-unique IRR, the present
value method is also anomalous. For example in Exhibit I, a project is rejected if a
rate of return iy is used for discounting and yet accepted if a still higher rate iy is
used. This is certainly counter to intuition and suggests that perhaps internal rate of
return methods should not be discarded prematurely.
EXHIBIT 1

Henceforth we shall refer to the classical IRR as C_IRR. Pure loan projects are
examples of projects having a C_IRR. These are projects having cp <0 and all
other ¢; non-negative. The class of all such projects is simply ordered by the C_IRR
(treating as equivalent, projects having the same IRR). Moreover, the C_IRR
provides a simple ordering on the class of all projects having a C_IRR. The ordering
on either of these sets determines a partial ordering on the collection of all projects
described above. There is substantial literature devoted to the attempt to extend the
partial ordering given by the classical IRR to the set I. Mathematically, there is no

problem. Any partial ordering on a set, 5, may be extended to a total ordering on 5
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by transfinite induction. The problem is to do this in a way which has economic

meaning.

2. AN AXIOMATIC TREATMENT

In [3], [4] Promislow and Spring give an axiomatic framework for extending the
notion of internal rate of return to all projects of the type considered here. Their
axioms describe a function whose values correspond to the accumulation factor
1 +i rather than to the rate i. Briefly stated their axioms are:

Continuity: The internal rate of return should be a continuous function of
the ;.
Monotonicity: The internal rate of return is non-decreasing with respect to
each ¢j.
Normalization: For pure loan projects, the internal rate of return should
agree with the classical IRR.
A function m: [ — [0,%0) satisfying the above axioms is called an internal rate of
return function.

Promislow and Spring develop a theory termed the Theory of C-spaces which is
then used to obtain internal rate of return functions. They show that solutions of
the problem being considered here previously obtained by Arrow and Levhari [1}
and by Teichroew, Robichek, and Montalbano [5], [6] can be gotten by these methods
and they also obtain a new version of the internal rate of return which provides a

ranking for I. We consider each of these solutions in the next section.

3. THREE REALIZATIONS

We first describe the method of Arrow and Levhari. Given a project

C = {co,c1.02,-.Cn) let

\up(x)=co+c1/x+cz/x3+...+<:P/xp 0<p<sn (7A)
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Note that Yyp(x) is the discounted present value of the truncated project consisting
of the first p + 1 cash flows at discount factor 1/x. The function

W(x) = sup(yo(x),y1(x),.... ¥n(x)) @)
is a continuous decreasing function and has exactly one real root xg. The Arrow-
Levhari IRR is defined to be ig =xp - 1. We will refer to this as the A_IRR. As
Promislow-Spring show this method does yield an internal rate of return function
and thus gives an extension to I of the classical IRR on the set of pure loan projects.
However this does not solve our economic problem. The root so obtained is an IRR
for a truncated project and truncation may not be a feasible option. Let us consider
two simple examples. Let

C1=1(-15-11,7} Cz2 =1{1,5,11,15}. ©)]
Each of these projects has a classical IRR. For Cp itis 0 and for Cy itis 2. The
A_IRR is 4 for both projects. Though the A_IRR extends the partial ordering
given by the C_IRR on pure loan projects, it does not extend the partial ordering
given on the set of projects having a C_IRR.

The method of Teichroew, Robichek, and Montalbano is treated in Kellison's
Theory of Interest [2]. The main idea of this method is to consider two states for the
project depending upon whether the balance of the cash flow stream is negative or
positive. The project earning rate applies only in the former state. When the

project has a positive balance a market rate applies. To describe the method we

define a collection of operators Tcd acting on functions f: [0,e¢) » R where R is the

set of real numbers and d and c¢ are real with d > 0. This operator is defined by:
d {df(x) +c f(x)20
Tef0=ut) + ¢ £ <. ©)

In our first use of this operator, d will be the (constant) market interest rate. We
will thus delete the superscript d. We then recursively define balance functions By

for the project C by Bg(x) =cg and
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d
Bi() = T, Bi1(x) k=12..n. ©6)

Thus By(x) is the balance of the project after k years using accumulation factor x
in years when the balance is negative at the beginning of a year and accumulation
factor d otherwise. Note that since ¢ is negative, the By are monotone
decreasing continuous functions. They are all piecewise polynomials. Hence if
Ba(0) > 0 there is a unique root xp of Ba(x). The Teichroew, Robichek, Montalbano
IRR which we will refer to as the T_IRR is then defined to be ig=xg-1. If BR(0) <0
the T_IRR is -1. Again, as shown by Promislow and Spring, this method yields an
internal rate -of return function and thus extends the classical IRR on pure loan
projects. Consider the examples:

Cy=1{-56.5,-252) C2=1{5,118}. (7)
Neither is a pure loan project but both have classical IRR. For C;, C_IRR = .166 and
for Cz, C_IRR = .16. The T_IRR for these projects for market rates d = 1.08 and

d =1.25 are:

1.08 1.25

1 157 173
(8)

G 160 160

Although C; has a C_IRR, the T_IRR is not equal to the C_IRR. That is, the
T_IRR does not extend the ranking given by the C_IRR on the set of all projects
having a C_IRR. If we are choosing projects on the basis of the T_IRR we would
prefer Cp to C; at market rate 1.08 but would choose C; over Co at market rate
1.25. In itself this is not a criticism of the model. The choice of a project should be
dependent on external conditions. The problem is that a fixed market rate is

assumed for what might be a long term project. In the next section of this paper we
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will give a version of this method which incorporates a stochastic market interest
rate model. Before doing this we discuss an internal rate of return function
obtained by Promislow and Spring.

To obtain the Promislow-Spring [RR (P_IRR) let p be the Lebesgue measure on

the line. For f a real valued function on (0,) let X; be the set on which f(x) is

positive. Then the project C has P_IRR equal to p(Xl;) -1 where vy is the present

value function of the project C. That is:
Y(x) =co+c1/x+<2/x2+ ..+ cp/xn. (@)

For a pure loan project this function is monotone decreasing and has a unique root
xg. Note that xg equals u(X‘;) in this case and hence P_IRR = C_IRR. Moreover,

whenever C has a C_IRR the root xp equals u(X\;) so, unlike the A_IRR and the

T_IRR, the P_IRR extends the C_IRR on the set of all projects having a classical
internal rate of return. The P_IRR ranks projects by the measure of the sets of rates
for which the project has a positive present value. Now suppose that the two
curves in Exhibit 2, labelled Cy and C; are graphs of present value functions for
projects C; and Cj. The P_IRR selects C1 over Ca. However, it may well be that
Cy is the better economic choice. Perhaps, as hinted by this picture there is an
internal rate of return function given by integrating the present value function over
some subset of (0,e).
EXHIBIT 2

To illustrate the P_IRR, consider the project:

C=1{-1,3.8,1.25,-14.85,11.7}. (10)
The present value function is:

wix)=-1+3.8/x+125/x2-14.85/x3 +11.7/x* (11
and the accumulated value at the end of the project life is:

x4 y(x) = -(x ~ 1.3)(x - 1.5)(x - 3)(x + 2). (12)
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The P_IRR is thus (3-15+13)-1=1.8.

4. A STOCHASTIC IRR MODEL
We modify the model of Teichroew, Robichek and Montalbano by permitting
the market interest rate in year k to be a random variable, dx. We then have

balance functions

d
Bi = To* Br-1(x) k=12,.n 13)

The monotonicity is not effected by allowing random market interest rates so if
Bn(0) is pos'{tive Bn will have a unique positive root. Consider the case of four cash
flows. Thatis C = {cg,c1,c2,c3}. With interest factors di, dp, d3s, we have the final

balance function:

dy_dy_d
Bax) =T, Tg,' Tg,' Bo(x). (14)

This function is piecewise polynomial with up to three different polynomials
defining it depending upon whether the end of period balances are positive or
negative. That is, the function will be linear-quadratic-cubic or quadratic-cubic or
pure cubic. Also the root may occur in any of the pieces of Bz. Thus there are six
different graphs arising (see Exhibit 3). Also, Graphs 2 through 6 each arise in two
different forms of the function Bs. That is, there are 11 cases to consider. We are
not including the cases where B3(0) is negative, giving xg = -1.

EXHIBIT 3
As more cash flows are added the picture becomes more complicated exponentially.
Thus calculating an expected internal rate of return is a somewhat delicate
programming problem. We give the results of a number of calculations using
several interest rate scenarios. For each of these we use an initial market rate
dg = 1.08. In each case the expected IRR is gotten using 50 simulations of the

projects life. The stochastic interest rate scenarios are given to illustrate the model
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and are not proposed as models to be used in actual practice. We compare the

rankings of projects given by each of the stochastic models and by the models

described earlier.

We use the following interest rate scenarios:

I. In each year the market interest rate will increase by 25% or decrease by 20% each
with probability .5.

I. In each year the market interest rate will increase by 25% or decrease by 20% with
probabilities .75 and .25 respectively.

.  In each year the market interest rate will increase by 25% or decrease by 20%
with probabilities .25 and .75 respectively.

IV.  For the first [n/2] years the interest rate will remain fixed or will rise by 50%
with probabilities .25 and .75 respectively. For the remaining project years
the rate remains the same or decreases by 50% with probabilities .25 and .75
respectively.

V. For the first [n/2] years the interest rate will remain fixed or will decrease by 50%
with probabilities .25 and .75 respectively. For the remaining project years
the rate remains the same or increases by 50% with probabilities .25 and .75

respectively.

Now consider the following four projects. Each consists of six cash flows.
Cy = {-1,3.15,-4.29,4.2885,-3.29,1.1385}
Cz {-1,3.11,-2.465,3.895,-6.346,2.72) (15)
C3 = {-1,9.3,-32.77,54.075,-41.245,11.55})
Cy = {-1,249,-1.476,.9955,-2.4945,1 4715).
None of these has a classical internal rate of return. In Exhibit 4 we give the IRR
computed by each of the methods discussed and include in parentheses the ranking

of the project determined by the method.
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EXHIBIT 4

Note that the various methods for computing an IRR give rise to seven different
rankings of the four projects. Alsc observe that EIl > El > EIll and EIV > EV. This
is expected since the T_IRR is an increasing function of the market rate d and
hence the stochastic models with higher probability of greater market rates yield
higher internal rates of return.

We next consider a set of eleven four cash flow projects representing each of the
eleven branches alluded to above. That s, at a fixed market rate of 1.08 each of the

possible branches is included among these projects.

Py = |-1200,-2345,-1234,5500} P> = {-2300,-320,345,560}

P3 = {-1200,-2000,5000,-1100} P4 = {-1230,120,-1340,2700}

Ps = {-2000,5000,-8000,3000} Pe = {-2345,1345,-1234,3000} (16)
P7 = {-2000,5000,-2000,1000} Pg = {-3000,13000,-2000,-2000}

Py = {-10000,8000,2000,3000} Pyo = {-2000,3000,2000,-2000}

P11 = {-1000,5000,4000,-8000}
In Exhibit 5 we list the IRRs and rank these projects according to the classical IRR
(for those which have a classical IRR) and the T_IRR, A_IRR, P_IRR, and the
stochastic model labelled I above.
EXHIBIT 5

In projects P3, 8, and P10 the accumulated value polynomial has only one
positive root greater than one and hence had we used this for the condition for
existence for a classical IRR these projects would have IRRs of 1891, 3.133, and
.7446 respectively. A financial calculator may well use this latter condition and
hence give these values for IRR for these projects. For the stochastic model used
here the ranking agrees with that given by the T_IRR. There are severe differences

with the Arrow and Promislow rankings however. Also the stochastic IRR ranks
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those projects which have a positive classical IRR in the same order as does the
classical IRR. Those with a negative classical IRR get reversed.
For a final illustration we consider some ten cash flow projects. The projects are:

D1 ={-1,2,-21,-1,3,-2,1,-2,1}

D2=1{-1,4,1,2,-8,-3,5,-3.2,1} (17)

D3 =1{-1,-1,-1,3,-2,2,-1,-3,3,2.5}
For each of these projects, the present value of the cash flows at interest factor 1.08
is close to zero. These present values are -.0194, .2079, -.0199 for D1, D2, D3
respectively. " Thus if the discounted present value criterion is used and a return of
8 percent is required, projects D1 and D3 will be rejected while D2 will be accepted.
Using an internal rate of return criterion in a stochastic interest rate environment
may give a different choice of project to pursue. With our scenarios, only EV fails
to rank D2 first. Among the three projects only D3 has a classical IRR. It is .07844
and is also the IRR given for this project by each of the methods. The present value
function for D1 has positive roots .6702 and 1 with the latter being a root of
multiplicity two. The present value function for D2 has positive roots .9735, 1 and
4.2362. These are approximate except for the root 1. Exhibit 6 shows that there is
considerable fluctuation in expected IRR given different stochastic interest rate
scenarios. In the case of D3 this is not the case. This is not because D3 has a classical
IRR but because the balance functions remain negative until the end of the project
and hence the stochastic market rates do not enter.

EXHIBIT 6

5. CONCLUSION
The purpose of this paper has been to develop a meaningful method for
extending the partial ordering of pure loan projects given by the classical internal

rate of return to a much larger class of investment projects. While there already
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exist a number of ways for doing this it is our belief that the use of a stochastic
interest rate model improves the Teichroew, Robichek, Montalbano model. To
actually carry out the computations with or without the stochastic structure is
somewhat complex as indicated in Exhibit 3. The main contribution here has been
to carry out the computations and illustrate the dependence of ranking on the

interest rate scenario chosen.
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Present value function for a project with multiple IRR's.
Discounted present value method suggests rejection of project
at rate X yet accepting at the higher rate Xy»

EXHIBIT 1
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C1 has higher P_IRR but C2 has higher present value for most rates.

EXHIBIT 2
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1.

Pure Cubic

Linear—-Quadratic-Cubic

%o

a Root of Linear

RN \

2. Quadratic-Cubic 3. Quadratic-Cubic

XO a Root of Quadratic XO a Root of Cubic

A

5. Linear—Quadratic-Cubic 6. Linear-Quadratic-Cub:
XO a Root of Quadratic XO a Root of Cubic
EXHIBIT 3
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PROJ

P_IRR | A_IRR| T_IRR El

EN ENI EIV EV

c1 | -050) | 2152) | 081y | 0834y | .105(3) | .068(2) | .152(3) | .034(1)
c2 | 983@) | 21003) | -062(4) | 10(1) | 12901) | .07401) | 23201) | .023(9)
3 | 1.1(1) | 83(1) |.0795(2) | 088(2) | .106(2) | 059(4) | 174(2) | .026(3)
ca | 3y3) | 149@) | 07913) | 087(3) | 101(4) | 063(3) | 148(4) | 031(2)

EXHIBIT 4
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PROJECT C_IRR P_IRR A_IRR T_IRR EI
P1 0724(4) 0724(7) 0724(9) 0724(8) 0724(8)
P2 -3442(6) | -3442010) | -3442(11) | -342(11) | -3442(11)
P3 — -.0590(9) .3700(6) 1698(6) 1702(6)
P4 0503(5) .0503(8) 0530(10) 0503(9) 0503(9)
P5 -5000(7) | -5000(11) | 1.5000(3) | -.2779(10) | -2767(10)
P6 1215(3) 1215(5) 1215(8) 1215(7) 1215(7)
P7 1.1420(1) 1.1420(3) 1.4900(4) 8299(3) 8303(3)
P8 2.6190(2) 3.3333(2) 2.1533(1) 2.1473(1)
P9 1833(2) 1833(4) .1833(7) 1833(5) 1833(5)
P10 .1000(6) 1.0000(5) 5498(4) 5461(4)
P11 3.4500(1) 4.6900(1) .8934(2) 8394(2)
EXHIBIT 5

139




PROJ | P_IRR | A_IRR| T_ITT El Ell EI EIV EV

D1 | -33003) | 1.002) | 0743) | 0773) | 12202) | 047(3) | .178(2)

019(3)
D2 | 32100) | 3341) | .11400) | 10901) | 16901 | 08900) | 352(1) | .036(2)

D3 .078(

(8]

y | .0783) | 0782 | 0782) | .0783) | .078¢2) | 0783 | 078(1)

EXHIBIT 6
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