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Abstract  

In this paper, we take an axiomatic approach to characterize insurance prices 

in a competitive market setting. We present four axioms to describe the behav- 

ior of market insurance prices. From these axioms it follows that the price of 

an insurance risk has a Choquet integral representation with respect to a dis- 

torted probability, (Yanri, 1987). We propose an additional axiom for reducing 

compound risks. This axiom determines that the distortion function is a power 

function. 
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1 I n t r o d u c t i o n  

In this paper we take an axiomatic approach to characterize insurance prices. By insurance 

price, or insurance premium, we refer to the pure premium for an insurance risk which 

includes the net expected loss plus a risk load charge, excluding expenses and commissions. 

We shall concentrate on market prices, rather than premiums that would have been charged 

if an individual insurer were acting alone without competition. It is argued that in a 

competitive market, insurance prices are determined by the collective efforts of all agents 

(buyers and sellers). Under this argument, individual insurers are not price-makers, but 

price-takers (Meyers, 1991); i.e., the insurance price cannot be influenced by the actions of 

a single insurer. 

An aodome~tlc approach has been at the heart of economic theories of risk and uncer- 

tainty. The five axioms of individual risk preferences in yon Neumann and Morgenstern 
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(1947) laid the foundation for expected utility (EU) theory. Yaari (1987) proposes a dual 

axiom to the independence axiom in EU and, thus, establishes a competing dual theory 

for risk and uncertainty. 1 In Yaari's dual theory, the certainty equivalent of a uniformly 

bounded economic prospect V, (0 < V < I), can be represented as a Choquet integral: 

~' g[ sv(  t ) ldt, 

where Sv(t) = P r { V  > t}, 0 < t < 1, is the decumulative distribution function of V and 

g is an increasing function with g(0) = 0 and g(1) = 1. 

In this paper, we first present four axioms to describe the behavior of insurance prices in 

a competi t ive market.  As a refinement of a mathematical  result of Greco (see Denneberg, 

1994), we show that  from these axioms it follows that  the price for an insurance risk has a 

Choquet integral representation with respect to a distorted probability. This extends the 

result of Yaari (1987) to unbounded random variables. This paper also contributes by 

• Providing ruarke~ interpretations of insurance prices and axioms for insurance price 

behaviors. This differs from the economic theories of Yaari (1987) and Schmeidler 

(1989) which concern individual risk preferences. 

• Furthering the axiomatic approach by adding an additional axiom for reducing com- 

pound risks. This axiom determines that the distortion function is a power function. 

This provides a theoretical justification for the PH-transform method in insurance 

pricing (Wang, 1995, 1996a,b). 

• Describing how our results are analogous with the principle of no arbitrage. 

2 M a r k e t  p r e m i u m  functional  

Let X" be the set of non-negative random variables which represent the random losses 

associated with insurance contracts. We can think of a risk X E ,t" as a measurable non- 

negative real valued function on an underlying measure space (f~, A, P),  in which .4 C 2 a 

is a a-algebra and P is a probability measure. The set  ~ is the collection of outcomes, or 

1For an account of the axioms in EU and Ynari's dual theory, see Quiggin (1993). 
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states of the world, and the o'-algebra of subsets .A is the collection of events. Thus, market 

premiums can be described as a functional from the set of insurance risks to the extended 

non-negative real numbers 

H : X -~  [0, oo]. 

In this section we propose some axioms for this functional. 

Axiom 1 (Condi t iona l  S ta te  Independence )  For a liven market condition, the price 

of an insurance risk X depends only on ira di.~tribution. 

We will use the decumulative distribution function (ddf) (or survival function) to char- 

acterize the distribution of X. The ddf of X is denoted as 

Sx( t )  = P (w  : X(w)  > t}, t >__ O. 

The price charged for a risk depends on the given market condition in some way. The 

market condition reflects the character of the market as a whole. For example, in a perfect 

market, with infinitely many players, perfect information and complete diversifiability of 

risks, the price should be the expected value, since the market should not provide rewards 

for diversifiable risks. When markets are incomplete, imperfect, and risks are not diversi- 

fiable without cost, the market will allow prices in excess of the expected value to reflect 

these conditions. This can lead to different prices in different markets with different de- 

grees of incompleteness, imperfection and diversifiability. However, two risks with identical 

distributions in the same market should have identical prices because the probability dis- 

tribution of the losses should determine the price, not the particular state of the world that 

leads to a given loss. Therefore, under Axiom 1, the market premium function H satisfies 

the property that H[X] = H[X'] if S x  = Sx,.  

We now provide a basic axiom for comparing risks. 

Axiom 2 (Monoton ie l ty )  For two risks X and Y in X ,  i f  X (w)  <_ Y(w) ,  for all w E f~, 

a.s., then HIX] < H[Y] . 

This axiom is reasonable because if a risk Y results in a larger insurance claim than 

risk X in (almost surely) every state of the world, then the insurance price for Y should 

be greater than the price for X. 
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Besides the concept of monotonicity, another useful concept for comparing risks is the 

stochastic dominance. 

Def in i t ion  1 For two risks X and Y in 2d, X is said to precede Y in f irst  s tochas t i c  

d o m i n a n c e  (FSD) if  Sx( t )  < Sy( t )  for all t > O. 

Kaas et al. (1994, Theorem 1.2, pp. 14-15) show the following relationship between 

monotonicity and FSD. 

L e m m a  1 I f  X precedes Y in FSD, then there exists a random variable Y '  with Sy,  = Sy 

such that X <_ Y '  with probability one. 

As an immediate application of Lemma 1, we have the following result. 

P r o p o s i t i o n  1 I f H  satisfies Axioms I and 2, then H preserves FSD. In other words, for 

two risks X and Y in X ,  if  Sx( t )  <_ St ( t )  for all t > O, then H[X] < H[Y] . 

Hadar and Russell (1969) give the following equivalent conditions for FSD. 

1. Sx ( t )  < S t ( t ) ,  for all t > O. That is, for every t, risk Y has a higher tail probability. 

2. For every decision-maker with an increasing utility function u: E[u ( -X) ]  > E[u(-Y)] .  

That is, every individual who thinks more wealth is better views Y as more risky than 

X .  

3. Y is derived from X by the addition of a random variable that is non-negative with 

probability one. That is, Y equals X plus an additional risk. 

If one considers any of these three equivalent conditions, it is natural for the market 

to view Y as being more risky than X. Hence, Axioms 1 and 2 require that the market 

premium for risk Y will be greater than the one for risk X. 

It is important to describe how the premium functional H operates when adding two 

risks. To do so, we use the concept of comonotonicity of risks. 
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Def in i t ion  2 Let X and Y be random variables belonging to X .  We say that X and Y 

are c o m o n o t o n i c  if, and only if, the inequality 

[ x ( ~ , )  - x (o ,=) ] [Y(~ , )  - Y(~: ) ]  _ 0 

holds almost surely (a.s.) for wl and w2 in ~2. 

The term comonotonic comes from 'common monotonic' and is discussed by Schmeidier 

(1986) and Yaari (1987). The following equivalent condition is given by Denneberg (1994, 

pp. 54-55). 

P r o p o s i t i o n  2 Let X and Y belong to X .  Then X and Y are comonotonic if, and only 

if, there ezists Z E X and increasing real functions f and g such that 

x = f ( z ) ,  Y = g (Z ) .  

Yaari (1987, pp.104) states the following about the concept of comonotonicity: 

- -  %omonotonicity is a distribution-free property, in the sense that it is 

invariant under changes in the underlying measure. It is, in fact, an analogue of 

perfect correlation for this distribution-free setting. When two random variables 

are comonotonic, then it can be said that neither of them is hedge against the 

other. The variability of one is never tempered by counter-variability of  the 

other." 

If X and Y are comonotonic, the outcomes of X and Y always move in the same 

direction (good or bad), thus there is no hedge or diversifiability when pooling the two 

risks. For instance, quota shares or excess-of-loss layers of the same risk are comonotonic. 

In a competitive market, Venter (1991) claims that additivity of insurance prices is 

required to avoid systematic arbitrage opportunities. However, strict additivity fails to 

explain the pooling effect, which is believed to be the essence of insurance (e.g. Albrecht, 

1992). Therefore, instead of requiring additivity for all risks, we impose a weaker constraint 

by requiring additivity for comonotonic risks only. For comonotonic risks X and Y, let 

W = X + Y. The market price for W is at least the sum H[X] + H[Y] because of the 

no-hedge condition (or non-diversifiability). On the other hand, the price for W cannot 
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exceed H[X] + H[Y], because otherwise the policyholder can just buy separate insurance 

policies from different insurers. 

Axiom 3 (Comono ton i c  Addit ive)  I f  X and Y in ,lf are comonotonic, then 

H[X + Y] = HIX] + H[Y]. 

We also propose that the market premium functional H satisfies two mild continuity 

properties: 

Axiom 4 (Con t inu i ty )  For X E 2(; and d > O, the functional H satisfies 

lira H[(X - d)+] = H[X], 
d-~O+ 

and 

lira H[min(X, d)] = H[XI, 
d-#oo 

in which (X - d)+ = max(X - d, 0). 

In Axiom 4, the first condition says that a small truncation in the loss variable results 

in a small change in premium; the second condition says that H can be calculated by 

approximating X by bounded variables. The continuity property has also been applied by 

Hiirlimann (1994, Theorem 4.1). 

3 Choquet integral representation 

Consider a set function 7 : .4 -~ [0, oo). Assume that the set function 7 is finite, zero on 

the empty set, and monotone; that is, 7(~b) = O, 7(11) < oo, and 

A, B E A, A C B ==~7(A)_<7(B). 

For a non-negative, real-valued random variable X, the Choquet integral of X with respect 

to ~, can be evaluated as 

X~-~ = 7{~o: X(~o) > t}dt. 
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D e f i n i t i o n  3 Let P be a probability measure on a a-algebra .4 in 2 a. For an increasing 

function g on [0, 1] with g(O) = 0 and 9(I) = 1, the set function 7 = 9 o P is catted a 

d i s t o r t e d  probability and the function 9 is called a d i s t o r t i o n  f u n c t i o n .  

Under the distorted probability 7 = g o P,  the Choquet integral of X E ,.1=" can be 

evaluated as 

/ /5 /5 Xd7 = 9 o P ( , , ,  : x ( , o )  > t}dt = g[Sx(t)]dt. 

T h e o r e m  I (Greeo )  I f  the market premium functional 

H : X -~ [0, oo] 

satisfies Azioms ~-4, then there is a unique monotone set function V on A,  such that 

= f Xd% H[X] 

The set function 7 is given by 7(A) = H[IA], A E .,4. 

P roo f :  This representation theorem was proved by Greco (Denneberg, 1994). [] 

In fact, if we also assume that H satisfies Axiom 1, then we can write 7 as a distorted 

probability, g o P;  however, g will not necessarily be unique. If we impose a constraint on 

the collection of risks X', then we can show that g is unique, and we have the following 

theorem. 

T h e o r e m  2 Assume that the collection of risks ,,~ contains all the Bernoulli(u) random 

variables, 0 < u < I. I f  the market premium functional 

satisfies Axioms I-4, then there is a unique distortion function g such that 

H[X] -- H[1] f Xd(g o P) --- H[1] fo • g[Sx(t)]dt, 

in which 1 represents the degenerate random variable which equals 1 with probability one. 
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Proof: By Theorem I, there exists a unique monotone set function 7 on .4, such that 

= f xa-r. Hix] 

The monotone set function 7 is given by 7(A) = Hil t ] ,  A E .4. We now only need to show 

that  7 = HI1] (g o P) in which g is a unique distortion. 

S t e p  1. Assume that H[1] = 1. 

Define g :  [0, 1] --~ [0, 1] by g(u) = H[I,] in which I,, is a Bernoulli(u) random variable, 

u E [0, 1], with 

P { w :  I~(w) = 0} = 1 - u, P { w :  I,,(w) = 1} = u. 

Note that H[I,,] = "y{w : I,,(w) = 1} by Theorem 1. Also note that ,  by Axiom 1, g is 

well-defined. 

To show that g is a distortion, first observe that g(0) = H[lo] = 0. Indeed, because I0 

is comonotonic with respect to all random variables X,  H[X] = H[Io + X] = H[Io] + H[X] 

which implies that H[lo] = 0. Second, g is increasing because H preserves FSD. Finally, 

g(1) = H[It] = 1, by assumption. Therefore, g is a distortion on [0,1]. 

We have defined g so that for 0 _< t < 1, 

"r{~, : r,(~,) > t} = " d " :  ~,(~') = 1} = g(,,) = g(S~o(t)); 

and for t > 1, 

~{~, :  I . (~,)  > t }  = ~(~)  = 0 = g(0) = g(s~.(t)). 

We want to show that 7{w: X(w) > t} = g[Sx(t)] for all X E X and t > O. 

For a given X E X and for a fixed t >_ O, S x ( t )  E [0, 1], so define a Bernoulli random 

variable Isx(o : f~ --+ [0, co] by 

= / 0, if x(~,)  ___ t, 
Is~(t)(w) t 1, f f X ( w ) > t .  

Then,  

and it follows that 

")'{to: X(w) > t} = 7{w: Isx(O(w) = 1} = g[Sx(t)] 

fo ~ [s~( )] > t}dt = g t art. 
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S t e p  2. Drop the assumption of H[1] = 1 and consider the premium functional 

H'[X] = H[X]/H[1]. Note that if H satisfies Axioms 1-4 then so does H'. [] 

Another plausible requirement on the premium functional is so-called no unjustified 

risk loading: For a degenerate variable X = 1 with probability one, the insurance price is 

H[X] = 1. 

T h e o r e m  3 Assume that the collection of risks 2d contains all the Bernoulli(u) random 

variables, 0 < u < 1. The premium functional H satisfies Azioms 1-4 and H[X] = 1 if, 

and only if, H has a Choquet integral representation: 

Htx] = f Xd(g o P) = fo ® g[Sx(t)]dt, 

where g is increasing with g(O) = 0 and g(1) = 1. Furthermore, the following properties 

hold: 

• Non-negative loading: E[X] < H[X], for all X ,  if  and only i f  g(u) > u, for all 

u E [0, 1]. 

• Non-e=ess ive  loading H[X] < m~(X) 

• Scale and translation invariant: H[aX + b] = all[X] + b, for a >_ O, b > O. 

• Sub-additivity: I fg  is concave, H[X + Y] <_ H[X] + H[Y]. 

• I f g  is concave, then H preserves the second stochastic dominance. That is, 

/. F ~ Sx(t)dt  < Sy(t)dt ,  for all • >_ 0 ~ H[X] <_ HW]. 

Proof ;  The "only if" part is a direct application of Theorem 2. For a proof of the "if" part 

as well as the listed properties see Denneberg (1994, pp. 64 and 71) and Wang (1996a). [] 

Theorem 3 says that market prices are just  expectations with respect to a new mea- 

sure; however, this measure is not necessarily additive. This theorem is essentially Yaari's 

Representation Theorem (1987) extended to unbounded random variables. Also, we can 

extend Theorems 1-3 to represent a premium functional on the collection of real-valued 

random variables X ,  Appendix A. For a real-valued loss variable, the negative part  refers 

to a gain; for instance, in life insurance the loss variable can assume both positive and 

negative values for periodic premium payments. 
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4 V a l u a t i o n  o f  c o m p o u n d  B e r n o u l l i  r i s k s  

Consider a compound BernouUi risk X = I Y ,  where I is a Bernoulli frequency random 

variable with probability of occurrence q = Pr{ l  = 1} = Pr{X > 0}, and Y represents the 

loss severity random variable given that  a loss has occurred (that  is, Y = X I X  > 0). 

Suppose that  two parties A and B have entered the following agreement: In the event 

that a loss occurs ( I  = 1), party A pays the market premium H[Y] to B, and in exchange, 

party B pays the actuM loss amount Y. In this mutuM agreement, party A faces a contingent 

payout of IH[Y],  and party B faces a contingent payout of I Y .  In order to avoid any 

arbitrage opportunities,  it is necessary that the market evaluates these two contingent 

payouts as having the same price. Thus, to evaluate the compound risk I Y ,  one can 

substi tute the market  price H[Y] for the loss severity variable Y. It follows that  the 

compound risk I V  is reduced to a one-stage risk, Z = IH[Y] with Pr{Z = 0} = 1 - q and 

Pr{Z = HIE]} = q. 

In summary, we put forward the following axiom. 

A x i o m  5 ( R e d u c t i o n  o f  C o m p o u n d  B e r n o u l l i  R i s k s )  Let X = I Y  be a compound 

Bernoulli risk, where the Bernoulli frequency random variable I is independent of the loss 

severity random variable Y = X I X  > O. Then the market prices for risks X = I Y  and 

IH[Y] are equal. 

T h e o r e m  4 Assume that the collection of risks ,E contains all the Bernoulli random vari- 

ables. Then the market premium functional H satisfies Axioms I-5 if, and only if, H can 

be represented as 

H[X] = fo~[Sx (t)]'dt, (1) 

where r is some unique positive constant. 

P r o o f :  T h e  " i f '  p a r t .  Note that  for X = I Y  and I ,,~ Bernoulli(u), 0 < u < 1, 

$x(t) = nat( t)  for all t > 0. If a(x) = x', r > 0, then 

H[X] = u'H[Y] = H[/]H[Y]. 

Thus, if g is a power function, g(x) = x ' ,  then H satisfies Axioms 1-5. 
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The "only if ~' part. First, Axiom 5 implies that H[I] = H[1]H[I] (by letting I and 

Y be degenerate at 1) and, thus, H[I] = 1. By Theorem 3, Axioms 1-5 imply that there 

exists a unique distortion function g : [0,1] --~ [0, 1] such that 

Z" H[XI - -  g[Sx(t)ldt. 

We need to show that Axiom 5 implies that g is a power function. 

We choose the following claim severity distribution: 

Pr{Y = 1} = 1 - w, Pr{Y = 2} = to, 0 < w < I. 

Note that Y has the decumulative distribution function: 

1, if0<t <1, 

Sz(t) = w, i f l < t < 2 ,  

0, i f 2 < t < o o ,  

and X = IY has the decumulative distribution function: 

q, i f O _ < t < l ,  

Sx( t )  = qw, if l < t < 2, 

0, i£2 < t  < oo. 

Prom Theorem 3, the market price for Y is 

H[Y] = fo I g(1)dt + ~' g(w)dt = 1 + g(w), 

and the market price for X = I Y is 

H[X] = f0' g(q)dt + ~ '  g(qw)dt = g(q) + g(qw). 

Prom Ax iom 5, we have H[X]  = H[ IH[Y] ] ,  or eqn i ,~en t l y  

g(q) + g(qw) = g(q)[l + g(w)], 0 < q ,w  < 1, 

which yields that 

g(qw) =g(q)g(w) ,  0 < q ,w  < 1. 

This is a well-known functional equation. Prom Aczdl (1969, p.53), g is a power function, 

g(z) = z" with r > 0. O 
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Wang (1995) proposes a PH-transform principle of premium calculation as follows: 

f o o  i 
H[X] = Jo Sx(t),dt, (2)  

where the exogenous index p _> 1 represents the level of aversion toward uncertainty. 

Note that  the PH-transform principle (2) is formula (1) with r restricted to the interval 

(0, 1]. Axioms 1-5 provide an axiomatic justification for the PH-transform principle. Wang 

(1996b) examines some experimental insurance premium data and shows evidence for the 

power distortion function. 

Closely related to the Choquet integral representation 

L t I [ X l  = g[Sx(t)ldt 

are two economic theories -- those of Yanri (1987) and Schmeidler (1989). Both economists 

use individual risk preference arguments, instead of using market arguments as we do in 

this paper. The major difference between the Schmcidler model and the Yaari model 

lies in the interpretation (Quiggin, 1993). Yaari assumes that the objective distributions 

arc known and one applies a distortion to the objective distribution. Schmeidler starts 

with acts, or risk preferences, and then infers a subjective non-additive set function. This 

difference in interpretation leads to different methods of conditioning risks upon given 

information: Following Yaari's theory one updates the objective distribution and then 

applies a distortion to the conditional predictive distribution. On the other hand, following 

Schmcidler's theory, one updates the non-additive measure directly. Wang and Young 

(1996) show that consistency between the two theories in conditioning risks using the 

Bayes' update rule requires that the distortion function g be a power function. 

5 Analogy  with the  principle of no arbitrage 

Dybvig and Ross (1992) discuss pricing of risky assets via the principle of no arbitrage - -  

no strategy exists that guarantees a positive payoff in some contingency with no chance of 

a negative payoff and with no net investment. They show that in many cases, the absence 

of arbitrage is equivalent to the existence of a positive linear pricing rule; this is the first 

part  of the Fundamental Theorem of Asset Pricing. Our axioms lead to a pricing rule 
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that is not necessarily additive because we require additivity for comonotonic risks only, 

Axiom 3. Thus, one may think of our theory as a less restrictive version of the principle of 

no-arbitrage; we assume no arbitrage for comonotouic risks only. 

Hickman and Young (1994) point out the parallel between no arbitrage and the axiom 

for consistency in subjective probability. The Italian actuary, de Finetti, proposed that  one 

could determine a person's subjective probability as follows: The probability of an event 

E, P(E) ,  is the amount of money the person is willing to pay in exchange for 1 unit of 

money if the event E were to occur. One requires that the person is also willing to accept 

the reverse bet. Consistency is assured by not allowing the person to set up a series of 

gambles that guarantees a gain for at least one outcome and no loss for any outcome; that 

is, arbitrage is not permitted. This absence of arbitrage is a key consistency requirement 

for individuals assigning probabilities and is a characteristic of linear pricing rules, by the 

Fundamental Theorem of Asset Pricing. 

There is also a parallel between our market pricing theory and subjective non-additive 

probability for individual risk assessment, as proposed by Schmeidler (1989) and Yaari 

(1987). Schmeidler and Yanri relax the independence axiom of EU theory so that it applies 

only to comonotouic risks. With respect to de Finetti 's model, this relaxation of the 

independence axiom essentially means that consistency, or no arbitrage, is required only 

for comonotouic risks. In Sclimeidler's theory, if the individual's utility function is linear, 

then the resulting subjective certainty equivalent of a risk is the Choquet integral of the risk 

with respect to a monotone set function, as is the market insurance price in our Theorem 1 

(due to Greco). Yaari's axioms are similar to those of Schmeidler, but he requires that 

the subjective certainty equivalent of a constant be that constant. Therefore, in Yanri's 

theory, the subjective certainty equivalent of a risk is the Choquet integral of the risk with 

respect to a distorted probability, as is the market premium in our Theorem 3. Thus, we 

see that there is a parallel between individual risk assessment in the theories of Schmeidler 

and Yaari and the insurance market pricing rules we develop in this paper, just as there 

is a parallel between consistency of subjective probabilities in the theory of de Finetti  and 

the principle of no arbitrage in pricing assets. 

At the time of writing of this paper, Chateanneuf et al. (1996) consider properties of 

pricing rules in financial markets with frictions. They obtain a Choquet integral representa- 
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tion and show that, among other things, their non-linear pricing rule can explain violation 

of put-call parity. Artzner eta/. (1996) consider desirable properties of a risk measure and 

maintain that the Choquet integral can be used as a risk measure. We point out that the 

results of this paper can be applied to pricing in financial markets with frictions as well as 

to measuring risk. 
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A p p e n d i x  A: E x t e n s i o n  to real -valued r a n d o m  variables  

Let the set of insurance risks, X,  be the collection of real-valued random variables on 

the measure space (~2,.4, P). Extend the continuity axiom, Axiom 4, to include the third 

condition lima-._oo H[max(X, d)] = H[X I. 

If we assume that t t  satisfies Axioms 2 through 4 (extended), then we can represent H 

via the Choquet integral with respect to the monotone set function given in Theorem 1. 

Indeed, let X E X and M < 0; then, max(X, M) - M is a non-negative random variable. 

Because - M ,  a constant, is comonotonic with every risk, and because monotouicity and 

comonotouic additivity imply positive homogeneity of H, we have that 

H[max(X, M) - M] = H[max(X, M)] + HI -M]  = H[max(X, M)] - MH[1]. 

Thus, H[max(X, M)] = a[max(X, M) - M] + MH[1]. 

By Greco's Representation Theorem applied to max(X, M) - M, we have that 

H[max(X, M)] = f[max(X, M) - M]d 7 + M 7 ( a )  

= f[max(X, M)]d7 - MT(il) + M'r( i l )  

= j ' [max(X,M)]d 7. 

Now, 

H[N] = iimM.,_o~ H[max(X, M)] 

= limM_._oo[J~_oo{7(max(X, M) > t) - 7(ft)}dt + f o  7(max(X, M) > t)dt] 

= limM-.-oo[fMcc{7(f~) -- 7(fl)}dt + ffMTT(X > t) -- 7(i])}dt + f o  7( X > t)dt] 

= l imM~_~ /~{7 (X  > t) - 7(fl)}dt + $o ~ 7(X > t)dt 

= f~_~{7(X > t ) - 7 ( l l ) } d t + f ~ " 7 ( X  > t)dt 

= f X d  7. 
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in which the next-to-the-last equality follows from continuity of the Choquet integral, (Den- 

neberg, 1994, Proposition 1.6). Thus, we can represent H as the Choquet integral with 

respect to a monotone set function. [] 

Note that Theorem 2 can be extended in a similar fashion to real-valued random vari- 

ables by replacing H[1] (goP) for q, in the above. With the condition H[1] = 1, the Choquet 

integral of a real-valued random X with respect to a distortion g is 

which is asymmetric in that H[ -X]  # -H[X].  Denneberg (1991) examines a pricing 

functional similar to the one above, except that he requires it to be symmetric: H I - X ]  = 

-rI[X]. 
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